embassy/embassy-stm32/src/rng.rs

237 lines
7.6 KiB
Rust
Raw Normal View History

#![macro_use]
use core::future::poll_fn;
2023-07-31 01:41:12 +02:00
use core::marker::PhantomData;
2021-05-10 01:19:07 +02:00
use core::task::Poll;
2022-06-12 22:15:44 +02:00
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
2021-05-10 01:19:07 +02:00
use rand_core::{CryptoRng, RngCore};
2023-07-31 01:41:12 +02:00
use crate::interrupt::typelevel::Interrupt;
2023-07-01 03:32:01 +02:00
use crate::{interrupt, pac, peripherals, Peripheral};
2023-07-31 01:41:12 +02:00
static RNG_WAKER: AtomicWaker = AtomicWaker::new();
2021-04-26 20:11:46 +02:00
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
SeedError,
ClockError,
}
2023-07-31 01:41:12 +02:00
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let bits = T::regs().sr().read();
if bits.drdy() || bits.seis() || bits.ceis() {
T::regs().cr().modify(|reg| reg.set_ie(false));
RNG_WAKER.wake();
}
}
}
2022-02-10 16:06:42 +01:00
pub struct Rng<'d, T: Instance> {
_inner: PeripheralRef<'d, T>,
2021-04-26 20:11:46 +02:00
}
2022-02-10 16:06:42 +01:00
impl<'d, T: Instance> Rng<'d, T> {
2023-07-31 01:41:12 +02:00
pub fn new(
inner: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
2021-06-09 13:54:53 +02:00
T::enable();
T::reset();
into_ref!(inner);
2022-07-23 01:29:35 +02:00
let mut random = Self { _inner: inner };
random.reset();
2023-07-31 01:41:12 +02:00
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
random
}
2023-07-01 03:15:39 +02:00
#[cfg(rng_v1)]
pub fn reset(&mut self) {
2023-07-01 03:32:01 +02:00
T::regs().cr().write(|reg| {
reg.set_rngen(false);
2023-06-19 03:07:26 +02:00
});
T::regs().sr().modify(|reg| {
reg.set_seis(false);
reg.set_ceis(false);
});
2023-07-01 03:32:01 +02:00
T::regs().cr().modify(|reg| {
reg.set_rngen(true);
});
// Reference manual says to discard the first.
let _ = self.next_u32();
2021-04-26 20:11:46 +02:00
}
2023-07-01 03:15:39 +02:00
#[cfg(not(rng_v1))]
pub fn reset(&mut self) {
2023-07-01 03:32:01 +02:00
T::regs().cr().write(|reg| {
2023-07-01 03:15:39 +02:00
reg.set_condrst(true);
reg.set_nistc(pac::rng::vals::Nistc::CUSTOM);
2023-07-01 03:15:39 +02:00
// set RNG config "A" according to reference manual
// this has to be written within the same write access as setting the CONDRST bit
reg.set_rng_config1(pac::rng::vals::RngConfig1::CONFIGA);
reg.set_clkdiv(pac::rng::vals::Clkdiv::NODIV);
2023-07-01 03:15:39 +02:00
reg.set_rng_config2(pac::rng::vals::RngConfig2::CONFIGA_B);
reg.set_rng_config3(pac::rng::vals::RngConfig3::CONFIGA);
reg.set_ced(true);
reg.set_ie(false);
reg.set_rngen(true);
});
T::regs().cr().write(|reg| {
reg.set_ced(false);
2023-07-01 03:15:39 +02:00
});
// wait for CONDRST to be set
while !T::regs().cr().read().condrst() {}
// magic number must be written immediately before every read or write access to HTCR
T::regs().htcr().write(|w| w.set_htcfg(pac::rng::vals::Htcfg::MAGIC));
// write recommended value according to reference manual
// note: HTCR can only be written during conditioning
T::regs()
.htcr()
.write(|w| w.set_htcfg(pac::rng::vals::Htcfg::RECOMMENDED));
// finish conditioning
T::regs().cr().modify(|reg| {
reg.set_rngen(true);
reg.set_condrst(false);
});
// wait for CONDRST to be reset
while T::regs().cr().read().condrst() {}
}
2023-07-01 03:32:01 +02:00
pub fn recover_seed_error(&mut self) -> () {
self.reset();
// reset should also clear the SEIS flag
if T::regs().sr().read().seis() {
warn!("recovering from seed error failed");
return;
}
// wait for SECS to be cleared by RNG
while T::regs().sr().read().secs() {}
}
2023-07-01 03:32:01 +02:00
pub async fn async_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
for chunk in dest.chunks_mut(4) {
let mut bits = T::regs().sr().read();
if !bits.seis() && !bits.ceis() && !bits.drdy() {
// wait for interrupt
poll_fn(|cx| {
// quick check to avoid registration if already done.
let bits = T::regs().sr().read();
if bits.drdy() || bits.seis() || bits.ceis() {
return Poll::Ready(());
}
RNG_WAKER.register(cx.waker());
T::regs().cr().modify(|reg| reg.set_ie(true));
// Need to check condition **after** `register` to avoid a race
// condition that would result in lost notifications.
let bits = T::regs().sr().read();
if bits.drdy() || bits.seis() || bits.ceis() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Re-read the status register after wait.
bits = T::regs().sr().read()
}
2023-07-01 03:32:01 +02:00
if bits.seis() {
// in case of noise-source or seed error we try to recover here
// but we must not use the data in DR and we return an error
// to leave retry-logic to the application
self.recover_seed_error();
return Err(Error::SeedError);
} else if bits.ceis() {
// clock error detected, DR could still be used but keep it safe,
// clear the error and abort
T::regs().sr().modify(|sr| sr.set_ceis(false));
return Err(Error::ClockError);
} else if bits.drdy() {
// DR can be read up to four times until the output buffer is empty
// DRDY is cleared automatically when that happens
let random_word = T::regs().dr().read();
// reference manual: always check if DR is zero
if random_word == 0 {
return Err(Error::SeedError);
}
// write bytes to chunk
for (dest, src) in chunk.iter_mut().zip(random_word.to_ne_bytes().iter()) {
2023-07-01 03:32:01 +02:00
*dest = *src
}
}
}
Ok(())
}
2021-04-26 20:11:46 +02:00
}
2022-02-10 16:06:42 +01:00
impl<'d, T: Instance> RngCore for Rng<'d, T> {
fn next_u32(&mut self) -> u32 {
loop {
2023-06-19 03:07:26 +02:00
let sr = T::regs().sr().read();
if sr.seis() | sr.ceis() {
self.reset();
} else if sr.drdy() {
2023-06-19 03:07:26 +02:00
return T::regs().dr().read();
}
}
}
fn next_u64(&mut self) -> u64 {
let mut rand = self.next_u32() as u64;
rand |= (self.next_u32() as u64) << 32;
rand
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
for chunk in dest.chunks_mut(4) {
let rand = self.next_u32();
for (slot, num) in chunk.iter_mut().zip(rand.to_ne_bytes().iter()) {
*slot = *num
}
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
2021-05-10 01:19:07 +02:00
self.fill_bytes(dest);
Ok(())
}
}
2022-02-10 16:06:42 +01:00
impl<'d, T: Instance> CryptoRng for Rng<'d, T> {}
2021-04-26 20:11:46 +02:00
pub(crate) mod sealed {
use super::*;
pub trait Instance {
fn regs() -> pac::rng::Rng;
2021-04-26 20:11:46 +02:00
}
}
2023-07-31 01:41:12 +02:00
pub trait Instance: sealed::Instance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
type Interrupt: interrupt::typelevel::Interrupt;
}
2021-04-26 20:11:46 +02:00
2023-07-31 01:41:12 +02:00
foreach_interrupt!(
($inst:ident, rng, RNG, GLOBAL, $irq:ident) => {
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
}
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::rng::Rng {
2023-07-31 01:41:12 +02:00
crate::pac::$inst
}
}
};
);