embassy/src/lib.rs

1028 lines
32 KiB
Rust
Raw Normal View History

2022-07-10 19:45:26 +02:00
#![no_std]
#![no_main]
2022-07-11 00:25:35 +02:00
#![feature(type_alias_impl_trait, concat_bytes, const_slice_from_raw_parts)]
2022-07-11 03:07:39 +02:00
#![deny(unused_must_use)]
2022-07-10 19:45:26 +02:00
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
2022-07-11 03:07:39 +02:00
mod countries;
mod events;
2022-07-11 00:25:35 +02:00
mod structs;
use core::cell::Cell;
2022-07-10 19:45:26 +02:00
use core::slice;
use embassy::time::{block_for, Duration, Timer};
use embassy::util::yield_now;
use embassy_rp::gpio::{Flex, Output, Pin};
2022-07-11 00:25:35 +02:00
use self::structs::*;
2022-07-10 19:45:26 +02:00
fn swap16(x: u32) -> u32 {
(x & 0xFF00FF00) >> 8 | (x & 0x00FF00FF) << 8
}
fn cmd_word(write: bool, incr: bool, func: u32, addr: u32, len: u32) -> u32 {
(write as u32) << 31 | (incr as u32) << 30 | (func & 0b11) << 28 | (addr & 0x1FFFF) << 11 | (len & 0x7FF)
}
const FUNC_BUS: u32 = 0;
const FUNC_BACKPLANE: u32 = 1;
const FUNC_WLAN: u32 = 2;
const FUNC_BT: u32 = 3;
const REG_BUS_CTRL: u32 = 0x0;
const REG_BUS_INTERRUPT: u32 = 0x04; // 16 bits - Interrupt status
const REG_BUS_INTERRUPT_ENABLE: u32 = 0x06; // 16 bits - Interrupt mask
const REG_BUS_STATUS: u32 = 0x8;
const REG_BUS_FEEDBEAD: u32 = 0x14;
const REG_BUS_TEST: u32 = 0x18;
const REG_BUS_RESP_DELAY: u32 = 0x1c;
// SPI_STATUS_REGISTER bits
const STATUS_DATA_NOT_AVAILABLE: u32 = 0x00000001;
const STATUS_UNDERFLOW: u32 = 0x00000002;
const STATUS_OVERFLOW: u32 = 0x00000004;
const STATUS_F2_INTR: u32 = 0x00000008;
const STATUS_F3_INTR: u32 = 0x00000010;
const STATUS_F2_RX_READY: u32 = 0x00000020;
const STATUS_F3_RX_READY: u32 = 0x00000040;
const STATUS_HOST_CMD_DATA_ERR: u32 = 0x00000080;
const STATUS_F2_PKT_AVAILABLE: u32 = 0x00000100;
const STATUS_F2_PKT_LEN_MASK: u32 = 0x000FFE00;
const STATUS_F2_PKT_LEN_SHIFT: u32 = 9;
const STATUS_F3_PKT_AVAILABLE: u32 = 0x00100000;
const STATUS_F3_PKT_LEN_MASK: u32 = 0xFFE00000;
const STATUS_F3_PKT_LEN_SHIFT: u32 = 21;
const REG_BACKPLANE_GPIO_SELECT: u32 = 0x10005;
const REG_BACKPLANE_GPIO_OUTPUT: u32 = 0x10006;
const REG_BACKPLANE_GPIO_ENABLE: u32 = 0x10007;
const REG_BACKPLANE_FUNCTION2_WATERMARK: u32 = 0x10008;
const REG_BACKPLANE_DEVICE_CONTROL: u32 = 0x10009;
const REG_BACKPLANE_BACKPLANE_ADDRESS_LOW: u32 = 0x1000A;
const REG_BACKPLANE_BACKPLANE_ADDRESS_MID: u32 = 0x1000B;
const REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH: u32 = 0x1000C;
const REG_BACKPLANE_FRAME_CONTROL: u32 = 0x1000D;
const REG_BACKPLANE_CHIP_CLOCK_CSR: u32 = 0x1000E;
const REG_BACKPLANE_PULL_UP: u32 = 0x1000F;
const REG_BACKPLANE_READ_FRAME_BC_LOW: u32 = 0x1001B;
const REG_BACKPLANE_READ_FRAME_BC_HIGH: u32 = 0x1001C;
const REG_BACKPLANE_WAKEUP_CTRL: u32 = 0x1001E;
const REG_BACKPLANE_SLEEP_CSR: u32 = 0x1001F;
const BACKPLANE_WINDOW_SIZE: usize = 0x8000;
const BACKPLANE_ADDRESS_MASK: u32 = 0x7FFF;
const BACKPLANE_ADDRESS_32BIT_FLAG: u32 = 0x08000;
const BACKPLANE_MAX_TRANSFER_SIZE: usize = 64;
const AI_IOCTRL_OFFSET: u32 = 0x408;
const AI_IOCTRL_BIT_FGC: u8 = 0x0002;
const AI_IOCTRL_BIT_CLOCK_EN: u8 = 0x0001;
const AI_IOCTRL_BIT_CPUHALT: u8 = 0x0020;
const AI_RESETCTRL_OFFSET: u32 = 0x800;
const AI_RESETCTRL_BIT_RESET: u8 = 1;
const AI_RESETSTATUS_OFFSET: u32 = 0x804;
const TEST_PATTERN: u32 = 0x12345678;
const FEEDBEAD: u32 = 0xFEEDBEAD;
// SPI_INTERRUPT_REGISTER and SPI_INTERRUPT_ENABLE_REGISTER Bits
const IRQ_DATA_UNAVAILABLE: u16 = 0x0001; // Requested data not available; Clear by writing a "1"
const IRQ_F2_F3_FIFO_RD_UNDERFLOW: u16 = 0x0002;
const IRQ_F2_F3_FIFO_WR_OVERFLOW: u16 = 0x0004;
const IRQ_COMMAND_ERROR: u16 = 0x0008; // Cleared by writing 1
const IRQ_DATA_ERROR: u16 = 0x0010; // Cleared by writing 1
const IRQ_F2_PACKET_AVAILABLE: u16 = 0x0020;
const IRQ_F3_PACKET_AVAILABLE: u16 = 0x0040;
const IRQ_F1_OVERFLOW: u16 = 0x0080; // Due to last write. Bkplane has pending write requests
const IRQ_MISC_INTR0: u16 = 0x0100;
const IRQ_MISC_INTR1: u16 = 0x0200;
const IRQ_MISC_INTR2: u16 = 0x0400;
const IRQ_MISC_INTR3: u16 = 0x0800;
const IRQ_MISC_INTR4: u16 = 0x1000;
const IRQ_F1_INTR: u16 = 0x2000;
const IRQ_F2_INTR: u16 = 0x4000;
const IRQ_F3_INTR: u16 = 0x8000;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Core {
WLAN = 0,
SOCSRAM = 1,
SDIOD = 2,
}
impl Core {
fn base_addr(&self) -> u32 {
match self {
Self::WLAN => CHIP.arm_core_base_address,
Self::SOCSRAM => CHIP.socsram_wrapper_base_address,
Self::SDIOD => CHIP.sdiod_core_base_address,
}
}
}
struct Chip {
arm_core_base_address: u32,
socsram_base_address: u32,
socsram_wrapper_base_address: u32,
sdiod_core_base_address: u32,
pmu_base_address: u32,
chip_ram_size: u32,
atcm_ram_base_address: u32,
socram_srmem_size: u32,
chanspec_band_mask: u32,
chanspec_band_2g: u32,
chanspec_band_5g: u32,
chanspec_band_shift: u32,
chanspec_bw_10: u32,
chanspec_bw_20: u32,
chanspec_bw_40: u32,
chanspec_bw_mask: u32,
chanspec_bw_shift: u32,
chanspec_ctl_sb_lower: u32,
chanspec_ctl_sb_upper: u32,
chanspec_ctl_sb_none: u32,
chanspec_ctl_sb_mask: u32,
}
const WRAPPER_REGISTER_OFFSET: u32 = 0x100000;
// Data for CYW43439
const CHIP: Chip = Chip {
arm_core_base_address: 0x18003000 + WRAPPER_REGISTER_OFFSET,
socsram_base_address: 0x18004000,
socsram_wrapper_base_address: 0x18004000 + WRAPPER_REGISTER_OFFSET,
sdiod_core_base_address: 0x18002000,
pmu_base_address: 0x18000000,
chip_ram_size: 512 * 1024,
atcm_ram_base_address: 0,
socram_srmem_size: 64 * 1024,
chanspec_band_mask: 0xc000,
chanspec_band_2g: 0x0000,
chanspec_band_5g: 0xc000,
chanspec_band_shift: 14,
chanspec_bw_10: 0x0800,
chanspec_bw_20: 0x1000,
chanspec_bw_40: 0x1800,
chanspec_bw_mask: 0x3800,
chanspec_bw_shift: 11,
chanspec_ctl_sb_lower: 0x0000,
chanspec_ctl_sb_upper: 0x0100,
chanspec_ctl_sb_none: 0x0000,
chanspec_ctl_sb_mask: 0x0700,
};
#[derive(Clone, Copy)]
2022-07-11 00:25:35 +02:00
enum IoctlState {
Idle,
Pending {
kind: u32,
cmd: u32,
iface: u32,
buf: *const [u8],
},
Sent,
Done,
2022-07-10 19:45:26 +02:00
}
2022-07-11 00:25:35 +02:00
pub struct State {
ioctl_id: Cell<u16>,
ioctl_state: Cell<IoctlState>,
2022-07-10 19:45:26 +02:00
}
2022-07-11 00:25:35 +02:00
impl State {
pub fn new() -> Self {
Self {
ioctl_id: Cell::new(0),
ioctl_state: Cell::new(IoctlState::Idle),
}
}
2022-07-10 19:45:26 +02:00
}
2022-07-11 00:25:35 +02:00
pub struct Control<'a> {
state: &'a State,
}
2022-07-10 19:45:26 +02:00
2022-07-11 00:25:35 +02:00
impl<'a> Control<'a> {
pub async fn init(&mut self) {
2022-07-11 03:07:39 +02:00
const CHUNK_SIZE: usize = 1024;
2022-07-11 00:25:35 +02:00
let clm = unsafe { slice::from_raw_parts(0x10140000 as *const u8, 4752) };
2022-07-10 19:45:26 +02:00
2022-07-11 03:07:39 +02:00
info!("Downloading CLM...");
let mut offs = 0;
for chunk in clm.chunks(CHUNK_SIZE) {
let mut flag = DOWNLOAD_FLAG_HANDLER_VER;
if offs == 0 {
flag |= DOWNLOAD_FLAG_BEGIN;
}
offs += chunk.len();
if offs == clm.len() {
flag |= DOWNLOAD_FLAG_END;
}
let header = DownloadHeader {
flag,
dload_type: DOWNLOAD_TYPE_CLM,
len: chunk.len() as _,
crc: 0,
};
let mut buf = [0; 8 + 12 + CHUNK_SIZE];
buf[0..8].copy_from_slice(b"clmload\x00");
buf[8..20].copy_from_slice(&header.to_bytes());
buf[20..][..chunk.len()].copy_from_slice(&chunk);
self.ioctl(2, 263, 0, &buf[..8 + 12 + chunk.len()]).await;
}
info!("Configuring misc stuff...");
self.set_iovar_u32("bus:txglom", 0).await;
self.set_iovar_u32("apsta", 1).await;
self.set_iovar("cur_etheraddr", &[02, 03, 04, 05, 06, 07]).await;
let country = countries::WORLD_WIDE_XX;
let country_info = CountryInfo {
country_abbrev: [country.code[0], country.code[1], 0, 0],
country_code: [country.code[0], country.code[1], 0, 0],
rev: if country.rev == 0 { -1 } else { country.rev as _ },
};
self.set_iovar("country", &country_info.to_bytes()).await;
// set country takes some time, next ioctls fail if we don't wait.
Timer::after(Duration::from_millis(100)).await;
// self.set_iovar_u32("ampdu_ba_wsize", 8).await;
// self.set_iovar_u32("ampdu_mpdu", 4).await;
// self.set_iovar_u32("ampdu_rx_factor", 0).await; // this crashes
Timer::after(Duration::from_millis(100)).await;
// evts
let mut evts = EventMask {
iface: 0,
events: [0xFF; 24],
};
self.set_iovar("bsscfg:event_msgs", &evts.to_bytes()).await;
// set wifi up
self.ioctl(2, 2, 0, &[]).await;
Timer::after(Duration::from_millis(100)).await;
2022-07-11 03:07:39 +02:00
info!("INIT DONE");
}
pub async fn join(&mut self, ssid: &str) {
self.ioctl_set_u32(134, 0, 0).await; // wsec = open
self.set_iovar_u32x2("bsscfg:sup_wpa", 0, 0).await;
self.ioctl_set_u32(20, 0, 1).await; // set_infra = 1
self.ioctl_set_u32(22, 0, 0).await; // set_auth = open (0)
let mut i = SsidInfo {
len: ssid.len() as _,
ssid: [0; 32],
};
i.ssid[..ssid.len()].copy_from_slice(ssid.as_bytes());
self.ioctl(2, 26, 0, &i.to_bytes()).await; // set_ssid
info!("JOINED");
}
async fn set_iovar_u32x2(&mut self, name: &str, val1: u32, val2: u32) {
let mut buf = [0; 8];
buf[0..4].copy_from_slice(&val1.to_le_bytes());
buf[4..8].copy_from_slice(&val2.to_le_bytes());
self.set_iovar(name, &buf).await
}
2022-07-11 03:07:39 +02:00
async fn set_iovar_u32(&mut self, name: &str, val: u32) {
self.set_iovar(name, &val.to_le_bytes()).await
}
async fn set_iovar(&mut self, name: &str, val: &[u8]) {
info!("set {} = {:02x}", name, val);
let mut buf = [0; 64];
buf[..name.len()].copy_from_slice(name.as_bytes());
buf[name.len()] = 0;
buf[name.len() + 1..][..val.len()].copy_from_slice(val);
let total_len = name.len() + 1 + val.len();
self.ioctl(2, 263, 0, &buf[..total_len]).await;
2022-07-11 00:25:35 +02:00
}
async fn ioctl_set_u32(&mut self, cmd: u32, iface: u32, val: u32) {
self.ioctl(2, cmd, 0, &val.to_le_bytes()).await
}
2022-07-11 00:25:35 +02:00
async fn ioctl(&mut self, kind: u32, cmd: u32, iface: u32, buf: &[u8]) {
// TODO cancel ioctl on future drop.
while !matches!(self.state.ioctl_state.get(), IoctlState::Idle) {
yield_now().await;
2022-07-10 19:45:26 +02:00
}
2022-07-11 00:25:35 +02:00
self.state.ioctl_id.set(self.state.ioctl_id.get().wrapping_add(1));
self.state
.ioctl_state
.set(IoctlState::Pending { kind, cmd, iface, buf });
while !matches!(self.state.ioctl_state.get(), IoctlState::Done) {
yield_now().await;
}
self.state.ioctl_state.set(IoctlState::Idle);
}
2022-07-10 19:45:26 +02:00
}
2022-07-11 00:25:35 +02:00
pub struct Runner<'a, PWR: Pin, CS: Pin, CLK: Pin, DIO: Pin> {
state: &'a State,
2022-07-10 19:45:26 +02:00
pwr: Output<'a, PWR>,
/// SPI chip-select.
cs: Output<'a, CS>,
/// SPI clock
clk: Output<'a, CLK>,
/// 4 signals, all in one!!
/// - SPI MISO
/// - SPI MOSI
/// - IRQ
/// - strap to set to gSPI mode on boot.
dio: Flex<'a, DIO>,
2022-07-11 03:07:39 +02:00
ioctl_seq: u8,
2022-07-10 19:45:26 +02:00
backplane_window: u32,
}
2022-07-11 00:25:35 +02:00
pub async fn new<'a, PWR: Pin, CS: Pin, CLK: Pin, DIO: Pin>(
state: &'a State,
pwr: Output<'a, PWR>,
cs: Output<'a, CS>,
clk: Output<'a, CLK>,
dio: Flex<'a, DIO>,
) -> (Control<'a>, Runner<'a, PWR, CS, CLK, DIO>) {
let mut runner = Runner {
state,
pwr,
cs,
clk,
dio,
2022-07-11 03:07:39 +02:00
ioctl_seq: 0,
2022-07-11 00:25:35 +02:00
backplane_window: 0xAAAA_AAAA,
};
2022-07-10 19:45:26 +02:00
2022-07-11 00:25:35 +02:00
runner.init().await;
(Control { state }, runner)
}
impl<'a, PWR: Pin, CS: Pin, CLK: Pin, DIO: Pin> Runner<'a, PWR, CS, CLK, DIO> {
async fn init(&mut self) {
2022-07-10 19:45:26 +02:00
// Set strap to select gSPI mode.
self.dio.set_as_output();
self.dio.set_low();
// Reset
self.pwr.set_low();
Timer::after(Duration::from_millis(20)).await;
self.pwr.set_high();
Timer::after(Duration::from_millis(250)).await;
info!("waiting for ping...");
while self.read32_swapped(REG_BUS_FEEDBEAD) != FEEDBEAD {}
info!("ping ok");
self.write32_swapped(0x18, TEST_PATTERN);
let val = self.read32_swapped(REG_BUS_TEST);
assert_eq!(val, TEST_PATTERN);
// 32bit, big endian.
self.write32_swapped(REG_BUS_CTRL, 0x00010033);
let val = self.read32(FUNC_BUS, REG_BUS_FEEDBEAD);
assert_eq!(val, FEEDBEAD);
let val = self.read32(FUNC_BUS, REG_BUS_TEST);
assert_eq!(val, TEST_PATTERN);
// No response delay in any of the funcs.
// seems to break backplane??? eat the 4-byte delay instead, that's what the vendor drivers do...
//self.write32(FUNC_BUS, REG_BUS_RESP_DELAY, 0);
// Init ALP (no idea what that stands for) clock
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x08);
info!("waiting for clock...");
while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR) & 0x40 == 0 {}
info!("clock ok");
let chip_id = self.bp_read16(0x1800_0000);
info!("chip ID: {}", chip_id);
// Upload firmware.
self.core_disable(Core::WLAN);
self.core_reset(Core::SOCSRAM);
self.bp_write32(CHIP.socsram_base_address + 0x10, 3);
self.bp_write32(CHIP.socsram_base_address + 0x44, 0);
2022-07-11 00:25:35 +02:00
let ram_addr = CHIP.atcm_ram_base_address;
2022-07-10 19:45:26 +02:00
// I'm flashing the firmwares independently at hardcoded addresses, instead of baking them
// into the program with `include_bytes!` or similar, so that flashing the program stays fast.
//
// Flash them like this, also don't forget to update the lengths below if you change them!.
//
// probe-rs-cli download 43439A0.bin --format bin --chip RP2040 --base-address 0x10100000
// probe-rs-cli download 43439A0.clm_blob --format bin --chip RP2040 --base-address 0x10140000
let fw = unsafe { slice::from_raw_parts(0x10100000 as *const u8, 224190) };
info!("loading fw");
self.bp_write(ram_addr, fw);
info!("verifying fw");
let mut buf = [0; 1024];
for (i, chunk) in fw.chunks(1024).enumerate() {
let buf = &mut buf[..chunk.len()];
self.bp_read(ram_addr + i as u32 * 1024, buf);
assert_eq!(chunk, buf);
}
info!("loading nvram");
// Round up to 4 bytes.
let nvram_len = (NVRAM.len() + 3) / 4 * 4;
self.bp_write(ram_addr + CHIP.chip_ram_size - 4 - nvram_len as u32, NVRAM);
let nvram_len_words = nvram_len as u32 / 4;
let nvram_len_magic = (!nvram_len_words << 16) | nvram_len_words;
self.bp_write32(ram_addr + CHIP.chip_ram_size - 4, nvram_len_magic);
// Start core!
info!("starting up core...");
self.core_reset(Core::WLAN);
assert!(self.core_is_up(Core::WLAN));
while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR) & 0x80 == 0 {}
// "Set up the interrupt mask and enable interrupts"
self.bp_write32(CHIP.sdiod_core_base_address + 0x24, 0xF0);
// "Lower F2 Watermark to avoid DMA Hang in F2 when SD Clock is stopped."
// Sounds scary...
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_FUNCTION2_WATERMARK, 32);
// wait for wifi startup
info!("waiting for wifi init...");
while self.read32(FUNC_BUS, REG_BUS_STATUS) & STATUS_F2_RX_READY == 0 {}
// Some random configs related to sleep.
// I think they're not needed if we don't want sleep...???
/*
let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL);
val |= 0x02; // WAKE_TILL_HT_AVAIL
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL, val);
self.write8(FUNC_BUS, 0xF0, 0x08); // SDIOD_CCCR_BRCM_CARDCAP.CMD_NODEC = 1
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x02); // SBSDIO_FORCE_HT
let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR);
val |= 0x01; // SBSDIO_SLPCSR_KEEP_SDIO_ON
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR, val);
// clear pulls
self.write8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP, 0);
let _ = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP);
*/
info!("init done ");
2022-07-11 00:25:35 +02:00
}
2022-07-10 19:45:26 +02:00
2022-07-11 00:25:35 +02:00
pub async fn run(mut self) -> ! {
2022-07-10 19:45:26 +02:00
let mut buf = [0; 2048];
loop {
2022-07-11 00:25:35 +02:00
// Send stuff
if let IoctlState::Pending { kind, cmd, iface, buf } = self.state.ioctl_state.get() {
self.send_ioctl(kind, cmd, iface, unsafe { &*buf }, self.state.ioctl_id.get());
self.state.ioctl_state.set(IoctlState::Sent);
}
// Receive stuff
2022-07-10 19:45:26 +02:00
let irq = self.read16(FUNC_BUS, REG_BUS_INTERRUPT);
if irq & IRQ_F2_PACKET_AVAILABLE != 0 {
let mut status = 0xFFFF_FFFF;
while status == 0xFFFF_FFFF {
status = self.read32(FUNC_BUS, REG_BUS_STATUS);
}
if status & STATUS_F2_PKT_AVAILABLE != 0 {
let len = (status & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT;
let cmd = cmd_word(false, true, FUNC_WLAN, 0, len);
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
self.spi_read(&mut buf[..len as usize]);
// pad to 32bit
let mut junk = [0; 4];
if len % 4 != 0 {
self.spi_read(&mut junk[..(4 - len as usize % 4)]);
}
self.cs.set_high();
//info!("rx {:02x}", &buf[..(len as usize).min(36)]);
2022-07-10 19:45:26 +02:00
self.rx(&buf[..len as usize]);
}
}
2022-07-11 00:25:35 +02:00
// TODO use IRQs
2022-07-10 19:45:26 +02:00
yield_now().await;
}
}
fn rx(&mut self, packet: &[u8]) {
if packet.len() < SdpcmHeader::SIZE {
warn!("packet too short, len={}", packet.len());
return;
}
let sdpcm_header = SdpcmHeader::from_bytes(packet[..SdpcmHeader::SIZE].try_into().unwrap());
if sdpcm_header.len != !sdpcm_header.len_inv {
warn!("len inv mismatch");
return;
}
if sdpcm_header.len as usize != packet.len() {
// TODO: is this guaranteed??
warn!("len from header doesn't match len from spi");
return;
}
let channel = sdpcm_header.channel_and_flags & 0x0f;
2022-07-11 03:07:39 +02:00
let payload = &packet[sdpcm_header.header_length as _..];
2022-07-10 19:45:26 +02:00
match channel {
0 => {
2022-07-11 03:07:39 +02:00
if payload.len() < CdcHeader::SIZE {
warn!("payload too short, len={}", payload.len());
2022-07-10 19:45:26 +02:00
return;
}
let cdc_header = CdcHeader::from_bytes(payload[..CdcHeader::SIZE].try_into().unwrap());
2022-07-10 19:45:26 +02:00
2022-07-11 00:25:35 +02:00
if cdc_header.id == self.state.ioctl_id.get() {
assert_eq!(cdc_header.status, 0); // todo propagate error
self.state.ioctl_state.set(IoctlState::Done);
}
2022-07-10 19:45:26 +02:00
}
1 => {
let bcd_header = BcdHeader::from_bytes(&payload[..BcdHeader::SIZE].try_into().unwrap());
//info!("{}", bcd_header);
let packet_start = BcdHeader::SIZE + 4 * bcd_header.data_offset as usize;
if packet_start > payload.len() {
warn!("packet start out of range.");
return;
}
let packet = &payload[packet_start..];
//info!("rx {:02x}", &packet[..(packet.len() as usize).min(36)]);
let evt = EventHeader::from_bytes(&packet[24..][..EventHeader::SIZE].try_into().unwrap());
let evt_num = evt.event_type.to_be() as u8;
let evt_data_len = evt.datalen.to_be() as u8;
let evt_data = &packet[24 + EventHeader::SIZE..][..evt_data_len as usize];
info!(
"=== EVENT {} ({}) {} {:02x}",
events::Event::from(evt_num),
evt_num,
evt,
evt_data
);
}
2022-07-10 19:45:26 +02:00
_ => {}
}
}
2022-07-11 00:25:35 +02:00
fn send_ioctl(&mut self, kind: u32, cmd: u32, iface: u32, data: &[u8], id: u16) {
2022-07-10 19:45:26 +02:00
let mut buf = [0; 2048];
let total_len = SdpcmHeader::SIZE + CdcHeader::SIZE + data.len();
2022-07-11 03:07:39 +02:00
let seq = self.ioctl_seq;
self.ioctl_seq = self.ioctl_seq.wrapping_add(1);
2022-07-10 19:45:26 +02:00
let sdpcm_header = SdpcmHeader {
2022-07-11 03:07:39 +02:00
len: total_len as u16, // TODO does this len need to be rounded up to u32?
2022-07-10 19:45:26 +02:00
len_inv: !total_len as u16,
2022-07-11 03:07:39 +02:00
sequence: seq,
2022-07-11 00:25:35 +02:00
channel_and_flags: 0, // control channel
2022-07-10 19:45:26 +02:00
next_length: 0,
header_length: SdpcmHeader::SIZE as _,
wireless_flow_control: 0,
bus_data_credit: 0,
reserved: [0, 0],
};
let cdc_header = CdcHeader {
cmd: cmd,
out_len: data.len() as _,
in_len: 0,
flags: kind as u16 | (iface as u16) << 12,
2022-07-11 00:25:35 +02:00
id,
2022-07-10 19:45:26 +02:00
status: 0,
};
buf[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes());
buf[SdpcmHeader::SIZE..][..CdcHeader::SIZE].copy_from_slice(&cdc_header.to_bytes());
buf[SdpcmHeader::SIZE + CdcHeader::SIZE..][..data.len()].copy_from_slice(data);
2022-07-11 03:07:39 +02:00
let total_len = (total_len + 3) & !3; // round up to 4byte
//info!("tx {:02x}", &buf[..total_len.min(48)]);
2022-07-10 19:45:26 +02:00
let cmd = cmd_word(true, true, FUNC_WLAN, 0, total_len as _);
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
self.spi_write(&buf[..total_len]);
self.cs.set_high();
}
fn core_disable(&mut self, core: Core) {
let base = core.base_addr();
// Dummy read?
let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET);
// Check it isn't already reset
let r = self.bp_read8(base + AI_RESETCTRL_OFFSET);
if r & AI_RESETCTRL_BIT_RESET != 0 {
return;
}
self.bp_write8(base + AI_IOCTRL_OFFSET, 0);
let _ = self.bp_read8(base + AI_IOCTRL_OFFSET);
block_for(Duration::from_millis(1));
self.bp_write8(base + AI_RESETCTRL_OFFSET, AI_RESETCTRL_BIT_RESET);
let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET);
}
fn core_reset(&mut self, core: Core) {
self.core_disable(core);
let base = core.base_addr();
self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN);
let _ = self.bp_read8(base + AI_IOCTRL_OFFSET);
self.bp_write8(base + AI_RESETCTRL_OFFSET, 0);
block_for(Duration::from_millis(1));
self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_CLOCK_EN);
let _ = self.bp_read8(base + AI_IOCTRL_OFFSET);
block_for(Duration::from_millis(1));
}
fn core_is_up(&mut self, core: Core) -> bool {
let base = core.base_addr();
let io = self.bp_read8(base + AI_IOCTRL_OFFSET);
if io & (AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN) != AI_IOCTRL_BIT_CLOCK_EN {
debug!("core_is_up: returning false due to bad ioctrl {:02x}", io);
return false;
}
let r = self.bp_read8(base + AI_RESETCTRL_OFFSET);
if r & (AI_RESETCTRL_BIT_RESET) != 0 {
debug!("core_is_up: returning false due to bad resetctrl {:02x}", r);
return false;
}
true
}
fn bp_read(&mut self, mut addr: u32, mut data: &mut [u8]) {
// It seems the HW force-aligns the addr
// to 2 if data.len() >= 2
// to 4 if data.len() >= 4
// To simplify, enforce 4-align for now.
assert!(addr % 4 == 0);
while !data.is_empty() {
// Ensure transfer doesn't cross a window boundary.
let window_offs = addr & BACKPLANE_ADDRESS_MASK;
let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize;
let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining);
self.backplane_set_window(addr);
let cmd = cmd_word(false, true, FUNC_BACKPLANE, window_offs, len as u32);
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
// 4-byte response delay.
let mut junk = [0; 4];
self.spi_read(&mut junk);
// Read data
self.spi_read(&mut data[..len]);
// pad to 32bit
if len % 4 != 0 {
self.spi_read(&mut junk[..(4 - len % 4)]);
}
self.cs.set_high();
// Advance ptr.
addr += len as u32;
data = &mut data[len..];
}
}
fn bp_write(&mut self, mut addr: u32, mut data: &[u8]) {
// It seems the HW force-aligns the addr
// to 2 if data.len() >= 2
// to 4 if data.len() >= 4
// To simplify, enforce 4-align for now.
assert!(addr % 4 == 0);
while !data.is_empty() {
// Ensure transfer doesn't cross a window boundary.
let window_offs = addr & BACKPLANE_ADDRESS_MASK;
let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize;
let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining);
self.backplane_set_window(addr);
let cmd = cmd_word(true, true, FUNC_BACKPLANE, window_offs, len as u32);
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
self.spi_write(&data[..len]);
// pad to 32bit
if len % 4 != 0 {
let zeros = [0; 4];
self.spi_write(&zeros[..(4 - len % 4)]);
}
self.cs.set_high();
// Advance ptr.
addr += len as u32;
data = &data[len..];
}
}
fn bp_read8(&mut self, addr: u32) -> u8 {
self.backplane_readn(addr, 1) as u8
}
fn bp_write8(&mut self, addr: u32, val: u8) {
self.backplane_writen(addr, val as u32, 1)
}
fn bp_read16(&mut self, addr: u32) -> u16 {
self.backplane_readn(addr, 2) as u16
}
fn bp_write16(&mut self, addr: u32, val: u16) {
self.backplane_writen(addr, val as u32, 2)
}
fn bp_read32(&mut self, addr: u32) -> u32 {
self.backplane_readn(addr, 4)
}
fn bp_write32(&mut self, addr: u32, val: u32) {
self.backplane_writen(addr, val, 4)
}
fn backplane_readn(&mut self, addr: u32, len: u32) -> u32 {
self.backplane_set_window(addr);
let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK;
if len == 4 {
bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG
}
self.readn(FUNC_BACKPLANE, bus_addr, len)
}
fn backplane_writen(&mut self, addr: u32, val: u32, len: u32) {
self.backplane_set_window(addr);
let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK;
if len == 4 {
bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG
}
self.writen(FUNC_BACKPLANE, bus_addr, val, len)
}
fn backplane_set_window(&mut self, addr: u32) {
let new_window = addr & !BACKPLANE_ADDRESS_MASK;
if (new_window >> 24) as u8 != (self.backplane_window >> 24) as u8 {
self.write8(
FUNC_BACKPLANE,
REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH,
(new_window >> 24) as u8,
);
}
if (new_window >> 16) as u8 != (self.backplane_window >> 16) as u8 {
self.write8(
FUNC_BACKPLANE,
REG_BACKPLANE_BACKPLANE_ADDRESS_MID,
(new_window >> 16) as u8,
);
}
if (new_window >> 8) as u8 != (self.backplane_window >> 8) as u8 {
self.write8(
FUNC_BACKPLANE,
REG_BACKPLANE_BACKPLANE_ADDRESS_LOW,
(new_window >> 8) as u8,
);
}
self.backplane_window = new_window;
}
fn read8(&mut self, func: u32, addr: u32) -> u8 {
self.readn(func, addr, 1) as u8
}
fn write8(&mut self, func: u32, addr: u32, val: u8) {
self.writen(func, addr, val as u32, 1)
}
fn read16(&mut self, func: u32, addr: u32) -> u16 {
self.readn(func, addr, 2) as u16
}
fn write16(&mut self, func: u32, addr: u32, val: u16) {
self.writen(func, addr, val as u32, 2)
}
fn read32(&mut self, func: u32, addr: u32) -> u32 {
self.readn(func, addr, 4)
}
fn write32(&mut self, func: u32, addr: u32, val: u32) {
self.writen(func, addr, val, 4)
}
fn readn(&mut self, func: u32, addr: u32, len: u32) -> u32 {
let cmd = cmd_word(false, true, func, addr, len);
let mut buf = [0; 4];
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
if func == FUNC_BACKPLANE {
// 4-byte response delay.
self.spi_read(&mut buf);
}
self.spi_read(&mut buf);
self.cs.set_high();
u32::from_le_bytes(buf)
}
fn writen(&mut self, func: u32, addr: u32, val: u32, len: u32) {
let cmd = cmd_word(true, true, func, addr, len);
self.cs.set_low();
self.spi_write(&cmd.to_le_bytes());
self.spi_write(&val.to_le_bytes());
self.cs.set_high();
}
fn read32_swapped(&mut self, addr: u32) -> u32 {
let cmd = cmd_word(false, true, FUNC_BUS, addr, 4);
let mut buf = [0; 4];
self.cs.set_low();
self.spi_write(&swap16(cmd).to_le_bytes());
self.spi_read(&mut buf);
self.cs.set_high();
swap16(u32::from_le_bytes(buf))
}
fn write32_swapped(&mut self, addr: u32, val: u32) {
let cmd = cmd_word(true, true, FUNC_BUS, addr, 4);
self.cs.set_low();
self.spi_write(&swap16(cmd).to_le_bytes());
self.spi_write(&swap16(val).to_le_bytes());
self.cs.set_high();
}
fn spi_read(&mut self, words: &mut [u8]) {
self.dio.set_as_input();
for word in words {
let mut w = 0;
for _ in 0..8 {
w = w << 1;
// rising edge, sample data
if self.dio.is_high() {
w |= 0x01;
}
self.clk.set_high();
// falling edge
self.clk.set_low();
}
*word = w
}
self.clk.set_low();
}
fn spi_write(&mut self, words: &[u8]) {
self.dio.set_as_output();
for word in words {
let mut word = *word;
for _ in 0..8 {
// falling edge, setup data
self.clk.set_low();
if word & 0x80 == 0 {
self.dio.set_low();
} else {
self.dio.set_high();
}
// rising edge
self.clk.set_high();
word = word << 1;
}
}
self.clk.set_low();
2022-07-11 00:25:35 +02:00
2022-07-10 19:45:26 +02:00
self.dio.set_as_input();
}
}
macro_rules! nvram {
($($s:literal,)*) => {
concat_bytes!($($s, b"\x00",)* b"\x00\x00")
};
}
static NVRAM: &'static [u8] = &*nvram!(
b"NVRAMRev=$Rev$",
b"manfid=0x2d0",
b"prodid=0x0727",
b"vendid=0x14e4",
b"devid=0x43e2",
b"boardtype=0x0887",
b"boardrev=0x1100",
b"boardnum=22",
b"macaddr=00:A0:50:86:aa:b6",
b"sromrev=11",
b"boardflags=0x00404001",
b"boardflags3=0x04000000",
b"xtalfreq=26000",
b"nocrc=1",
b"ag0=255",
b"aa2g=1",
b"ccode=ALL",
b"pa0itssit=0x20",
b"extpagain2g=0",
b"pa2ga0=-168,7161,-820",
b"AvVmid_c0=0x0,0xc8",
b"cckpwroffset0=5",
b"maxp2ga0=84",
b"txpwrbckof=6",
b"cckbw202gpo=0",
b"legofdmbw202gpo=0x66111111",
b"mcsbw202gpo=0x77711111",
b"propbw202gpo=0xdd",
b"ofdmdigfilttype=18",
b"ofdmdigfilttypebe=18",
b"papdmode=1",
b"papdvalidtest=1",
b"pacalidx2g=45",
b"papdepsoffset=-30",
b"papdendidx=58",
b"ltecxmux=0",
b"ltecxpadnum=0x0102",
b"ltecxfnsel=0x44",
b"ltecxgcigpio=0x01",
b"il0macaddr=00:90:4c:c5:12:38",
b"wl0id=0x431b",
b"deadman_to=0xffffffff",
b"muxenab=0x1",
b"spurconfig=0x3",
b"glitch_based_crsmin=1",
b"btc_mode=1",
);