embassy/embassy-rp/src/clocks.rs

236 lines
7.0 KiB
Rust
Raw Normal View History

2021-06-25 03:38:03 +02:00
use pac::clocks::vals::*;
use crate::{pac, reset};
const XOSC_MHZ: u32 = 12;
2021-07-12 02:45:42 +02:00
/// safety: must be called exactly once at bootup
pub(crate) unsafe fn init() {
2021-06-25 03:38:03 +02:00
// Reset everything except:
// - QSPI (we're using it to run this code!)
// - PLLs (it may be suicide if that's what's clocking us)
// - USB, SYSCFG (breaks usb-to-swd on core1)
2021-06-25 03:38:03 +02:00
let mut peris = reset::ALL_PERIPHERALS;
peris.set_io_qspi(false);
peris.set_pads_qspi(false);
peris.set_pll_sys(false);
peris.set_pll_usb(false);
peris.set_usbctrl(false);
peris.set_syscfg(false);
2021-06-25 03:38:03 +02:00
reset::reset(peris);
// Remove reset from peripherals which are clocked only by clk_sys and
// clk_ref. Other peripherals stay in reset until we've configured clocks.
2021-06-25 03:38:03 +02:00
let mut peris = reset::ALL_PERIPHERALS;
peris.set_adc(false);
peris.set_rtc(false);
peris.set_spi0(false);
peris.set_spi1(false);
peris.set_uart0(false);
peris.set_uart1(false);
peris.set_usbctrl(false);
reset::unreset_wait(peris);
// Start tick in watchdog
2021-06-25 03:38:03 +02:00
// xosc 12 mhz
pac::WATCHDOG.tick().write(|w| {
w.set_cycles(XOSC_MHZ as u16);
w.set_enable(true);
});
// Disable resus that may be enabled from previous software
2021-06-25 03:38:03 +02:00
let c = pac::CLOCKS;
c.clk_sys_resus_ctrl()
.write_value(pac::clocks::regs::ClkSysResusCtrl(0));
// start XOSC
start_xosc();
2021-06-25 03:38:03 +02:00
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
2022-06-12 22:15:44 +02:00
c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
2021-06-25 03:38:03 +02:00
while c.clk_sys_selected().read() != 1 {}
2022-06-12 22:15:44 +02:00
c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH));
2021-06-25 03:38:03 +02:00
while c.clk_ref_selected().read() != 1 {}
// Configure PLLs
// REF FBDIV VCO POSTDIV
// PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHZ / 6 / 2 = 125MHz
// PLL USB: 12 / 1 = 12MHz * 40 = 480 MHz / 5 / 2 = 48MHz
configure_pll(pac::PLL_SYS, 1, 1500_000_000, 6, 2);
configure_pll(pac::PLL_USB, 1, 480_000_000, 5, 2);
// CLK_REF = XOSC (12MHz) / 1 = 12MHz2Mhz
c.clk_ref_ctrl().write(|w| {
w.set_src(ClkRefCtrlSrc::XOSC_CLKSRC);
});
while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::XOSC_CLKSRC.0 {}
c.clk_ref_div().write(|w| w.set_int(1));
// CLK SYS = PLL SYS (125MHz) / 1 = 125MHz
c.clk_sys_ctrl().write(|w| {
w.set_src(ClkSysCtrlSrc::CLK_REF);
});
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {}
c.clk_sys_div().write(|w| w.set_int(1));
c.clk_sys_ctrl().write(|w| {
w.set_auxsrc(ClkSysCtrlAuxsrc::CLKSRC_PLL_SYS);
w.set_src(ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX);
});
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX.0 {}
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
c.clk_usb_div().write(|w| w.set_int(1));
c.clk_usb_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB);
});
// CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
c.clk_adc_div().write(|w| w.set_int(1));
c.clk_adc_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB);
});
// CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
c.clk_rtc_ctrl().modify(|w| {
w.set_enable(false);
});
c.clk_rtc_div().write(|w| w.set_int(1024));
c.clk_rtc_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB);
});
// CLK PERI = clk_sys. Used as reference clock for Peripherals. No dividers so just select and enable
// Normally choose clk_sys or clk_usb
c.clk_peri_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(ClkPeriCtrlAuxsrc::CLK_SYS);
});
// Peripheral clocks should now all be running
let peris = reset::ALL_PERIPHERALS;
reset::unreset_wait(peris);
2021-06-25 03:38:03 +02:00
}
2021-07-04 04:42:39 +02:00
pub(crate) fn _clk_sys_freq() -> u32 {
2021-06-25 03:38:03 +02:00
125_000_000
}
pub(crate) fn clk_peri_freq() -> u32 {
125_000_000
}
2022-09-16 06:45:27 +02:00
pub(crate) fn clk_rtc_freq() -> u32 {
2021-06-25 03:38:03 +02:00
46875
}
unsafe fn start_xosc() {
const XOSC_MHZ: u32 = 12;
pac::XOSC
.ctrl()
.write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ));
let startup_delay = (((XOSC_MHZ * 1_000_000) / 1000) + 128) / 256;
2022-06-12 22:15:44 +02:00
pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16));
pac::XOSC.ctrl().write(|w| {
w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ);
w.set_enable(pac::xosc::vals::Enable::ENABLE);
});
while !pac::XOSC.status().read().stable() {}
}
2022-06-12 22:15:44 +02:00
unsafe fn configure_pll(p: pac::pll::Pll, refdiv: u32, vco_freq: u32, post_div1: u8, post_div2: u8) {
2021-06-25 06:23:20 +02:00
let ref_freq = XOSC_MHZ * 1_000_000 / refdiv;
2021-06-25 03:38:03 +02:00
2021-06-25 06:23:20 +02:00
let fbdiv = vco_freq / ref_freq;
assert!(fbdiv >= 16 && fbdiv <= 320);
assert!(post_div1 >= 1 && post_div1 <= 7);
assert!(post_div2 >= 1 && post_div2 <= 7);
2021-06-25 03:38:03 +02:00
assert!(post_div2 <= post_div1);
2021-06-25 06:23:20 +02:00
assert!(ref_freq <= (vco_freq / 16));
2021-06-25 03:38:03 +02:00
// do not disrupt PLL that is already correctly configured and operating
let cs = p.cs().read();
let prim = p.prim().read();
if cs.lock()
&& cs.refdiv() == refdiv as _
&& p.fbdiv_int().read().fbdiv_int() == fbdiv as _
&& prim.postdiv1() == post_div1
&& prim.postdiv2() == post_div2
{
return;
}
// Reset it
let mut peris = reset::Peripherals(0);
match p {
pac::PLL_SYS => peris.set_pll_sys(true),
pac::PLL_USB => peris.set_pll_usb(true),
_ => unreachable!(),
}
reset::reset(peris);
reset::unreset_wait(peris);
// Load VCO-related dividers before starting VCO
2021-06-25 06:23:20 +02:00
p.cs().write(|w| w.set_refdiv(refdiv as _));
2021-06-25 03:38:03 +02:00
p.fbdiv_int().write(|w| w.set_fbdiv_int(fbdiv as _));
// Turn on PLL
2021-06-25 03:38:03 +02:00
p.pwr().modify(|w| {
w.set_pd(false);
w.set_vcopd(false);
w.set_postdivpd(true);
2021-06-25 03:38:03 +02:00
});
// Wait for PLL to lock
2021-06-25 03:38:03 +02:00
while !p.cs().read().lock() {}
// Wait for PLL to lock
2021-06-25 03:38:03 +02:00
p.prim().write(|w| {
w.set_postdiv1(post_div1);
w.set_postdiv2(post_div2);
});
// Turn on post divider
2021-06-25 03:38:03 +02:00
p.pwr().modify(|w| w.set_postdivpd(false));
}
/// Random number generator based on the ROSC RANDOMBIT register.
///
/// This will not produce random values if the ROSC is stopped or run at some
/// harmonic of the bus frequency. With default clock settings these are not
/// issues.
pub struct RoscRng;
impl RoscRng {
fn next_u8() -> u8 {
let random_reg = pac::ROSC.randombit();
let mut acc = 0;
for _ in 0..u8::BITS {
acc <<= 1;
acc |= unsafe { random_reg.read().randombit() as u8 };
}
acc
}
}
impl rand_core::RngCore for RoscRng {
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
Ok(self.fill_bytes(dest))
}
fn next_u32(&mut self) -> u32 {
rand_core::impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.fill_with(Self::next_u8)
}
}