embassy/embassy-nrf/src/usb.rs

507 lines
14 KiB
Rust
Raw Normal View History

#![macro_use]
use core::marker::PhantomData;
2022-03-09 01:34:35 +01:00
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy::interrupt::InterruptExt;
use embassy::time::{with_timeout, Duration};
use embassy::util::Unborrow;
2022-03-09 01:34:35 +01:00
use embassy::waitqueue::AtomicWaker;
use embassy_hal_common::unborrow;
use embassy_usb::driver::{self, ReadError, WriteError};
use embassy_usb::types::{EndpointAddress, EndpointInfo, EndpointType, UsbDirection};
use futures::future::poll_fn;
use futures::Future;
use pac::NVIC;
pub use embassy_usb;
use crate::interrupt::Interrupt;
use crate::pac;
2022-03-09 01:34:35 +01:00
static EP0_WAKER: AtomicWaker = AtomicWaker::new();
2022-03-09 01:34:35 +01:00
pub struct Driver<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
2022-03-09 01:34:35 +01:00
alloc_in: Allocator,
alloc_out: Allocator,
2021-12-14 21:51:50 +01:00
}
2022-03-09 01:34:35 +01:00
impl<'d, T: Instance> Driver<'d, T> {
pub fn new(
_usb: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
) -> Self {
unborrow!(irq);
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
Self {
phantom: PhantomData,
alloc_in: Allocator::new(),
alloc_out: Allocator::new(),
}
}
fn on_interrupt(_: *mut ()) {
let regs = T::regs();
if regs.events_ep0setup.read().bits() != 0 {
regs.intenclr.write(|w| w.ep0setup().clear());
EP0_WAKER.wake();
}
if regs.events_ep0datadone.read().bits() != 0 {
regs.intenclr.write(|w| w.ep0datadone().clear());
EP0_WAKER.wake();
}
}
fn set_stalled(ep_addr: EndpointAddress, stalled: bool) {
let regs = T::regs();
unsafe {
if ep_addr.index() == 0 {
regs.tasks_ep0stall
.write(|w| w.tasks_ep0stall().bit(stalled));
} else {
regs.epstall.write(|w| {
w.ep().bits(ep_addr.index() as u8 & 0b111);
w.io().bit(ep_addr.is_in());
w.stall().bit(stalled)
});
}
}
//if stalled {
// self.busy_in_endpoints &= !(1 << ep_addr.index());
//}
}
fn is_stalled(ep_addr: EndpointAddress) -> bool {
let regs = T::regs();
let i = ep_addr.index();
match ep_addr.direction() {
UsbDirection::Out => regs.halted.epout[i].read().getstatus().is_halted(),
UsbDirection::In => regs.halted.epin[i].read().getstatus().is_halted(),
}
}
}
2022-03-09 01:34:35 +01:00
impl<'d, T: Instance> driver::Driver<'d> for Driver<'d, T> {
type EndpointOut = Endpoint<'d, T, Out>;
type EndpointIn = Endpoint<'d, T, In>;
type Bus = Bus<'d, T>;
2021-12-15 18:29:19 +01:00
2022-03-09 01:34:35 +01:00
fn alloc_endpoint_in(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointIn, driver::EndpointAllocError> {
let index = self
.alloc_in
.allocate(ep_addr, ep_type, max_packet_size, interval)?;
let ep_addr = EndpointAddress::from_parts(index, UsbDirection::In);
Ok(Endpoint {
_phantom: PhantomData,
info: EndpointInfo {
addr: ep_addr,
ep_type,
max_packet_size,
interval,
},
})
}
2021-12-15 00:48:48 +01:00
2022-03-09 01:34:35 +01:00
fn alloc_endpoint_out(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointOut, driver::EndpointAllocError> {
let index = self
.alloc_out
.allocate(ep_addr, ep_type, max_packet_size, interval)?;
let ep_addr = EndpointAddress::from_parts(index, UsbDirection::Out);
Ok(Endpoint {
_phantom: PhantomData,
info: EndpointInfo {
addr: ep_addr,
ep_type,
max_packet_size,
interval,
},
})
2021-12-14 21:51:50 +01:00
}
2022-03-09 01:34:35 +01:00
fn enable(self) -> Self::Bus {
let regs = T::regs();
errata::pre_enable();
regs.enable.write(|w| w.enable().enabled());
// Wait until the peripheral is ready.
while !regs.eventcause.read().ready().is_ready() {}
regs.eventcause.write(|w| w.ready().set_bit()); // Write 1 to clear.
errata::post_enable();
unsafe { NVIC::unmask(pac::Interrupt::USBD) };
// Enable the USB pullup, allowing enumeration.
regs.usbpullup.write(|w| w.connect().enabled());
info!("enabled");
Bus {
phantom: PhantomData,
alloc_in: self.alloc_in,
alloc_out: self.alloc_out,
}
}
}
pub struct Bus<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
alloc_in: Allocator,
alloc_out: Allocator,
}
impl<'d, T: Instance> driver::Bus for Bus<'d, T> {
#[inline]
fn reset(&mut self) {
let regs = T::regs();
// TODO: Initialize ISO buffers
// XXX this is not spec compliant; the endpoints should only be enabled after the device
// has been put in the Configured state. However, usb-device provides no hook to do that
unsafe {
regs.epinen.write(|w| w.bits(self.alloc_in.used.into()));
regs.epouten.write(|w| w.bits(self.alloc_out.used.into()));
}
for i in 1..8 {
let out_enabled = self.alloc_out.used & (1 << i) != 0;
// when first enabled, bulk/interrupt OUT endpoints will *not* receive data (the
// peripheral will NAK all incoming packets) until we write a zero to the SIZE
// register (see figure 203 of the 52840 manual). To avoid that we write a 0 to the
// SIZE register
if out_enabled {
regs.size.epout[i].reset();
}
}
//self.busy_in_endpoints = 0;
}
#[inline]
fn set_device_address(&mut self, _addr: u8) {
// Nothing to do, the peripheral handles this.
}
fn set_stalled(&mut self, ep_addr: EndpointAddress, stalled: bool) {
Driver::<T>::set_stalled(ep_addr, stalled)
}
fn is_stalled(&mut self, ep_addr: EndpointAddress) -> bool {
Driver::<T>::is_stalled(ep_addr)
}
#[inline]
fn suspend(&mut self) {
let regs = T::regs();
regs.lowpower.write(|w| w.lowpower().low_power());
}
#[inline]
fn resume(&mut self) {
let regs = T::regs();
errata::pre_wakeup();
regs.lowpower.write(|w| w.lowpower().force_normal());
}
}
pub enum Out {}
pub enum In {}
pub struct Endpoint<'d, T: Instance, Dir> {
_phantom: PhantomData<(&'d mut T, Dir)>,
info: EndpointInfo,
}
impl<'d, T: Instance, Dir> driver::Endpoint for Endpoint<'d, T, Dir> {
fn info(&self) -> &EndpointInfo {
&self.info
}
fn set_stalled(&self, stalled: bool) {
Driver::<T>::set_stalled(self.info.addr, stalled)
}
fn is_stalled(&self) -> bool {
Driver::<T>::is_stalled(self.info.addr)
}
}
2022-03-09 01:34:35 +01:00
impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> {
type ReadFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<usize, ReadError>> + 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let regs = T::regs();
if buf.len() == 0 {
regs.tasks_ep0status.write(|w| unsafe { w.bits(1) });
return Ok(0);
}
// Wait for SETUP packet
regs.events_ep0setup.reset();
regs.intenset.write(|w| w.ep0setup().set());
poll_fn(|cx| {
EP0_WAKER.register(cx.waker());
if regs.events_ep0setup.read().bits() != 0 {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
info!("got SETUP");
if buf.len() < 8 {
return Err(ReadError::BufferOverflow);
}
buf[0] = regs.bmrequesttype.read().bits() as u8;
buf[1] = regs.brequest.read().brequest().bits();
buf[2] = regs.wvaluel.read().wvaluel().bits();
buf[3] = regs.wvalueh.read().wvalueh().bits();
buf[4] = regs.windexl.read().windexl().bits();
buf[5] = regs.windexh.read().windexh().bits();
buf[6] = regs.wlengthl.read().wlengthl().bits();
buf[7] = regs.wlengthh.read().wlengthh().bits();
Ok(8)
}
}
}
impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
type WriteFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), WriteError>> + 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
info!("write: {:x}", buf);
let regs = T::regs();
let ptr = buf.as_ptr() as u32;
let len = buf.len() as u32;
regs.epin0.ptr.write(|w| unsafe { w.bits(ptr) });
regs.epin0.maxcnt.write(|w| unsafe { w.bits(len) });
regs.events_ep0datadone.reset();
regs.events_endepin[0].reset();
dma_start();
regs.tasks_startepin[0].write(|w| unsafe { w.bits(1) });
info!("write: waiting for endepin...");
while regs.events_endepin[0].read().bits() == 0 {}
dma_end();
info!("write: waiting for ep0datadone...");
regs.intenset.write(|w| w.ep0datadone().set());
let res = with_timeout(
Duration::from_millis(10),
poll_fn(|cx| {
EP0_WAKER.register(cx.waker());
if regs.events_ep0datadone.read().bits() != 0 {
Poll::Ready(())
} else {
Poll::Pending
}
}),
)
.await;
if res.is_err() {
// todo wrong error
return Err(driver::WriteError::BufferOverflow);
}
info!("write done");
Ok(())
}
}
}
fn dma_start() {
compiler_fence(Ordering::Release);
}
fn dma_end() {
compiler_fence(Ordering::Acquire);
}
struct Allocator {
used: u16,
// Buffers can be up to 64 Bytes since this is a Full-Speed implementation.
lens: [u8; 9],
}
impl Allocator {
fn new() -> Self {
Self {
used: 0,
lens: [0; 9],
}
}
fn allocate(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
_interval: u8,
) -> Result<usize, driver::EndpointAllocError> {
// Endpoint addresses are fixed in hardware:
// - 0x80 / 0x00 - Control EP0
// - 0x81 / 0x01 - Bulk/Interrupt EP1
// - 0x82 / 0x02 - Bulk/Interrupt EP2
// - 0x83 / 0x03 - Bulk/Interrupt EP3
// - 0x84 / 0x04 - Bulk/Interrupt EP4
// - 0x85 / 0x05 - Bulk/Interrupt EP5
// - 0x86 / 0x06 - Bulk/Interrupt EP6
// - 0x87 / 0x07 - Bulk/Interrupt EP7
// - 0x88 / 0x08 - Isochronous
// Endpoint directions are allocated individually.
let alloc_index = match ep_type {
EndpointType::Isochronous => 8,
EndpointType::Control => 0,
EndpointType::Interrupt | EndpointType::Bulk => {
// Find rightmost zero bit in 1..=7
let ones = (self.used >> 1).trailing_ones() as usize;
if ones >= 7 {
return Err(driver::EndpointAllocError);
}
ones + 1
}
};
if self.used & (1 << alloc_index) != 0 {
return Err(driver::EndpointAllocError);
}
self.used |= 1 << alloc_index;
self.lens[alloc_index] = max_packet_size as u8;
Ok(alloc_index)
}
}
pub(crate) mod sealed {
use super::*;
pub trait Instance {
fn regs() -> &'static pac::usbd::RegisterBlock;
}
}
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt;
}
macro_rules! impl_usb {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::usb::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::usbd::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
}
impl crate::usb::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}
2022-03-09 01:34:35 +01:00
mod errata {
/// Writes `val` to `addr`. Used to apply Errata workarounds.
unsafe fn poke(addr: u32, val: u32) {
(addr as *mut u32).write_volatile(val);
}
/// Reads 32 bits from `addr`.
unsafe fn peek(addr: u32) -> u32 {
(addr as *mut u32).read_volatile()
}
pub fn pre_enable() {
// Works around Erratum 187 on chip revisions 1 and 2.
unsafe {
poke(0x4006EC00, 0x00009375);
poke(0x4006ED14, 0x00000003);
poke(0x4006EC00, 0x00009375);
}
pre_wakeup();
}
pub fn post_enable() {
post_wakeup();
// Works around Erratum 187 on chip revisions 1 and 2.
unsafe {
poke(0x4006EC00, 0x00009375);
poke(0x4006ED14, 0x00000000);
poke(0x4006EC00, 0x00009375);
}
}
pub fn pre_wakeup() {
// Works around Erratum 171 on chip revisions 1 and 2.
unsafe {
if peek(0x4006EC00) == 0x00000000 {
poke(0x4006EC00, 0x00009375);
}
poke(0x4006EC14, 0x000000C0);
poke(0x4006EC00, 0x00009375);
}
}
pub fn post_wakeup() {
// Works around Erratum 171 on chip revisions 1 and 2.
unsafe {
if peek(0x4006EC00) == 0x00000000 {
poke(0x4006EC00, 0x00009375);
}
poke(0x4006EC14, 0x00000000);
poke(0x4006EC00, 0x00009375);
}
}
}