embassy/embassy-nrf/src/saadc.rs

716 lines
21 KiB
Rust
Raw Normal View History

#![macro_use]
use core::future::poll_fn;
2021-03-24 18:33:17 +01:00
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
2022-06-12 22:15:44 +02:00
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{impl_peripheral, into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
2021-03-24 18:33:17 +01:00
use pac::{saadc, SAADC};
2022-06-12 22:15:44 +02:00
use saadc::ch::config::{GAIN_A, REFSEL_A, RESP_A, TACQ_A};
2021-10-13 22:01:49 +02:00
// We treat the positive and negative channels with the same enum values to keep our type tidy and given they are the same
pub(crate) use saadc::ch::pselp::PSELP_A as InputChannel;
2022-06-12 22:15:44 +02:00
use saadc::oversample::OVERSAMPLE_A;
use saadc::resolution::VAL_A;
2021-10-13 22:01:49 +02:00
use self::sealed::Input as _;
2022-06-12 22:15:44 +02:00
use crate::interrupt::InterruptExt;
use crate::ppi::{ConfigurableChannel, Event, Ppi, Task};
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
use crate::{interrupt, pac, peripherals, Peripheral};
2021-03-24 18:33:17 +01:00
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {}
/// One-shot and continuous SAADC.
pub struct Saadc<'d, const N: usize> {
_p: PeripheralRef<'d, peripherals::SAADC>,
2021-03-24 18:33:17 +01:00
}
static WAKER: AtomicWaker = AtomicWaker::new();
2021-03-24 18:33:17 +01:00
/// Used to configure the SAADC peripheral.
///
/// See the `Default` impl for suitable default values.
#[non_exhaustive]
2021-03-24 18:33:17 +01:00
pub struct Config {
/// Output resolution in bits.
pub resolution: Resolution,
/// Average 2^`oversample` input samples before transferring the result into memory.
pub oversample: Oversample,
}
impl Default for Config {
/// Default configuration for single channel sampling.
fn default() -> Self {
Self {
resolution: Resolution::_12BIT,
oversample: Oversample::BYPASS,
}
}
}
/// Used to configure an individual SAADC peripheral channel.
///
/// See the `Default` impl for suitable default values.
#[non_exhaustive]
pub struct ChannelConfig<'d> {
2021-03-24 18:33:17 +01:00
/// Reference voltage of the SAADC input.
pub reference: Reference,
/// Gain used to control the effective input range of the SAADC.
pub gain: Gain,
/// Positive channel resistor control.
pub resistor: Resistor,
/// Acquisition time in microseconds.
pub time: Time,
/// Positive channel to sample
p_channel: PeripheralRef<'d, AnyInput>,
/// An optional negative channel to sample
n_channel: Option<PeripheralRef<'d, AnyInput>>,
2022-07-21 16:42:46 +02:00
}
impl<'d> ChannelConfig<'d> {
/// Default configuration for single ended channel sampling.
pub fn single_ended(input: impl Peripheral<P = impl Input> + 'd) -> Self {
into_ref!(input);
Self {
reference: Reference::INTERNAL,
gain: Gain::GAIN1_6,
resistor: Resistor::BYPASS,
time: Time::_10US,
p_channel: input.map_into(),
n_channel: None,
}
}
/// Default configuration for differential channel sampling.
pub fn differential(
p_input: impl Peripheral<P = impl Input> + 'd,
n_input: impl Peripheral<P = impl Input> + 'd,
) -> Self {
into_ref!(p_input, n_input);
2021-03-24 18:33:17 +01:00
Self {
reference: Reference::INTERNAL,
gain: Gain::GAIN1_6,
2021-03-24 18:33:17 +01:00
resistor: Resistor::BYPASS,
time: Time::_10US,
p_channel: p_input.map_into(),
n_channel: Some(n_input.map_into()),
2021-03-24 18:33:17 +01:00
}
}
}
/// The state of a continuously running sampler. While it reflects
/// the progress of a sampler, it also signals what should be done
/// next. For example, if the sampler has stopped then the Saadc implementation
/// can then tear down its infrastructure.
#[derive(PartialEq)]
pub enum SamplerState {
Sampled,
Stopped,
}
impl<'d, const N: usize> Saadc<'d, N> {
2021-03-24 18:33:17 +01:00
pub fn new(
saadc: impl Peripheral<P = peripherals::SAADC> + 'd,
irq: impl Peripheral<P = interrupt::SAADC> + 'd,
2021-03-24 18:33:17 +01:00
config: Config,
channel_configs: [ChannelConfig; N],
2021-03-24 18:33:17 +01:00
) -> Self {
into_ref!(saadc, irq);
2021-03-24 18:33:17 +01:00
let r = unsafe { &*SAADC::ptr() };
2022-06-12 22:15:44 +02:00
let Config { resolution, oversample } = config;
2021-03-24 18:33:17 +01:00
// Configure channels
2021-03-24 18:33:17 +01:00
r.enable.write(|w| w.enable().enabled());
r.resolution.write(|w| w.val().variant(resolution.into()));
2022-06-12 22:15:44 +02:00
r.oversample.write(|w| w.oversample().variant(oversample.into()));
2021-03-24 18:33:17 +01:00
for (i, cc) in channel_configs.iter().enumerate() {
r.ch[i].pselp.write(|w| w.pselp().variant(cc.p_channel.channel()));
if let Some(n_channel) = &cc.n_channel {
r.ch[i]
.pseln
.write(|w| unsafe { w.pseln().bits(n_channel.channel() as u8) });
2021-03-24 18:33:17 +01:00
}
r.ch[i].config.write(|w| {
w.refsel().variant(cc.reference.into());
w.gain().variant(cc.gain.into());
w.tacq().variant(cc.time.into());
if cc.n_channel.is_none() {
w.mode().se();
} else {
w.mode().diff();
}
w.resp().variant(cc.resistor.into());
w.resn().bypass();
if !matches!(oversample, Oversample::BYPASS) {
w.burst().enabled();
} else {
w.burst().disabled();
}
w
});
}
2021-03-24 18:33:17 +01:00
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0x003F_FFFF) });
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
Self { _p: saadc }
2021-03-24 18:33:17 +01:00
}
fn on_interrupt(_ctx: *mut ()) {
let r = Self::regs();
if r.events_calibratedone.read().bits() != 0 {
r.intenclr.write(|w| w.calibratedone().clear());
WAKER.wake();
}
if r.events_end.read().bits() != 0 {
r.intenclr.write(|w| w.end().clear());
WAKER.wake();
}
if r.events_started.read().bits() != 0 {
r.intenclr.write(|w| w.started().clear());
WAKER.wake();
}
}
fn regs() -> &'static saadc::RegisterBlock {
2021-03-24 18:33:17 +01:00
unsafe { &*SAADC::ptr() }
}
2021-05-22 15:42:14 +02:00
/// Perform SAADC calibration. Completes when done.
pub async fn calibrate(&self) {
let r = Self::regs();
// Reset and enable the end event
r.events_calibratedone.reset();
r.intenset.write(|w| w.calibratedone().set());
// Order is important
compiler_fence(Ordering::SeqCst);
r.tasks_calibrateoffset.write(|w| unsafe { w.bits(1) });
// Wait for 'calibratedone' event.
poll_fn(|cx| {
let r = Self::regs();
WAKER.register(cx.waker());
if r.events_calibratedone.read().bits() != 0 {
r.events_calibratedone.reset();
return Poll::Ready(());
}
Poll::Pending
})
.await;
}
/// One shot sampling. The buffer must be the same size as the number of channels configured.
2022-08-30 01:49:04 +02:00
/// The sampling is stopped prior to returning in order to reduce power consumption (power
/// consumption remains higher if sampling is not stopped explicitly). Cancellation will
/// also cause the sampling to be stopped.
pub async fn sample(&mut self, buf: &mut [i16; N]) {
// In case the future is dropped, stop the task and wait for it to end.
OnDrop::new(Self::stop_sampling_immediately);
let r = Self::regs();
2021-05-22 15:42:14 +02:00
// Set up the DMA
2022-06-12 22:15:44 +02:00
r.result.ptr.write(|w| unsafe { w.ptr().bits(buf.as_mut_ptr() as u32) });
r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits(N as _) });
2021-05-22 15:42:14 +02:00
// Reset and enable the end event
r.events_end.reset();
r.intenset.write(|w| w.end().set());
// Don't reorder the ADC start event before the previous writes. Hopefully self
// wouldn't happen anyway.
compiler_fence(Ordering::SeqCst);
r.tasks_start.write(|w| unsafe { w.bits(1) });
r.tasks_sample.write(|w| unsafe { w.bits(1) });
// Wait for 'end' event.
poll_fn(|cx| {
let r = Self::regs();
WAKER.register(cx.waker());
2021-05-22 15:42:14 +02:00
if r.events_end.read().bits() != 0 {
r.events_end.reset();
return Poll::Ready(());
}
Poll::Pending
})
.await;
}
2021-10-18 02:45:23 +02:00
/// Continuous sampling with double buffers.
///
/// A TIMER and two PPI peripherals are passed in so that precise sampling
/// can be attained. The sampling interval is expressed by selecting a
/// timer clock frequency to use along with a counter threshold to be reached.
/// For example, 1KHz can be achieved using a frequency of 1MHz and a counter
/// threshold of 1000.
///
/// A sampler closure is provided that receives the buffer of samples, noting
/// that the size of this buffer can be less than the original buffer's size.
/// A command is return from the closure that indicates whether the sampling
/// should continue or stop.
///
/// NOTE: The time spent within the callback supplied should not exceed the time
/// taken to acquire the samples into a single buffer. You should measure the
/// time taken by the callback and set the sample buffer size accordingly.
/// Exceeding this time can lead to samples becoming dropped.
///
/// The sampling is stopped prior to returning in order to reduce power consumption (power
/// consumption remains higher if sampling is not stopped explicitly), and to
/// free the buffers from being used by the peripheral. Cancellation will
/// also cause the sampling to be stopped.
pub async fn run_task_sampler<S, T: TimerInstance, const N0: usize>(
&mut self,
timer: &mut T,
ppi_ch1: &mut impl ConfigurableChannel,
ppi_ch2: &mut impl ConfigurableChannel,
frequency: Frequency,
sample_counter: u32,
bufs: &mut [[[i16; N]; N0]; 2],
sampler: S,
) where
S: FnMut(&[[i16; N]]) -> SamplerState,
{
let r = Self::regs();
// We want the task start to effectively short with the last one ending so
// we don't miss any samples. It'd be great for the SAADC to offer a SHORTS
// register instead, but it doesn't, so we must use PPI.
2022-06-12 22:15:44 +02:00
let mut start_ppi =
Ppi::new_one_to_one(ppi_ch1, Event::from_reg(&r.events_end), Task::from_reg(&r.tasks_start));
start_ppi.enable();
let mut timer = Timer::new(timer);
timer.set_frequency(frequency);
timer.cc(0).write(sample_counter);
timer.cc(0).short_compare_clear();
2022-06-12 22:15:44 +02:00
let mut sample_ppi = Ppi::new_one_to_one(ppi_ch2, timer.cc(0).event_compare(), Task::from_reg(&r.tasks_sample));
timer.start();
self.run_sampler(
bufs,
None,
|| {
sample_ppi.enable();
},
sampler,
)
.await;
}
async fn run_sampler<I, S, const N0: usize>(
&mut self,
bufs: &mut [[[i16; N]; N0]; 2],
sample_rate_divisor: Option<u16>,
mut init: I,
mut sampler: S,
) where
I: FnMut(),
S: FnMut(&[[i16; N]]) -> SamplerState,
{
// In case the future is dropped, stop the task and wait for it to end.
OnDrop::new(Self::stop_sampling_immediately);
let r = Self::regs();
// Establish mode and sample rate
match sample_rate_divisor {
Some(sr) => {
2021-10-16 21:26:06 +02:00
r.samplerate.write(|w| unsafe {
w.cc().bits(sr);
2021-10-16 21:26:06 +02:00
w.mode().timers();
w
});
r.tasks_sample.write(|w| unsafe { w.bits(1) }); // Need to kick-start the internal timer
}
None => r.samplerate.write(|w| unsafe {
2021-10-16 21:26:06 +02:00
w.cc().bits(0);
w.mode().task();
w
}),
}
// Set up the initial DMA
r.result
.ptr
.write(|w| unsafe { w.ptr().bits(bufs[0].as_mut_ptr() as u32) });
2022-06-12 22:15:44 +02:00
r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits((N0 * N) as _) });
// Reset and enable the events
r.events_end.reset();
r.events_started.reset();
2021-10-16 21:28:19 +02:00
r.intenset.write(|w| {
w.end().set();
w.started().set();
w
});
// Don't reorder the ADC start event before the previous writes. Hopefully self
// wouldn't happen anyway.
compiler_fence(Ordering::SeqCst);
r.tasks_start.write(|w| unsafe { w.bits(1) });
let mut inited = false;
let mut current_buffer = 0;
// Wait for events and complete when the sampler indicates it has had enough.
poll_fn(|cx| {
let r = Self::regs();
WAKER.register(cx.waker());
if r.events_end.read().bits() != 0 {
compiler_fence(Ordering::SeqCst);
r.events_end.reset();
r.intenset.write(|w| w.end().set());
2021-10-18 03:29:31 +02:00
if sampler(&bufs[current_buffer]) == SamplerState::Sampled {
let next_buffer = 1 - current_buffer;
current_buffer = next_buffer;
} else {
return Poll::Ready(());
};
}
if r.events_started.read().bits() != 0 {
r.events_started.reset();
r.intenset.write(|w| w.started().set());
if !inited {
init();
inited = true;
}
let next_buffer = 1 - current_buffer;
r.result
.ptr
.write(|w| unsafe { w.ptr().bits(bufs[next_buffer].as_mut_ptr() as u32) });
}
Poll::Pending
})
.await;
}
// Stop sampling and wait for it to stop in a blocking fashion
fn stop_sampling_immediately() {
let r = Self::regs();
compiler_fence(Ordering::SeqCst);
r.events_stopped.reset();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
while r.events_stopped.read().bits() == 0 {}
r.events_stopped.reset();
}
2021-03-24 18:33:17 +01:00
}
impl<'d> Saadc<'d, 1> {
2021-10-18 02:45:23 +02:00
/// Continuous sampling on a single channel with double buffers.
///
/// The internal clock is to be used with a sample rate expressed as a divisor of
/// 16MHz, ranging from 80..2047. For example, 1600 represents a sample rate of 10KHz
/// given 16_000_000 / 10_000_000 = 1600.
///
/// A sampler closure is provided that receives the buffer of samples, noting
/// that the size of this buffer can be less than the original buffer's size.
/// A command is return from the closure that indicates whether the sampling
/// should continue or stop.
pub async fn run_timer_sampler<I, S, const N0: usize>(
&mut self,
bufs: &mut [[[i16; 1]; N0]; 2],
sample_rate_divisor: u16,
sampler: S,
) where
S: FnMut(&[[i16; 1]]) -> SamplerState,
{
2022-06-12 22:15:44 +02:00
self.run_sampler(bufs, Some(sample_rate_divisor), || {}, sampler).await;
}
}
impl<'d, const N: usize> Drop for Saadc<'d, N> {
2021-03-24 18:33:17 +01:00
fn drop(&mut self) {
let r = Self::regs();
2021-03-24 18:33:17 +01:00
r.enable.write(|w| w.enable().disabled());
}
}
impl From<Gain> for GAIN_A {
fn from(gain: Gain) -> Self {
match gain {
Gain::GAIN1_6 => GAIN_A::GAIN1_6,
Gain::GAIN1_5 => GAIN_A::GAIN1_5,
Gain::GAIN1_4 => GAIN_A::GAIN1_4,
Gain::GAIN1_3 => GAIN_A::GAIN1_3,
Gain::GAIN1_2 => GAIN_A::GAIN1_2,
Gain::GAIN1 => GAIN_A::GAIN1,
Gain::GAIN2 => GAIN_A::GAIN2,
Gain::GAIN4 => GAIN_A::GAIN4,
}
}
}
/// Gain control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Gain {
/// 1/6
GAIN1_6 = 0,
/// 1/5
GAIN1_5 = 1,
/// 1/4
GAIN1_4 = 2,
/// 1/3
GAIN1_3 = 3,
/// 1/2
GAIN1_2 = 4,
/// 1
GAIN1 = 5,
/// 2
GAIN2 = 6,
/// 4
GAIN4 = 7,
}
impl From<Reference> for REFSEL_A {
fn from(reference: Reference) -> Self {
match reference {
Reference::INTERNAL => REFSEL_A::INTERNAL,
Reference::VDD1_4 => REFSEL_A::VDD1_4,
}
}
}
/// Reference control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Reference {
/// Internal reference (0.6 V)
INTERNAL = 0,
/// VDD/4 as reference
VDD1_4 = 1,
}
impl From<Resistor> for RESP_A {
fn from(resistor: Resistor) -> Self {
match resistor {
Resistor::BYPASS => RESP_A::BYPASS,
Resistor::PULLDOWN => RESP_A::PULLDOWN,
Resistor::PULLUP => RESP_A::PULLUP,
Resistor::VDD1_2 => RESP_A::VDD1_2,
}
}
}
/// Positive channel resistor control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Resistor {
/// Bypass resistor ladder
BYPASS = 0,
/// Pull-down to GND
PULLDOWN = 1,
/// Pull-up to VDD
PULLUP = 2,
/// Set input at VDD/2
VDD1_2 = 3,
}
impl From<Time> for TACQ_A {
fn from(time: Time) -> Self {
match time {
Time::_3US => TACQ_A::_3US,
Time::_5US => TACQ_A::_5US,
Time::_10US => TACQ_A::_10US,
Time::_15US => TACQ_A::_15US,
Time::_20US => TACQ_A::_20US,
Time::_40US => TACQ_A::_40US,
}
}
}
/// Acquisition time, the time the SAADC uses to sample the input voltage
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Time {
/// 3 us
_3US = 0,
/// 5 us
_5US = 1,
/// 10 us
_10US = 2,
/// 15 us
_15US = 3,
/// 20 us
_20US = 4,
/// 40 us
_40US = 5,
}
impl From<Oversample> for OVERSAMPLE_A {
fn from(oversample: Oversample) -> Self {
match oversample {
Oversample::BYPASS => OVERSAMPLE_A::BYPASS,
Oversample::OVER2X => OVERSAMPLE_A::OVER2X,
Oversample::OVER4X => OVERSAMPLE_A::OVER4X,
Oversample::OVER8X => OVERSAMPLE_A::OVER8X,
Oversample::OVER16X => OVERSAMPLE_A::OVER16X,
Oversample::OVER32X => OVERSAMPLE_A::OVER32X,
Oversample::OVER64X => OVERSAMPLE_A::OVER64X,
Oversample::OVER128X => OVERSAMPLE_A::OVER128X,
Oversample::OVER256X => OVERSAMPLE_A::OVER256X,
}
}
}
/// Oversample control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Oversample {
/// Bypass oversampling
BYPASS = 0,
/// Oversample 2x
OVER2X = 1,
/// Oversample 4x
OVER4X = 2,
/// Oversample 8x
OVER8X = 3,
/// Oversample 16x
OVER16X = 4,
/// Oversample 32x
OVER32X = 5,
/// Oversample 64x
OVER64X = 6,
/// Oversample 128x
OVER128X = 7,
/// Oversample 256x
OVER256X = 8,
}
impl From<Resolution> for VAL_A {
fn from(resolution: Resolution) -> Self {
match resolution {
Resolution::_8BIT => VAL_A::_8BIT,
Resolution::_10BIT => VAL_A::_10BIT,
Resolution::_12BIT => VAL_A::_12BIT,
Resolution::_14BIT => VAL_A::_14BIT,
}
}
}
/// Set the resolution
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Resolution {
/// 8 bits
_8BIT = 0,
/// 10 bits
_10BIT = 1,
/// 12 bits
_12BIT = 2,
/// 14 bits
_14BIT = 3,
}
2021-10-13 22:01:39 +02:00
pub(crate) mod sealed {
use super::*;
pub trait Input {
fn channel(&self) -> InputChannel;
}
2021-03-24 18:33:17 +01:00
}
2021-10-13 22:01:39 +02:00
/// An input that can be used as either or negative end of a ADC differential in the SAADC periperhal.
pub trait Input: sealed::Input + Into<AnyInput> + Peripheral<P = Self> + Sized + 'static {
2022-07-21 16:42:46 +02:00
fn degrade_saadc(self) -> AnyInput {
AnyInput {
channel: self.channel(),
}
}
}
2021-10-13 22:01:39 +02:00
pub struct AnyInput {
channel: InputChannel,
}
impl_peripheral!(AnyInput);
impl sealed::Input for AnyInput {
fn channel(&self) -> InputChannel {
self.channel
}
}
impl Input for AnyInput {}
macro_rules! impl_saadc_input {
($pin:ident, $ch:ident) => {
impl_saadc_input!(@local, crate::peripherals::$pin, $ch);
};
(@local, $pin:ty, $ch:ident) => {
impl crate::saadc::sealed::Input for $pin {
fn channel(&self) -> crate::saadc::InputChannel {
crate::saadc::InputChannel::$ch
}
}
impl crate::saadc::Input for $pin {}
impl From<$pin> for crate::saadc::AnyInput {
fn from(val: $pin) -> Self {
crate::saadc::Input::degrade_saadc(val)
}
}
};
}
/// A dummy `Input` pin implementation for SAADC peripheral sampling from the
/// internal voltage.
pub struct VddInput;
impl_peripheral!(VddInput);
#[cfg(not(feature = "_nrf9160"))]
impl_saadc_input!(@local, VddInput, VDD);
#[cfg(feature = "_nrf9160")]
impl_saadc_input!(@local, VddInput, VDDGPIO);
/// A dummy `Input` pin implementation for SAADC peripheral sampling from the
/// VDDH / 5 voltage.
#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
pub struct VddhDiv5Input;
#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
impl_peripheral!(VddhDiv5Input);
#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
impl_saadc_input!(@local, VddhDiv5Input, VDDHDIV5);