embassy/embassy-boot/boot/src/boot_loader.rs

546 lines
20 KiB
Rust
Raw Normal View History

use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use crate::{Partition, State, BOOT_MAGIC, SWAP_MAGIC};
/// Errors returned by bootloader
#[derive(PartialEq, Eq, Debug)]
pub enum BootError {
/// Error from flash.
Flash(NorFlashErrorKind),
/// Invalid bootloader magic
BadMagic,
}
#[cfg(feature = "defmt")]
impl defmt::Format for BootError {
fn format(&self, fmt: defmt::Formatter) {
match self {
BootError::Flash(_) => defmt::write!(fmt, "BootError::Flash(_)"),
BootError::BadMagic => defmt::write!(fmt, "BootError::BadMagic"),
}
}
}
impl<E> From<E> for BootError
where
E: NorFlashError,
{
fn from(error: E) -> Self {
BootError::Flash(error.kind())
}
}
/// Extension of the embedded-storage flash type information with block size and erase value.
pub trait Flash: NorFlash {
/// The erase value of the flash. Typically the default of 0xFF is used, but some flashes use a different value.
const ERASE_VALUE: u8 = 0xFF;
}
/// Trait defining the flash handles used for active and DFU partition.
/// The ACTIVE and DFU erase sizes must be equal. If this is not the case, then consider adding an adapter for the
/// smallest flash to increase its erase size such that they match. See e.g. [`crate::large_erase::LargeErase`].
pub trait FlashConfig {
/// Flash type used for the state partition.
type STATE: Flash;
/// Flash type used for the active partition.
type ACTIVE: Flash;
/// Flash type used for the dfu partition.
type DFU: Flash;
/// Return flash instance used to write/read to/from active partition.
fn active(&mut self) -> &mut Self::ACTIVE;
/// Return flash instance used to write/read to/from dfu partition.
fn dfu(&mut self) -> &mut Self::DFU;
/// Return flash instance used to write/read to/from bootloader state.
fn state(&mut self) -> &mut Self::STATE;
}
trait FlashConfigEx {
fn page_size() -> usize;
}
impl<T: FlashConfig> FlashConfigEx for T {
fn page_size() -> usize {
assert_eq!(T::ACTIVE::ERASE_SIZE, T::DFU::ERASE_SIZE);
T::ACTIVE::ERASE_SIZE
}
}
/// BootLoader works with any flash implementing embedded_storage.
pub struct BootLoader {
// Page with current state of bootloader. The state partition has the following format:
// All ranges are in multiples of WRITE_SIZE bytes.
// | Range | Description |
// | 0..1 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | 1..2 | Progress validity. ERASE_VALUE means valid, !ERASE_VALUE means invalid. |
// | 2..2 + N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
// Location of the partition which will be swapped in when requested
dfu: Partition,
}
impl BootLoader {
/// Create a new instance of a bootloader with the given partitions.
///
/// - All partitions must be aligned with the PAGE_SIZE const generic parameter.
/// - The dfu partition must be at least PAGE_SIZE bigger than the active partition.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self { active, dfu, state }
}
/// Return the offset of the active partition into the active flash.
pub fn boot_address(&self) -> usize {
self.active.from
}
/// Perform necessary boot preparations like swapping images.
///
/// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
/// algorithm to work correctly.
///
/// The provided aligned_buf argument must satisfy any alignment requirements
/// given by the partition flashes. All flash operations will use this buffer.
///
/// SWAPPING
///
/// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
/// The swap index contains the copy progress, as to allow continuation of the copy process on
/// power failure. The index counter is represented within 1 or more pages (depending on total
/// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE)
/// contains a zero value. This ensures that index updates can be performed atomically and
/// avoid a situation where the wrong index value is set (page write size is "atomic").
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 0 | 1 | 2 | 3 | - |
/// | DFU | 0 | 3 | 2 | 1 | X |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The algorithm starts by copying 'backwards', and after the first step, the layout is
/// as follows:
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 1 | 1 | 2 | 1 | - |
/// | DFU | 1 | 3 | 2 | 1 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The next iteration performs the same steps
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 2 | 1 | 2 | 1 | - |
/// | DFU | 2 | 3 | 2 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// And again until we're done
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 3 | 3 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// REVERTING
///
/// The reverting algorithm uses the swap index to discover that images were swapped, but that
/// the application failed to mark the boot successful. In this case, the revert algorithm will
/// run.
///
/// The revert index is located separately from the swap index, to ensure that revert can continue
/// on power failure.
///
/// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
//*/
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 2 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 3 | - |
/// | DFU | 3 | 3 | 2 | 1 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
pub fn prepare_boot<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<State, BootError> {
// Ensure we have enough progress pages to store copy progress
assert_eq!(0, P::page_size() % aligned_buf.len());
assert_eq!(0, P::page_size() % P::ACTIVE::WRITE_SIZE);
assert_eq!(0, P::page_size() % P::DFU::WRITE_SIZE);
assert!(aligned_buf.len() >= P::STATE::WRITE_SIZE);
assert_partitions(self.active, self.dfu, self.state, P::page_size(), P::STATE::WRITE_SIZE);
// Copy contents from partition N to active
let state = self.read_state(p, aligned_buf)?;
if state == State::Swap {
//
// Check if we already swapped. If we're in the swap state, this means we should revert
// since the app has failed to mark boot as successful
//
if !self.is_swapped(p, aligned_buf)? {
trace!("Swapping");
self.swap(p, aligned_buf)?;
trace!("Swapping done");
} else {
trace!("Reverting");
self.revert(p, aligned_buf)?;
let state_flash = p.state();
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
// Invalidate progress
state_word.fill(!P::STATE::ERASE_VALUE);
self.state
.write_blocking(state_flash, P::STATE::WRITE_SIZE as u32, state_word)?;
// Clear magic and progress
self.state.wipe_blocking(state_flash)?;
// Set magic
state_word.fill(BOOT_MAGIC);
self.state.write_blocking(state_flash, 0, state_word)?;
}
}
Ok(state)
}
fn is_swapped<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<bool, BootError> {
let page_count = self.active.len() / P::page_size();
let progress = self.current_progress(p, aligned_buf)?;
Ok(progress >= page_count * 2)
}
fn current_progress<P: FlashConfig>(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result<usize, BootError> {
let max_index = ((self.state.len() - P::STATE::WRITE_SIZE) / P::STATE::WRITE_SIZE) - 2;
let state_flash = config.state();
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
self.state
.read_blocking(state_flash, P::STATE::WRITE_SIZE as u32, state_word)?;
if state_word.iter().any(|&b| b != P::STATE::ERASE_VALUE) {
// Progress is invalid
return Ok(max_index);
}
for index in 0..max_index {
self.state.read_blocking(
state_flash,
(2 + index) as u32 * P::STATE::WRITE_SIZE as u32,
state_word,
)?;
if state_word.iter().any(|&b| b == P::STATE::ERASE_VALUE) {
return Ok(index);
}
}
Ok(max_index)
}
fn update_progress<P: FlashConfig>(
&mut self,
index: usize,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
state_word.fill(!P::STATE::ERASE_VALUE);
self.state
.write_blocking(p.state(), (2 + index) as u32 * P::STATE::WRITE_SIZE as u32, state_word)?;
Ok(())
}
fn copy_page_once_to_active<P: FlashConfig>(
&mut self,
idx: usize,
from_offset: u32,
to_offset: u32,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
if self.current_progress(p, aligned_buf)? <= idx {
let page_size = P::page_size() as u32;
self.active
.erase_blocking(p.active(), to_offset, to_offset + page_size)?;
for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
self.dfu
.read_blocking(p.dfu(), from_offset + offset_in_page as u32, aligned_buf)?;
self.active
.write_blocking(p.active(), to_offset + offset_in_page as u32, aligned_buf)?;
}
self.update_progress(idx, p, aligned_buf)?;
}
Ok(())
}
fn copy_page_once_to_dfu<P: FlashConfig>(
&mut self,
idx: usize,
from_offset: u32,
to_offset: u32,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
if self.current_progress(p, aligned_buf)? <= idx {
let page_size = P::page_size() as u32;
self.dfu
.erase_blocking(p.dfu(), to_offset as u32, to_offset + page_size)?;
for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
self.active
.read_blocking(p.active(), from_offset + offset_in_page as u32, aligned_buf)?;
self.dfu
.write_blocking(p.dfu(), to_offset + offset_in_page as u32, aligned_buf)?;
}
self.update_progress(idx, p, aligned_buf)?;
}
Ok(())
}
fn swap<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> {
let page_size = P::page_size();
let page_count = self.active.len() / page_size;
trace!("Page count: {}", page_count);
for page_num in 0..page_count {
trace!("COPY PAGE {}", page_num);
let idx = page_num * 2;
// Copy active page to the 'next' DFU page.
let active_from_offset = ((page_count - 1 - page_num) * page_size) as u32;
let dfu_to_offset = ((page_count - page_num) * page_size) as u32;
//trace!("Copy active {} to dfu {}", active_from_offset, dfu_to_offset);
self.copy_page_once_to_dfu(idx, active_from_offset, dfu_to_offset, p, aligned_buf)?;
// Copy DFU page to the active page
let active_to_offset = ((page_count - 1 - page_num) * page_size) as u32;
let dfu_from_offset = ((page_count - 1 - page_num) * page_size) as u32;
//trace!("Copy dfy {} to active {}", dfu_from_offset, active_to_offset);
self.copy_page_once_to_active(idx + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?;
}
Ok(())
}
fn revert<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> {
let page_size = P::page_size();
let page_count = self.active.len() / page_size;
for page_num in 0..page_count {
let idx = page_count * 2 + page_num * 2;
// Copy the bad active page to the DFU page
let active_from_offset = (page_num * page_size) as u32;
let dfu_to_offset = (page_num * page_size) as u32;
self.copy_page_once_to_dfu(idx, active_from_offset, dfu_to_offset, p, aligned_buf)?;
// Copy the DFU page back to the active page
let active_to_offset = (page_num * page_size) as u32;
let dfu_from_offset = ((page_num + 1) * page_size) as u32;
self.copy_page_once_to_active(idx + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?;
}
Ok(())
}
fn read_state<P: FlashConfig>(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result<State, BootError> {
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
self.state.read_blocking(config.state(), 0, state_word)?;
if !state_word.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
}
fn assert_partitions(active: Partition, dfu: Partition, state: Partition, page_size: usize, write_size: usize) {
assert_eq!(active.len() % page_size, 0);
assert_eq!(dfu.len() % page_size, 0);
assert!(dfu.len() - active.len() >= page_size);
assert!(2 + 2 * (active.len() / page_size) <= state.len() / write_size);
}
/// A flash wrapper implementing the Flash and embedded_storage traits.
pub struct BootFlash<F, const ERASE_VALUE: u8 = 0xFF>
where
F: NorFlash + ReadNorFlash,
{
flash: F,
}
impl<F, const ERASE_VALUE: u8> BootFlash<F, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
/// Create a new instance of a bootable flash
pub fn new(flash: F) -> Self {
Self { flash }
}
}
impl<F, const ERASE_VALUE: u8> Flash for BootFlash<F, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
const ERASE_VALUE: u8 = ERASE_VALUE;
}
impl<F, const ERASE_VALUE: u8> ErrorType for BootFlash<F, ERASE_VALUE>
where
F: ReadNorFlash + NorFlash,
{
type Error = F::Error;
}
impl<F, const ERASE_VALUE: u8> NorFlash for BootFlash<F, ERASE_VALUE>
where
F: ReadNorFlash + NorFlash,
{
const WRITE_SIZE: usize = F::WRITE_SIZE;
const ERASE_SIZE: usize = F::ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
F::erase(&mut self.flash, from, to)
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
F::write(&mut self.flash, offset, bytes)
}
}
impl<F, const ERASE_VALUE: u8> ReadNorFlash for BootFlash<F, ERASE_VALUE>
where
F: ReadNorFlash + NorFlash,
{
const READ_SIZE: usize = F::READ_SIZE;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
F::read(&mut self.flash, offset, bytes)
}
fn capacity(&self) -> usize {
F::capacity(&self.flash)
}
}
/// Convenience provider that uses a single flash for all partitions.
pub struct SingleFlashConfig<'a, F>
where
F: Flash,
{
flash: &'a mut F,
}
impl<'a, F> SingleFlashConfig<'a, F>
where
F: Flash,
{
/// Create a provider for a single flash.
pub fn new(flash: &'a mut F) -> Self {
Self { flash }
}
}
impl<'a, F> FlashConfig for SingleFlashConfig<'a, F>
where
F: Flash,
{
type STATE = F;
type ACTIVE = F;
type DFU = F;
fn active(&mut self) -> &mut Self::STATE {
self.flash
}
fn dfu(&mut self) -> &mut Self::ACTIVE {
self.flash
}
fn state(&mut self) -> &mut Self::DFU {
self.flash
}
}
/// Convenience flash provider that uses separate flash instances for each partition.
pub struct MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
active: &'a mut ACTIVE,
state: &'a mut STATE,
dfu: &'a mut DFU,
}
impl<'a, ACTIVE, STATE, DFU> MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
/// Create a new flash provider with separate configuration for all three partitions.
pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self {
Self { active, state, dfu }
}
}
impl<'a, ACTIVE, STATE, DFU> FlashConfig for MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
type STATE = STATE;
type ACTIVE = ACTIVE;
type DFU = DFU;
fn active(&mut self) -> &mut Self::ACTIVE {
self.active
}
fn dfu(&mut self) -> &mut Self::DFU {
self.dfu
}
fn state(&mut self) -> &mut Self::STATE {
self.state
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn test_range_asserts() {
const ACTIVE: Partition = Partition::new(4096, 4194304);
const DFU: Partition = Partition::new(4194304, 2 * 4194304);
const STATE: Partition = Partition::new(0, 4096);
assert_partitions(ACTIVE, DFU, STATE, 4096, 4);
}
}