embassy/embassy-stm32/src/rcc/h5.rs

607 lines
17 KiB
Rust
Raw Normal View History

2023-04-06 18:53:51 +02:00
use core::marker::PhantomData;
use stm32_metapac::rcc::vals::{Hpre, Ppre, Timpre};
use crate::pac::pwr::vals::Vos;
use crate::pac::rcc::vals::{Hseext, Hsidiv, Mco1, Mco2, Pllrge, Pllsrc, Pllvcosel, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(64_000_000);
/// CSI speed
pub const CSI_FREQ: Hertz = Hertz(4_000_000);
/// HSI48 speed
pub const HSI48_FREQ: Hertz = Hertz(48_000_000);
/// LSI speed
pub const LSI_FREQ: Hertz = Hertz(32_000);
const VCO_MIN: u32 = 150_000_000;
const VCO_MAX: u32 = 420_000_000;
const VCO_WIDE_MIN: u32 = 128_000_000;
const VCO_WIDE_MAX: u32 = 560_000_000;
/// Voltage Scale
///
/// Represents the voltage range feeding the CPU core. The maximum core
/// clock frequency depends on this value.
#[derive(Copy, Clone, PartialEq)]
pub enum VoltageScale {
/// VOS 0 range VCORE 1.30V - 1.40V
Scale0,
/// VOS 1 range VCORE 1.15V - 1.26V
Scale1,
/// VOS 2 range VCORE 1.05V - 1.15V
Scale2,
/// VOS 3 range VCORE 0.95V - 1.05V
Scale3,
}
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1, HSEEXT=0)
BypassAnalog,
/// external digital clock (full swing) (HSEBYP=1, HSEEXT=1)
BypassDigital,
}
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
pub enum Hsi {
/// 64Mhz
Mhz64,
/// 32Mhz (divided by 2)
Mhz32,
/// 16Mhz (divided by 4)
Mhz16,
/// 8Mhz (divided by 8)
Mhz8,
}
pub enum Sysclk {
/// HSI selected as sysclk
HSI,
/// HSE selected as sysclk
HSE,
/// CSI selected as sysclk
CSI,
/// PLL1_P selected as sysclk
Pll1P,
}
pub enum PllSource {
Hsi,
Csi,
Hse,
}
pub struct Pll {
/// Source clock selection.
pub source: PllSource,
/// PLL pre-divider (DIVM). Must be between 1 and 63.
pub prediv: u8,
/// PLL multiplication factor. Must be between 4 and 512.
pub mul: u16,
/// PLL P division factor. If None, PLL P output is disabled. Must be between 1 and 128.
/// On PLL1, it must be even (in particular, it cannot be 1.)
pub divp: Option<u16>,
/// PLL Q division factor. If None, PLL Q output is disabled. Must be between 1 and 128.
pub divq: Option<u16>,
/// PLL R division factor. If None, PLL R output is disabled. Must be between 1 and 128.
pub divr: Option<u16>,
}
/// AHB prescaler
#[derive(Clone, Copy, PartialEq)]
pub enum AHBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
Div64,
Div128,
Div256,
Div512,
}
impl AHBPrescaler {
fn div(&self, clk: Hertz) -> Hertz {
match self {
Self::NotDivided => clk,
Self::Div2 => clk / 2u32,
Self::Div4 => clk / 4u32,
Self::Div8 => clk / 8u32,
Self::Div16 => clk / 16u32,
Self::Div64 => clk / 64u32,
Self::Div128 => clk / 128u32,
Self::Div256 => clk / 256u32,
Self::Div512 => clk / 512u32,
}
}
}
/// APB prescaler
#[derive(Clone, Copy)]
pub enum APBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
}
impl APBPrescaler {
fn div(&self, clk: Hertz) -> Hertz {
match self {
Self::NotDivided => clk,
Self::Div2 => clk / 2u32,
Self::Div4 => clk / 4u32,
Self::Div8 => clk / 8u32,
Self::Div16 => clk / 16u32,
}
}
fn div_tim(&self, clk: Hertz, tim: TimerPrescaler) -> Hertz {
match (tim, self) {
// The timers kernel clock is equal to rcc_hclk1 if PPRE1 or PPRE2 corresponds to a
// division by 1 or 2, else it is equal to 2 x Frcc_pclk1 or 2 x Frcc_pclk2
(TimerPrescaler::DefaultX2, Self::NotDivided) => clk,
(TimerPrescaler::DefaultX2, Self::Div2) => clk,
(TimerPrescaler::DefaultX2, Self::Div4) => clk / 2u32,
(TimerPrescaler::DefaultX2, Self::Div8) => clk / 4u32,
(TimerPrescaler::DefaultX2, Self::Div16) => clk / 8u32,
// The timers kernel clock is equal to 2 x Frcc_pclk1 or 2 x Frcc_pclk2 if PPRE1 or PPRE2
// corresponds to a division by 1, 2 or 4, else it is equal to 4 x Frcc_pclk1 or 4 x Frcc_pclk2
// this makes NO SENSE and is different than in the H7. Mistake in the RM??
(TimerPrescaler::DefaultX4, Self::NotDivided) => clk * 2u32,
(TimerPrescaler::DefaultX4, Self::Div2) => clk,
(TimerPrescaler::DefaultX4, Self::Div4) => clk / 2u32,
(TimerPrescaler::DefaultX4, Self::Div8) => clk / 2u32,
(TimerPrescaler::DefaultX4, Self::Div16) => clk / 4u32,
}
}
}
/// APB prescaler
#[derive(Clone, Copy)]
pub enum TimerPrescaler {
DefaultX2,
DefaultX4,
}
impl From<TimerPrescaler> for Timpre {
fn from(value: TimerPrescaler) -> Self {
match value {
TimerPrescaler::DefaultX2 => Timpre::DEFAULTX2,
TimerPrescaler::DefaultX4 => Timpre::DEFAULTX4,
}
}
}
impl From<APBPrescaler> for Ppre {
fn from(val: APBPrescaler) -> Ppre {
match val {
APBPrescaler::NotDivided => Ppre::DIV1,
APBPrescaler::Div2 => Ppre::DIV2,
APBPrescaler::Div4 => Ppre::DIV4,
APBPrescaler::Div8 => Ppre::DIV8,
APBPrescaler::Div16 => Ppre::DIV16,
}
}
}
impl From<AHBPrescaler> for Hpre {
fn from(val: AHBPrescaler) -> Hpre {
match val {
AHBPrescaler::NotDivided => Hpre::DIV1,
AHBPrescaler::Div2 => Hpre::DIV2,
AHBPrescaler::Div4 => Hpre::DIV4,
AHBPrescaler::Div8 => Hpre::DIV8,
AHBPrescaler::Div16 => Hpre::DIV16,
AHBPrescaler::Div64 => Hpre::DIV64,
AHBPrescaler::Div128 => Hpre::DIV128,
AHBPrescaler::Div256 => Hpre::DIV256,
AHBPrescaler::Div512 => Hpre::DIV512,
}
}
}
/// Configuration of the core clocks
#[non_exhaustive]
pub struct Config {
pub hsi: Option<Hsi>,
pub hse: Option<Hse>,
pub csi: bool,
pub hsi48: bool,
pub sys: Sysclk,
pub pll1: Option<Pll>,
pub pll2: Option<Pll>,
#[cfg(rcc_h5)]
pub pll3: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub apb3_pre: APBPrescaler,
pub timer_prescaler: TimerPrescaler,
pub voltage_scale: VoltageScale,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: Some(Hsi::Mhz64),
hse: None,
csi: false,
hsi48: false,
sys: Sysclk::HSI,
pll1: None,
pll2: None,
#[cfg(rcc_h5)]
pll3: None,
ahb_pre: AHBPrescaler::NotDivided,
apb1_pre: APBPrescaler::NotDivided,
apb2_pre: APBPrescaler::NotDivided,
apb3_pre: APBPrescaler::NotDivided,
timer_prescaler: TimerPrescaler::DefaultX2,
voltage_scale: VoltageScale::Scale3,
}
}
}
pub(crate) mod sealed {
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: u8);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
macro_rules! impl_peri {
($peri:ident, $source:ident, $set_source:ident, $set_prescaler:ident) => {
impl sealed::McoInstance for peripherals::$peri {
type Source = $source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: u8) {
RCC.cfgr().modify(|w| {
w.$set_source(source);
w.$set_prescaler(prescaler);
});
}
}
impl McoInstance for peripherals::$peri {}
};
}
impl_peri!(MCO1, Mco1, set_mco1, set_mco1pre);
impl_peri!(MCO2, Mco2, set_mco2, set_mco2pre);
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
_pin: impl Peripheral<P = impl McoPin<T>> + 'd,
_source: T::Source,
) -> Self {
todo!();
}
}
pub(crate) unsafe fn init(config: Config) {
let (vos, max_clk) = match config.voltage_scale {
VoltageScale::Scale0 => (Vos::SCALE0, Hertz(250_000_000)),
VoltageScale::Scale1 => (Vos::SCALE1, Hertz(200_000_000)),
VoltageScale::Scale2 => (Vos::SCALE2, Hertz(150_000_000)),
VoltageScale::Scale3 => (Vos::SCALE3, Hertz(100_000_000)),
};
// Configure voltage scale.
PWR.voscr().modify(|w| w.set_vos(vos));
while !PWR.vossr().read().vosrdy() {}
// Configure HSI
let hsi = match config.hsi {
None => {
RCC.cr().modify(|w| w.set_hsion(false));
None
}
Some(hsi) => {
let (freq, hsidiv) = match hsi {
Hsi::Mhz64 => (HSI_FREQ / 1u32, Hsidiv::DIV1),
Hsi::Mhz32 => (HSI_FREQ / 2u32, Hsidiv::DIV2),
Hsi::Mhz16 => (HSI_FREQ / 4u32, Hsidiv::DIV4),
Hsi::Mhz8 => (HSI_FREQ / 8u32, Hsidiv::DIV8),
};
RCC.cr().modify(|w| {
w.set_hsidiv(hsidiv);
w.set_hsion(true);
});
while !RCC.cr().read().hsirdy() {}
Some(freq)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
let (byp, ext) = match hse.mode {
HseMode::Oscillator => (false, Hseext::ANALOG),
HseMode::BypassAnalog => (true, Hseext::ANALOG),
HseMode::BypassDigital => (true, Hseext::DIGITAL),
};
RCC.cr().modify(|w| {
w.set_hsebyp(byp);
w.set_hseext(ext);
});
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Configure HSI48.
RCC.cr().modify(|w| w.set_hsi48on(config.hsi48));
let _hsi48 = match config.hsi48 {
false => None,
true => {
while !RCC.cr().read().hsi48rdy() {}
Some(CSI_FREQ)
}
};
// Configure CSI.
RCC.cr().modify(|w| w.set_csion(config.csi));
let csi = match config.csi {
false => None,
true => {
while !RCC.cr().read().csirdy() {}
Some(CSI_FREQ)
}
};
// Configure PLLs.
let pll_input = PllInput { csi, hse, hsi };
let pll1 = init_pll(0, config.pll1, &pll_input);
let _pll2 = init_pll(1, config.pll2, &pll_input);
#[cfg(rcc_h5)]
let _pll3 = init_pll(2, config.pll3, &pll_input);
// Configure sysclk
let (sys, sw) = match config.sys {
Sysclk::HSI => (unwrap!(hsi), Sw::HSI),
Sysclk::HSE => (unwrap!(hse), Sw::HSE),
Sysclk::CSI => (unwrap!(csi), Sw::CSI),
Sysclk::Pll1P => (unwrap!(pll1.p), Sw::PLL1),
};
assert!(sys <= max_clk);
let hclk = config.ahb_pre.div(sys);
let apb1 = config.apb1_pre.div(hclk);
let apb1_tim = config.apb1_pre.div_tim(hclk, config.timer_prescaler);
let apb2 = config.apb2_pre.div(hclk);
let apb2_tim = config.apb2_pre.div_tim(hclk, config.timer_prescaler);
let apb3 = config.apb3_pre.div(hclk);
flash_setup(hclk, config.voltage_scale);
// Set hpre
let hpre = config.ahb_pre.into();
RCC.cfgr2().modify(|w| w.set_hpre(hpre));
while RCC.cfgr2().read().hpre() != hpre {}
// set ppre
RCC.cfgr2().modify(|w| {
w.set_ppre1(config.apb1_pre.into());
w.set_ppre2(config.apb2_pre.into());
w.set_ppre3(config.apb3_pre.into());
});
RCC.cfgr().modify(|w| w.set_timpre(config.timer_prescaler.into()));
RCC.cfgr().modify(|w| w.set_sw(sw));
while RCC.cfgr().read().sws() != sw {}
set_freqs(Clocks {
sys,
ahb1: hclk,
ahb2: hclk,
ahb3: hclk,
ahb4: hclk,
apb1,
apb2,
apb3,
apb1_tim,
apb2_tim,
adc: None,
});
}
struct PllInput {
hsi: Option<Hertz>,
hse: Option<Hertz>,
csi: Option<Hertz>,
}
struct PllOutput {
p: Option<Hertz>,
#[allow(dead_code)]
q: Option<Hertz>,
#[allow(dead_code)]
r: Option<Hertz>,
}
unsafe fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
let Some(config) = config else {
// Stop PLL
RCC.cr().modify(|w| w.set_pllon(num, false));
while RCC.cr().read().pllrdy(num) {}
// "To save power when PLL1 is not used, the value of PLL1M must be set to 0.""
RCC.pllcfgr(num).write(|w| {
w.set_divm(0);
});
return PllOutput{
p: None,
q: None,
r: None,
}
};
assert!(1 <= config.prediv && config.prediv <= 63);
assert!(4 <= config.mul && config.mul <= 512);
let (in_clk, src) = match config.source {
PllSource::Hsi => (unwrap!(input.hsi), Pllsrc::HSI),
PllSource::Hse => (unwrap!(input.hse), Pllsrc::HSE),
PllSource::Csi => (unwrap!(input.csi), Pllsrc::CSI),
};
let ref_clk = in_clk / config.prediv as u32;
let ref_range = match ref_clk.0 {
..=1_999_999 => Pllrge::RANGE1,
..=3_999_999 => Pllrge::RANGE2,
..=7_999_999 => Pllrge::RANGE4,
..=16_000_000 => Pllrge::RANGE8,
x => panic!("pll ref_clk out of range: {} mhz", x),
};
// The smaller range (150 to 420 MHz) must
// be chosen when the reference clock frequency is lower than 2 MHz.
let wide_allowed = ref_range != Pllrge::RANGE1;
let vco_clk = ref_clk * config.mul;
let vco_range = match vco_clk.0 {
VCO_MIN..=VCO_MAX => Pllvcosel::MEDIUMVCO,
VCO_WIDE_MIN..=VCO_WIDE_MAX if wide_allowed => Pllvcosel::WIDEVCO,
x => panic!("pll vco_clk out of range: {} mhz", x),
};
let p = config.divp.map(|div| {
assert!(1 <= div && div <= 128);
if num == 0 {
// on PLL1, DIVP must be even.
assert!(div % 2 == 0);
}
vco_clk / div
});
let q = config.divq.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
let r = config.divr.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
RCC.pllcfgr(num).write(|w| {
w.set_pllsrc(src);
w.set_divm(config.prediv);
w.set_pllvcosel(vco_range);
w.set_pllrge(ref_range);
w.set_pllfracen(false);
w.set_pllpen(p.is_some());
w.set_pllqen(q.is_some());
w.set_pllren(r.is_some());
});
RCC.plldivr(num).write(|w| {
w.set_plln(config.mul - 1);
w.set_pllp((config.divp.unwrap_or(1) - 1) as u8);
w.set_pllq((config.divq.unwrap_or(1) - 1) as u8);
w.set_pllr((config.divr.unwrap_or(1) - 1) as u8);
});
RCC.cr().modify(|w| w.set_pllon(num, true));
while !RCC.cr().read().pllrdy(num) {}
PllOutput { p, q, r }
}
fn flash_setup(clk: Hertz, vos: VoltageScale) {
// RM0481 Rev 1, table 37
// LATENCY WRHIGHFREQ VOS3 VOS2 VOS1 VOS0
// 0 0 0 to 20 MHz 0 to 30 MHz 0 to 34 MHz 0 to 42 MHz
// 1 0 20 to 40 MHz 30 to 60 MHz 34 to 68 MHz 42 to 84 MHz
// 2 1 40 to 60 MHz 60 to 90 MHz 68 to 102 MHz 84 to 126 MHz
// 3 1 60 to 80 MHz 90 to 120 MHz 102 to 136 MHz 126 to 168 MHz
// 4 2 80 to 100 MHz 120 to 150 MHz 136 to 170 MHz 168 to 210 MHz
// 5 2 170 to 200 MHz 210 to 250 MHz
// See RM0433 Rev 7 Table 17. FLASH recommended number of wait
// states and programming delay
let (latency, wrhighfreq) = match (vos, clk.0) {
(VoltageScale::Scale0, ..=42_000_000) => (0, 0),
(VoltageScale::Scale0, ..=84_000_000) => (1, 0),
(VoltageScale::Scale0, ..=126_000_000) => (2, 1),
(VoltageScale::Scale0, ..=168_000_000) => (3, 1),
(VoltageScale::Scale0, ..=210_000_000) => (4, 2),
(VoltageScale::Scale0, ..=250_000_000) => (5, 2),
(VoltageScale::Scale1, ..=34_000_000) => (0, 0),
(VoltageScale::Scale1, ..=68_000_000) => (1, 0),
(VoltageScale::Scale1, ..=102_000_000) => (2, 1),
(VoltageScale::Scale1, ..=136_000_000) => (3, 1),
(VoltageScale::Scale1, ..=170_000_000) => (4, 2),
(VoltageScale::Scale1, ..=200_000_000) => (5, 2),
(VoltageScale::Scale2, ..=30_000_000) => (0, 0),
(VoltageScale::Scale2, ..=60_000_000) => (1, 0),
(VoltageScale::Scale2, ..=90_000_000) => (2, 1),
(VoltageScale::Scale2, ..=120_000_000) => (3, 1),
(VoltageScale::Scale2, ..=150_000_000) => (4, 2),
(VoltageScale::Scale3, ..=20_000_000) => (0, 0),
(VoltageScale::Scale3, ..=40_000_000) => (1, 0),
(VoltageScale::Scale3, ..=60_000_000) => (2, 1),
(VoltageScale::Scale3, ..=80_000_000) => (3, 1),
(VoltageScale::Scale3, ..=100_000_000) => (4, 2),
_ => unreachable!(),
};
defmt::debug!("flash: latency={} wrhighfreq={}", latency, wrhighfreq);
// NOTE(unsafe) Atomic write
unsafe {
FLASH.acr().write(|w| {
w.set_wrhighfreq(wrhighfreq);
w.set_latency(latency);
});
while FLASH.acr().read().latency() != latency {}
}
}