embassy/embassy-rp/src/uart/mod.rs

1042 lines
32 KiB
Rust
Raw Normal View History

use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use atomic_polyfill::{AtomicU16, Ordering};
2023-05-15 15:21:05 +02:00
use embassy_cortex_m::interrupt::{self, Binding, Interrupt, InterruptExt};
use embassy_futures::select::{select, Either};
use embassy_hal_common::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use embassy_time::{Duration, Timer};
use pac::uart::regs::Uartris;
2021-03-29 04:11:32 +02:00
use crate::clocks::clk_peri_freq;
2022-08-18 19:39:13 +02:00
use crate::dma::{AnyChannel, Channel};
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
2023-04-15 15:13:44 +02:00
use crate::pac::io::vals::{Inover, Outover};
use crate::{pac, peripherals, Peripheral, RegExt};
#[cfg(feature = "nightly")]
mod buffered;
#[cfg(feature = "nightly")]
2023-05-15 15:21:05 +02:00
pub use buffered::{BufferedInterruptHandler, BufferedUart, BufferedUartRx, BufferedUartTx};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DataBits {
DataBits5,
DataBits6,
DataBits7,
DataBits8,
}
impl DataBits {
fn bits(&self) -> u8 {
match self {
Self::DataBits5 => 0b00,
Self::DataBits6 => 0b01,
Self::DataBits7 => 0b10,
Self::DataBits8 => 0b11,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Parity {
ParityNone,
ParityEven,
ParityOdd,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum StopBits {
#[doc = "1 stop bit"]
STOP1,
#[doc = "2 stop bits"]
STOP2,
}
2021-03-29 04:11:32 +02:00
#[non_exhaustive]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
2021-03-29 04:11:32 +02:00
pub struct Config {
pub baudrate: u32,
pub data_bits: DataBits,
pub stop_bits: StopBits,
pub parity: Parity,
/// Invert the tx pin output
pub invert_tx: bool,
/// Invert the rx pin input
pub invert_rx: bool,
// Invert the rts pin
pub invert_rts: bool,
// Invert the cts pin
pub invert_cts: bool,
2021-03-29 04:11:32 +02:00
}
impl Default for Config {
fn default() -> Self {
Self {
baudrate: 115200,
data_bits: DataBits::DataBits8,
stop_bits: StopBits::STOP1,
parity: Parity::ParityNone,
invert_rx: false,
invert_tx: false,
invert_rts: false,
invert_cts: false,
2021-03-29 04:11:32 +02:00
}
}
}
/// Serial error
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and
/// our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
pub struct DmaState {
rx_err_waker: AtomicWaker,
rx_errs: AtomicU16,
}
2022-08-18 19:39:13 +02:00
pub struct Uart<'d, T: Instance, M: Mode> {
tx: UartTx<'d, T, M>,
rx: UartRx<'d, T, M>,
}
2022-08-18 19:39:13 +02:00
pub struct UartTx<'d, T: Instance, M: Mode> {
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
}
2022-08-18 19:39:13 +02:00
pub struct UartRx<'d, T: Instance, M: Mode> {
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
/// Create a new DMA-enabled UART which can only send data
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx, tx_dma);
Uart::<T, M>::init(Some(tx.map_into()), None, None, None, config);
Self::new_inner(Some(tx_dma.map_into()))
}
fn new_inner(tx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
2022-08-18 19:39:13 +02:00
Self {
tx_dma,
phantom: PhantomData,
}
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let r = T::regs();
unsafe {
for &b in buffer {
while r.uartfr().read().txff() {}
r.uartdr().write(|w| w.set_data(b));
}
}
Ok(())
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
let r = T::regs();
unsafe { while !r.uartfr().read().txfe() {} }
Ok(())
}
pub fn busy(&self) -> bool {
unsafe { T::regs().uartfr().read().busy() }
}
/// Assert a break condition after waiting for the transmit buffers to empty,
/// for the specified number of bit times. This condition must be asserted
/// for at least two frame times to be effective, `bits` will adjusted
/// according to frame size, parity, and stop bit settings to ensure this.
///
/// This method may block for a long amount of time since it has to wait
/// for the transmit fifo to empty, which may take a while on slow links.
pub async fn send_break(&mut self, bits: u32) {
let regs = T::regs();
let bits = bits.max(unsafe {
let lcr = regs.uartlcr_h().read();
let width = lcr.wlen() as u32 + 5;
let parity = lcr.pen() as u32;
let stops = 1 + lcr.stp2() as u32;
2 * (1 + width + parity + stops)
});
let divx64 = unsafe {
((regs.uartibrd().read().baud_divint() as u32) << 6) + regs.uartfbrd().read().baud_divfrac() as u32
} as u64;
let div_clk = clk_peri_freq() as u64 * 64;
let wait_usecs = (1_000_000 * bits as u64 * divx64 * 16 + div_clk - 1) / div_clk;
self.blocking_flush().unwrap();
while self.busy() {}
unsafe {
regs.uartlcr_h().write_set(|w| w.set_brk(true));
}
Timer::after(Duration::from_micros(wait_usecs)).await;
unsafe {
regs.uartlcr_h().write_clear(|w| w.set_brk(true));
}
}
}
impl<'d, T: Instance> UartTx<'d, T, Blocking> {
#[cfg(feature = "nightly")]
pub fn into_buffered(
self,
2023-05-15 15:21:05 +02:00
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx_buffer: &'d mut [u8],
) -> BufferedUartTx<'d, T> {
buffered::init_buffers::<T>(irq, tx_buffer, &mut []);
BufferedUartTx { phantom: PhantomData }
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance> UartTx<'d, T, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
2022-08-23 12:28:17 +02:00
let ch = self.tx_dma.as_mut().unwrap();
let transfer = unsafe {
T::regs().uartdmacr().write_set(|reg| {
2022-08-23 12:28:17 +02:00
reg.set_txdmae(true);
});
2022-08-18 19:39:13 +02:00
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::write(ch, buffer, T::regs().uartdr().ptr() as *mut _, T::TX_DREQ)
2022-08-23 12:28:17 +02:00
};
transfer.await;
2022-08-18 19:39:13 +02:00
Ok(())
}
2022-08-18 19:39:13 +02:00
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> {
2023-05-08 23:25:01 +02:00
/// Create a new DMA-enabled UART which can only receive data
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
2023-05-15 15:21:05 +02:00
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
2023-05-15 15:21:05 +02:00
into_ref!(rx, rx_dma);
2023-04-18 17:44:19 +02:00
Uart::<T, M>::init(None, Some(rx.map_into()), None, None, config);
2023-05-15 15:21:05 +02:00
Self::new_inner(true, Some(rx_dma.map_into()))
}
2023-05-15 15:21:05 +02:00
fn new_inner(has_irq: bool, rx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
debug_assert_eq!(has_irq, rx_dma.is_some());
if has_irq {
unsafe {
// disable all error interrupts initially
T::regs().uartimsc().write(|w| w.0 = 0);
2023-05-15 15:21:05 +02:00
T::Interrupt::steal().unpend();
T::Interrupt::steal().enable();
}
}
2022-08-18 19:39:13 +02:00
Self {
rx_dma,
phantom: PhantomData,
}
}
pub fn blocking_read(&mut self, mut buffer: &mut [u8]) -> Result<(), Error> {
while buffer.len() > 0 {
let received = self.drain_fifo(buffer)?;
buffer = &mut buffer[received..];
}
Ok(())
}
fn drain_fifo(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
let r = T::regs();
for (i, b) in buffer.iter_mut().enumerate() {
if unsafe { r.uartfr().read().rxfe() } {
return Ok(i);
}
let dr = unsafe { r.uartdr().read() };
if dr.oe() {
return Err(Error::Overrun);
} else if dr.be() {
return Err(Error::Break);
} else if dr.pe() {
return Err(Error::Parity);
} else if dr.fe() {
return Err(Error::Framing);
} else {
*b = dr.data();
}
}
Ok(buffer.len())
}
2021-03-29 04:11:32 +02:00
}
impl<'d, T: Instance, M: Mode> Drop for UartRx<'d, T, M> {
fn drop(&mut self) {
if let Some(_) = self.rx_dma {
unsafe {
T::Interrupt::steal().disable();
2023-05-15 15:21:05 +02:00
// clear dma flags. irq handlers use these to disambiguate among themselves.
T::regs().uartdmacr().write_clear(|reg| {
reg.set_rxdmae(true);
reg.set_txdmae(true);
reg.set_dmaonerr(true);
});
}
}
}
}
impl<'d, T: Instance> UartRx<'d, T, Blocking> {
2023-04-30 08:26:57 +02:00
pub fn new_blocking(
_uart: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(rx);
Uart::<T, Blocking>::init(None, Some(rx.map_into()), None, None, config);
2023-05-15 15:21:05 +02:00
Self::new_inner(false, None)
2023-04-30 08:26:57 +02:00
}
#[cfg(feature = "nightly")]
pub fn into_buffered(
self,
2023-05-15 15:21:05 +02:00
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
rx_buffer: &'d mut [u8],
) -> BufferedUartRx<'d, T> {
buffered::init_buffers::<T>(irq, &mut [], rx_buffer);
BufferedUartRx { phantom: PhantomData }
}
}
2023-05-15 15:21:05 +02:00
pub struct InterruptHandler<T: Instance> {
_uart: PhantomData<T>,
}
impl<T: Instance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let uart = T::regs();
if !uart.uartdmacr().read().rxdmae() {
return;
}
let state = T::dma_state();
let errs = uart.uartris().read();
state.rx_errs.store(errs.0 as u16, Ordering::Relaxed);
state.rx_err_waker.wake();
// disable the error interrupts instead of clearing the flags. clearing the
// flags would allow the dma transfer to continue, potentially signaling
// completion before we can check for errors that happened *during* the transfer.
uart.uartimsc().write_clear(|w| w.0 = errs.0);
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance> UartRx<'d, T, Async> {
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// clear error flags before we drain the fifo. errors that have accumulated
// in the flags will also be present in the fifo.
T::dma_state().rx_errs.store(0, Ordering::Relaxed);
unsafe {
T::regs().uarticr().write(|w| {
w.set_oeic(true);
w.set_beic(true);
w.set_peic(true);
w.set_feic(true);
});
}
// then drain the fifo. we need to read at most 32 bytes. errors that apply
// to fifo bytes will be reported directly.
let buffer = match {
let limit = buffer.len().min(32);
self.drain_fifo(&mut buffer[0..limit])
} {
Ok(len) if len < buffer.len() => &mut buffer[len..],
Ok(_) => return Ok(()),
Err(e) => return Err(e),
};
// start a dma transfer. if errors have happened in the interim some error
// interrupt flags will have been raised, and those will be picked up immediately
// by the interrupt handler.
2022-08-23 12:28:17 +02:00
let ch = self.rx_dma.as_mut().unwrap();
let transfer = unsafe {
T::regs().uartimsc().write_set(|w| {
w.set_oeim(true);
w.set_beim(true);
w.set_peim(true);
w.set_feim(true);
});
T::regs().uartdmacr().write_set(|reg| {
2022-08-23 12:28:17 +02:00
reg.set_rxdmae(true);
reg.set_dmaonerr(true);
2022-08-23 12:28:17 +02:00
});
2022-08-18 19:39:13 +02:00
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(ch, T::regs().uartdr().ptr() as *const _, buffer, T::RX_DREQ)
2022-08-23 12:28:17 +02:00
};
// wait for either the transfer to complete or an error to happen.
let transfer_result = select(
transfer,
poll_fn(|cx| {
T::dma_state().rx_err_waker.register(cx.waker());
match T::dma_state().rx_errs.swap(0, Ordering::Relaxed) {
0 => Poll::Pending,
e => Poll::Ready(Uartris(e as u32)),
}
}),
)
.await;
let errors = match transfer_result {
Either::First(()) => return Ok(()),
Either::Second(e) => e,
};
if errors.0 == 0 {
return Ok(());
} else if errors.oeris() {
return Err(Error::Overrun);
} else if errors.beris() {
return Err(Error::Break);
} else if errors.peris() {
return Err(Error::Parity);
} else if errors.feris() {
return Err(Error::Framing);
}
unreachable!("unrecognized rx error");
2022-08-18 19:39:13 +02:00
}
}
impl<'d, T: Instance> Uart<'d, T, Blocking> {
2022-08-18 11:47:15 +02:00
/// Create a new UART without hardware flow control
2022-08-18 19:39:13 +02:00
pub fn new_blocking(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx);
2023-05-15 15:21:05 +02:00
Self::new_inner(
uart,
tx.map_into(),
rx.map_into(),
None,
None,
false,
None,
None,
config,
)
}
/// Create a new UART with hardware flow control (RTS/CTS)
2022-08-18 19:39:13 +02:00
pub fn new_with_rtscts_blocking(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
2022-08-18 19:39:13 +02:00
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
2021-03-29 04:11:32 +02:00
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
Self::new_inner(
uart,
tx.map_into(),
rx.map_into(),
2022-08-18 19:39:13 +02:00
Some(rts.map_into()),
Some(cts.map_into()),
2023-05-15 15:21:05 +02:00
false,
2022-08-18 19:39:13 +02:00
None,
None,
2022-08-18 19:39:13 +02:00
config,
)
}
#[cfg(feature = "nightly")]
pub fn into_buffered(
self,
2023-05-15 15:21:05 +02:00
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) -> BufferedUart<'d, T> {
buffered::init_buffers::<T>(irq, tx_buffer, rx_buffer);
BufferedUart {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
2022-08-18 19:39:13 +02:00
}
impl<'d, T: Instance> Uart<'d, T, Async> {
/// Create a new DMA enabled UART without hardware flow control
pub fn new(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
2023-05-15 15:21:05 +02:00
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
2022-08-18 19:39:13 +02:00
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
2023-05-15 15:21:05 +02:00
into_ref!(tx, rx, tx_dma, rx_dma);
2022-08-18 19:39:13 +02:00
Self::new_inner(
uart,
tx.map_into(),
rx.map_into(),
2022-08-18 19:39:13 +02:00
None,
None,
2023-05-15 15:21:05 +02:00
true,
2022-08-18 19:39:13 +02:00
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
2023-05-15 15:21:05 +02:00
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
2022-08-18 19:39:13 +02:00
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
2023-05-15 15:21:05 +02:00
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
2022-08-18 19:39:13 +02:00
Self::new_inner(
uart,
tx.map_into(),
rx.map_into(),
Some(rts.map_into()),
2022-08-18 19:39:13 +02:00
Some(cts.map_into()),
2023-05-15 15:21:05 +02:00
true,
2022-08-18 19:39:13 +02:00
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
2022-08-18 19:39:13 +02:00
}
impl<'d, T: Instance + 'd, M: Mode> Uart<'d, T, M> {
fn new_inner(
_uart: impl Peripheral<P = T> + 'd,
mut tx: PeripheralRef<'d, AnyPin>,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
2023-05-15 15:21:05 +02:00
has_irq: bool,
2022-08-18 19:39:13 +02:00
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config,
) -> Self {
Self::init(
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
Self {
tx: UartTx::new_inner(tx_dma),
2023-05-15 15:21:05 +02:00
rx: UartRx::new_inner(has_irq, rx_dma),
}
}
fn init(
tx: Option<PeripheralRef<'_, AnyPin>>,
rx: Option<PeripheralRef<'_, AnyPin>>,
rts: Option<PeripheralRef<'_, AnyPin>>,
cts: Option<PeripheralRef<'_, AnyPin>>,
config: Config,
) {
let r = T::regs();
unsafe {
if let Some(pin) = &tx {
pin.io().ctrl().write(|w| {
w.set_funcsel(2);
2023-04-18 17:44:19 +02:00
w.set_outover(if config.invert_tx {
Outover::INVERT
} else {
Outover::NORMAL
});
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &rx {
pin.io().ctrl().write(|w| {
w.set_funcsel(2);
2023-04-18 17:44:19 +02:00
w.set_inover(if config.invert_rx {
Inover::INVERT
} else {
Inover::NORMAL
});
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &cts {
pin.io().ctrl().write(|w| {
w.set_funcsel(2);
2023-04-18 17:44:19 +02:00
w.set_inover(if config.invert_cts {
Inover::INVERT
} else {
Inover::NORMAL
});
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &rts {
pin.io().ctrl().write(|w| {
w.set_funcsel(2);
2023-04-18 17:44:19 +02:00
w.set_outover(if config.invert_rts {
Outover::INVERT
} else {
Outover::NORMAL
});
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
Self::set_baudrate_inner(config.baudrate);
let (pen, eps) = match config.parity {
Parity::ParityNone => (false, false),
Parity::ParityOdd => (true, false),
Parity::ParityEven => (true, true),
};
r.uartlcr_h().write(|w| {
w.set_wlen(config.data_bits.bits());
w.set_stp2(config.stop_bits == StopBits::STOP2);
w.set_pen(pen);
w.set_eps(eps);
2022-09-27 07:45:10 +02:00
w.set_fen(true);
});
r.uartifls().write(|w| {
w.set_rxiflsel(0b000);
w.set_txiflsel(0b000);
2021-03-29 04:11:32 +02:00
});
r.uartcr().write(|w| {
2021-03-29 04:11:32 +02:00
w.set_uarten(true);
w.set_rxe(true);
w.set_txe(true);
w.set_ctsen(cts.is_some());
w.set_rtsen(rts.is_some());
2021-03-29 04:11:32 +02:00
});
}
2021-03-29 04:11:32 +02:00
}
2023-02-27 00:40:23 +01:00
/// sets baudrate on runtime
2023-02-27 00:40:23 +01:00
pub fn set_baudrate(&mut self, baudrate: u32) {
Self::set_baudrate_inner(baudrate);
}
fn set_baudrate_inner(baudrate: u32) {
let r = T::regs();
let clk_base = crate::clocks::clk_peri_freq();
let baud_rate_div = (8 * clk_base) / baudrate;
let mut baud_ibrd = baud_rate_div >> 7;
let mut baud_fbrd = ((baud_rate_div & 0x7f) + 1) / 2;
if baud_ibrd == 0 {
baud_ibrd = 1;
baud_fbrd = 0;
} else if baud_ibrd >= 65535 {
baud_ibrd = 65535;
baud_fbrd = 0;
}
2023-02-27 00:40:23 +01:00
unsafe {
// Load PL011's baud divisor registers
2023-02-27 00:40:23 +01:00
r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd));
r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd));
2023-04-01 11:44:49 +02:00
// PL011 needs a (dummy) line control register write to latch in the
// divisors. We don't want to actually change LCR contents here.
r.uartlcr_h().modify(|_| {});
}
2023-02-27 00:40:23 +01:00
}
2022-08-18 19:39:13 +02:00
}
2021-03-29 04:11:32 +02:00
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer)
}
2021-03-29 04:11:32 +02:00
pub fn blocking_flush(&mut self) -> Result<(), Error> {
self.tx.blocking_flush()
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
pub fn busy(&self) -> bool {
self.tx.busy()
}
pub async fn send_break(&mut self, bits: u32) {
self.tx.send_break(bits).await
}
2023-05-08 23:25:01 +02:00
/// Split the Uart into a transmitter and receiver, which is particularly
2022-08-18 19:39:13 +02:00
/// useful when having two tasks correlating to transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T, M>, UartRx<'d, T, M>) {
(self.tx, self.rx)
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance> Uart<'d, T, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
}
mod eh02 {
use super::*;
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
2021-03-29 04:11:32 +02:00
}
}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Write<u8> for UartTx<'d, T, M> {
type Error = Error;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
let r = T::regs();
unsafe {
if r.uartfr().read().txff() {
return Err(nb::Error::WouldBlock);
}
r.uartdr().write(|w| w.set_data(word));
}
Ok(())
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
let r = T::regs();
unsafe {
if !r.uartfr().read().txfe() {
return Err(nb::Error::WouldBlock);
}
}
Ok(())
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Write<u8> for Uart<'d, T, M> {
type Error = Error;
fn write(&mut self, word: u8) -> Result<(), nb::Error<Self::Error>> {
embedded_hal_02::serial::Write::write(&mut self.tx, word)
}
fn flush(&mut self) -> Result<(), nb::Error<Self::Error>> {
embedded_hal_02::serial::Write::flush(&mut self.tx)
}
}
2022-08-18 19:39:13 +02:00
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::serial::Error for Error {
fn kind(&self) -> embedded_hal_1::serial::ErrorKind {
match *self {
Self::Framing => embedded_hal_1::serial::ErrorKind::FrameFormat,
Self::Break => embedded_hal_1::serial::ErrorKind::Other,
Self::Overrun => embedded_hal_1::serial::ErrorKind::Overrun,
Self::Parity => embedded_hal_1::serial::ErrorKind::Parity,
}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for Uart<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartTx<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartRx<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for UartRx<'d, T, M> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
let r = T::regs();
unsafe {
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else if dr.fe() {
Ok(dr.data())
} else {
Err(nb::Error::WouldBlock)
}
}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for UartTx<'d, T, M> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for UartTx<'d, T, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for Uart<'d, T, M> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for Uart<'d, T, M> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for Uart<'d, T, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
}
2021-03-29 04:11:32 +02:00
mod sealed {
use super::*;
2022-08-18 19:39:13 +02:00
pub trait Mode {}
2021-03-29 04:11:32 +02:00
pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
type Interrupt: crate::interrupt::Interrupt;
fn regs() -> pac::uart::Uart;
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State;
fn dma_state() -> &'static DmaState;
2021-03-29 04:11:32 +02:00
}
pub trait TxPin<T: Instance> {}
pub trait RxPin<T: Instance> {}
pub trait CtsPin<T: Instance> {}
pub trait RtsPin<T: Instance> {}
}
2022-08-18 19:39:13 +02:00
pub trait Mode: sealed::Mode {}
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
2021-03-29 04:11:32 +02:00
pub trait Instance: sealed::Instance {}
macro_rules! impl_instance {
($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$inst {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
2022-09-09 10:49:47 +02:00
type Interrupt = crate::interrupt::$irq;
fn regs() -> pac::uart::Uart {
pac::$inst
2021-03-29 04:11:32 +02:00
}
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
fn dma_state() -> &'static DmaState {
static STATE: DmaState = DmaState {
rx_err_waker: AtomicWaker::new(),
rx_errs: AtomicU16::new(0),
};
&STATE
}
2021-03-29 04:11:32 +02:00
}
impl Instance for peripherals::$inst {}
2021-03-29 04:11:32 +02:00
};
}
impl_instance!(UART0, UART0_IRQ, 20, 21);
impl_instance!(UART1, UART1_IRQ, 22, 23);
2021-03-29 04:11:32 +02:00
pub trait TxPin<T: Instance>: sealed::TxPin<T> + crate::gpio::Pin {}
pub trait RxPin<T: Instance>: sealed::RxPin<T> + crate::gpio::Pin {}
pub trait CtsPin<T: Instance>: sealed::CtsPin<T> + crate::gpio::Pin {}
pub trait RtsPin<T: Instance>: sealed::RtsPin<T> + crate::gpio::Pin {}
2021-03-29 04:11:32 +02:00
macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => {
impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
impl $function<peripherals::$instance> for peripherals::$pin {}
};
}
impl_pin!(PIN_0, UART0, TxPin);
impl_pin!(PIN_1, UART0, RxPin);
impl_pin!(PIN_2, UART0, CtsPin);
impl_pin!(PIN_3, UART0, RtsPin);
impl_pin!(PIN_4, UART1, TxPin);
impl_pin!(PIN_5, UART1, RxPin);
impl_pin!(PIN_6, UART1, CtsPin);
impl_pin!(PIN_7, UART1, RtsPin);
impl_pin!(PIN_8, UART1, TxPin);
impl_pin!(PIN_9, UART1, RxPin);
impl_pin!(PIN_10, UART1, CtsPin);
impl_pin!(PIN_11, UART1, RtsPin);
impl_pin!(PIN_12, UART0, TxPin);
impl_pin!(PIN_13, UART0, RxPin);
impl_pin!(PIN_14, UART0, CtsPin);
impl_pin!(PIN_15, UART0, RtsPin);
impl_pin!(PIN_16, UART0, TxPin);
impl_pin!(PIN_17, UART0, RxPin);
impl_pin!(PIN_18, UART0, CtsPin);
impl_pin!(PIN_19, UART0, RtsPin);
impl_pin!(PIN_20, UART1, TxPin);
impl_pin!(PIN_21, UART1, RxPin);
impl_pin!(PIN_22, UART1, CtsPin);
impl_pin!(PIN_23, UART1, RtsPin);
impl_pin!(PIN_24, UART1, TxPin);
impl_pin!(PIN_25, UART1, RxPin);
impl_pin!(PIN_26, UART1, CtsPin);
impl_pin!(PIN_27, UART1, RtsPin);
impl_pin!(PIN_28, UART0, TxPin);
impl_pin!(PIN_29, UART0, RxPin);