embassy/tests/rp/src/bin/uart_dma.rs

252 lines
7.9 KiB
Rust
Raw Normal View History

#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
2023-08-16 17:51:47 +02:00
teleprobe_meta::target!(b"rpi-pico");
use defmt::{assert_eq, *};
use embassy_executor::Spawner;
2023-05-15 15:21:05 +02:00
use embassy_rp::bind_interrupts;
use embassy_rp::gpio::{Level, Output};
2023-05-15 15:21:05 +02:00
use embassy_rp::peripherals::UART0;
use embassy_rp::uart::{Async, Config, Error, Instance, InterruptHandler, Parity, Uart, UartRx};
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
2023-05-15 15:21:05 +02:00
bind_interrupts!(struct Irqs {
UART0_IRQ => InterruptHandler<UART0>;
});
async fn read<const N: usize>(uart: &mut Uart<'_, impl Instance, Async>) -> Result<[u8; N], Error> {
let mut buf = [255; N];
uart.read(&mut buf).await?;
Ok(buf)
}
async fn read1<const N: usize>(uart: &mut UartRx<'_, impl Instance, Async>) -> Result<[u8; N], Error> {
let mut buf = [255; N];
uart.read(&mut buf).await?;
Ok(buf)
}
async fn send(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, parity: Option<bool>) {
pin.set_low();
Timer::after_millis(1).await;
for i in 0..8 {
if v & (1 << i) == 0 {
pin.set_low();
} else {
pin.set_high();
}
Timer::after_millis(1).await;
}
if let Some(b) = parity {
if b {
pin.set_high();
} else {
pin.set_low();
}
Timer::after_millis(1).await;
}
pin.set_high();
Timer::after_millis(1).await;
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut p = embassy_rp::init(Default::default());
info!("Hello World!");
let (mut tx, mut rx, mut uart) = (p.PIN_0, p.PIN_1, p.UART0);
// We can't send too many bytes, they have to fit in the FIFO.
// This is because we aren't sending+receiving at the same time.
{
let config = Config::default();
let mut uart = Uart::new(
&mut uart,
&mut tx,
&mut rx,
2023-05-15 15:21:05 +02:00
Irqs,
&mut p.DMA_CH0,
&mut p.DMA_CH1,
config,
);
let data = [0xC0, 0xDE];
uart.write(&data).await.unwrap();
let mut buf = [0; 2];
uart.read(&mut buf).await.unwrap();
assert_eq!(buf, data);
}
info!("test overflow detection");
{
let config = Config::default();
let mut uart = Uart::new(
&mut uart,
&mut tx,
&mut rx,
2023-05-15 15:21:05 +02:00
Irqs,
&mut p.DMA_CH0,
&mut p.DMA_CH1,
config,
);
uart.blocking_write(&[42; 32]).unwrap();
uart.blocking_write(&[1, 2, 3]).unwrap();
uart.blocking_flush().unwrap();
// can receive regular fifo contents
assert_eq!(read(&mut uart).await, Ok([42; 16]));
assert_eq!(read(&mut uart).await, Ok([42; 16]));
// receiving the rest fails with overrun
assert_eq!(read::<16>(&mut uart).await, Err(Error::Overrun));
// new data is accepted, latest overrunning byte first
assert_eq!(read(&mut uart).await, Ok([3]));
uart.blocking_write(&[8, 9]).unwrap();
Timer::after_millis(1).await;
assert_eq!(read(&mut uart).await, Ok([8, 9]));
}
info!("test break detection");
{
let config = Config::default();
let (mut tx, mut rx) = Uart::new(
&mut uart,
&mut tx,
&mut rx,
2023-05-15 15:21:05 +02:00
Irqs,
&mut p.DMA_CH0,
&mut p.DMA_CH1,
config,
)
.split();
// break before read
tx.send_break(20).await;
tx.write(&[64]).await.unwrap();
assert_eq!(read1::<1>(&mut rx).await.unwrap_err(), Error::Break);
assert_eq!(read1(&mut rx).await.unwrap(), [64]);
// break during read
{
let r = read1::<2>(&mut rx);
tx.write(&[2]).await.unwrap();
tx.send_break(20).await;
tx.write(&[3]).await.unwrap();
assert_eq!(r.await.unwrap_err(), Error::Break);
assert_eq!(read1(&mut rx).await.unwrap(), [3]);
}
// break after read
{
let r = read1(&mut rx);
tx.write(&[2]).await.unwrap();
tx.send_break(20).await;
tx.write(&[3]).await.unwrap();
assert_eq!(r.await.unwrap(), [2]);
assert_eq!(read1::<1>(&mut rx).await.unwrap_err(), Error::Break);
assert_eq!(read1(&mut rx).await.unwrap(), [3]);
}
}
// parity detection. here we bitbang to not require two uarts.
info!("test parity error detection");
{
let mut pin = Output::new(&mut tx, Level::High);
// choose a very slow baud rate to make tests reliable even with O0
let mut config = Config::default();
config.baudrate = 1000;
config.parity = Parity::ParityEven;
2023-05-15 15:21:05 +02:00
let mut uart = UartRx::new(&mut uart, &mut rx, Irqs, &mut p.DMA_CH0, config);
async fn chr(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, parity: u32) {
send(pin, v, Some(parity != 0)).await;
}
// first check that we can send correctly
chr(&mut pin, 32, 1).await;
assert_eq!(read1(&mut uart).await.unwrap(), [32]);
// parity error before read
chr(&mut pin, 32, 0).await;
chr(&mut pin, 31, 1).await;
assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Parity);
assert_eq!(read1(&mut uart).await.unwrap(), [31]);
// parity error during read
{
let r = read1::<2>(&mut uart);
chr(&mut pin, 2, 1).await;
chr(&mut pin, 32, 0).await;
chr(&mut pin, 3, 0).await;
assert_eq!(r.await.unwrap_err(), Error::Parity);
assert_eq!(read1(&mut uart).await.unwrap(), [3]);
}
// parity error after read
{
let r = read1(&mut uart);
chr(&mut pin, 2, 1).await;
chr(&mut pin, 32, 0).await;
chr(&mut pin, 3, 0).await;
assert_eq!(r.await.unwrap(), [2]);
assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Parity);
assert_eq!(read1(&mut uart).await.unwrap(), [3]);
}
}
// framing error detection. here we bitbang because there's no other way.
info!("test framing error detection");
{
let mut pin = Output::new(&mut tx, Level::High);
// choose a very slow baud rate to make tests reliable even with O0
let mut config = Config::default();
config.baudrate = 1000;
2023-05-15 15:21:05 +02:00
let mut uart = UartRx::new(&mut uart, &mut rx, Irqs, &mut p.DMA_CH0, config);
async fn chr(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, good: bool) {
if good {
send(pin, v, None).await;
} else {
send(pin, v, Some(false)).await;
}
}
// first check that we can send correctly
chr(&mut pin, 32, true).await;
assert_eq!(read1(&mut uart).await.unwrap(), [32]);
// parity error before read
chr(&mut pin, 32, false).await;
chr(&mut pin, 31, true).await;
assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Framing);
assert_eq!(read1(&mut uart).await.unwrap(), [31]);
// parity error during read
{
let r = read1::<2>(&mut uart);
chr(&mut pin, 2, true).await;
chr(&mut pin, 32, false).await;
chr(&mut pin, 3, true).await;
assert_eq!(r.await.unwrap_err(), Error::Framing);
assert_eq!(read1(&mut uart).await.unwrap(), [3]);
}
// parity error after read
{
let r = read1(&mut uart);
chr(&mut pin, 2, true).await;
chr(&mut pin, 32, false).await;
chr(&mut pin, 3, true).await;
assert_eq!(r.await.unwrap(), [2]);
assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Framing);
assert_eq!(read1(&mut uart).await.unwrap(), [3]);
}
}
info!("Test OK");
cortex_m::asm::bkpt();
}