embassy/embassy-boot/boot/src/lib.rs

962 lines
33 KiB
Rust
Raw Normal View History

#![feature(type_alias_impl_trait)]
#![feature(generic_associated_types)]
2022-04-26 18:33:09 +02:00
#![feature(generic_const_exprs)]
#![allow(incomplete_features)]
#![no_std]
///! embassy-boot is a bootloader and firmware updater for embedded devices with flash
///! storage implemented using embedded-storage
///!
///! The bootloader works in conjunction with the firmware application, and only has the
///! ability to manage two flash banks with an active and a updatable part. It implements
///! a swap algorithm that is power-failure safe, and allows reverting to the previous
///! version of the firmware, should the application crash and fail to mark itself as booted.
///!
///! This library is intended to be used by platform-specific bootloaders, such as embassy-boot-nrf,
///! which defines the limits and flash type for that particular platform.
///!
mod fmt;
use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage_async::nor_flash::AsyncNorFlash;
const BOOT_MAGIC: u8 = 0xD0;
const SWAP_MAGIC: u8 = 0xF0;
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Partition {
pub from: usize,
pub to: usize,
}
impl Partition {
pub const fn new(from: usize, to: usize) -> Self {
Self { from, to }
}
pub const fn len(&self) -> usize {
self.to - self.from
}
}
#[derive(PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum State {
Boot,
Swap,
}
#[derive(PartialEq, Debug)]
pub enum BootError {
Flash(NorFlashErrorKind),
BadMagic,
}
impl<E> From<E> for BootError
where
E: NorFlashError,
{
fn from(error: E) -> Self {
BootError::Flash(error.kind())
}
}
pub trait FlashConfig {
const BLOCK_SIZE: usize;
const ERASE_VALUE: u8;
type FLASH: NorFlash + ReadNorFlash;
fn flash(&mut self) -> &mut Self::FLASH;
}
/// Trait defining the flash handles used for active and DFU partition
pub trait FlashProvider {
type STATE: FlashConfig;
type ACTIVE: FlashConfig;
type DFU: FlashConfig;
/// Return flash instance used to write/read to/from active partition.
fn active(&mut self) -> &mut Self::ACTIVE;
/// Return flash instance used to write/read to/from dfu partition.
fn dfu(&mut self) -> &mut Self::DFU;
/// Return flash instance used to write/read to/from bootloader state.
fn state(&mut self) -> &mut Self::STATE;
}
/// BootLoader works with any flash implementing embedded_storage and can also work with
/// different page sizes and flash write sizes.
///
/// The PAGE_SIZE const parameter must be a multiple of the ACTIVE and DFU page sizes.
pub struct BootLoader<const PAGE_SIZE: usize> {
// Page with current state of bootloader. The state partition has the following format:
// | Range | Description |
// | 0 - WRITE_SIZE | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | WRITE_SIZE - N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
// Location of the partition which will be swapped in when requested
dfu: Partition,
}
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
assert_eq!(active.len() % PAGE_SIZE, 0);
assert_eq!(dfu.len() % PAGE_SIZE, 0);
// DFU partition must have an extra page
assert!(dfu.len() - active.len() >= PAGE_SIZE);
Self { active, dfu, state }
}
pub fn boot_address(&self) -> usize {
self.active.from
}
/// Perform necessary boot preparations like swapping images.
///
/// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
/// algorithm to work correctly.
///
/// SWAPPING
///
/// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
/// The swap index contains the copy progress, as to allow continuation of the copy process on
/// power failure. The index counter is represented within 1 or more pages (depending on total
/// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE)
/// contains a zero value. This ensures that index updates can be performed atomically and
/// avoid a situation where the wrong index value is set (page write size is "atomic").
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 0 | 1 | 2 | 3 | - |
/// | DFU | 0 | 3 | 2 | 1 | X |
/// +-----------+-------+--------+--------+--------+--------+
///
/// The algorithm starts by copying 'backwards', and after the first step, the layout is
/// as follows:
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 1 | 1 | 2 | 1 | - |
/// | DFU | 1 | 3 | 2 | 1 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The next iteration performs the same steps
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 2 | 1 | 2 | 1 | - |
/// | DFU | 2 | 3 | 2 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// And again until we're done
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 3 | 3 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// REVERTING
///
/// The reverting algorithm uses the swap index to discover that images were swapped, but that
/// the application failed to mark the boot successful. In this case, the revert algorithm will
/// run.
///
/// The revert index is located separately from the swap index, to ensure that revert can continue
/// on power failure.
///
/// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
//*/
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 2 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 3 | - |
/// | DFU | 3 | 3 | 2 | 1 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
pub fn prepare_boot<P: FlashProvider>(&mut self, p: &mut P) -> Result<State, BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
[(); <<P as FlashProvider>::ACTIVE as FlashConfig>::FLASH::ERASE_SIZE]:,
{
// Ensure we have enough progress pages to store copy progress
assert!(
self.active.len() / PAGE_SIZE
2022-06-12 22:15:44 +02:00
<= (self.state.len() - <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE)
/ <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE
);
// Copy contents from partition N to active
let state = self.read_state(p.state())?;
match state {
State::Swap => {
//
// Check if we already swapped. If we're in the swap state, this means we should revert
// since the app has failed to mark boot as successful
//
if !self.is_swapped(p.state())? {
trace!("Swapping");
self.swap(p)?;
trace!("Swapping done");
} else {
trace!("Reverting");
self.revert(p)?;
// Overwrite magic and reset progress
let fstate = p.state().flash();
let aligned = Aligned(
2022-06-12 22:15:44 +02:00
[!P::STATE::ERASE_VALUE; <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE],
);
fstate.write(self.state.from as u32, &aligned.0)?;
fstate.erase(self.state.from as u32, self.state.to as u32)?;
2022-06-12 22:15:44 +02:00
let aligned =
Aligned([BOOT_MAGIC; <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]);
fstate.write(self.state.from as u32, &aligned.0)?;
}
}
_ => {}
}
Ok(state)
}
fn is_swapped<P: FlashConfig>(&mut self, p: &mut P) -> Result<bool, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / P::FLASH::ERASE_SIZE;
let progress = self.current_progress(p)?;
Ok(progress >= page_count * 2)
}
fn current_progress<P: FlashConfig>(&mut self, p: &mut P) -> Result<usize, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let write_size = P::FLASH::WRITE_SIZE;
let max_index = ((self.state.len() - write_size) / write_size) - 1;
let flash = p.flash();
let mut aligned = Aligned([!P::ERASE_VALUE; P::FLASH::WRITE_SIZE]);
for i in 0..max_index {
2022-06-12 22:15:44 +02:00
flash.read((self.state.from + write_size + i * write_size) as u32, &mut aligned.0)?;
if aligned.0 == [P::ERASE_VALUE; P::FLASH::WRITE_SIZE] {
return Ok(i);
}
}
Ok(max_index)
}
fn update_progress<P: FlashConfig>(&mut self, idx: usize, p: &mut P) -> Result<(), BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let flash = p.flash();
let write_size = P::FLASH::WRITE_SIZE;
let w = self.state.from + write_size + idx * write_size;
let aligned = Aligned([!P::ERASE_VALUE; P::FLASH::WRITE_SIZE]);
flash.write(w as u32, &aligned.0)?;
Ok(())
}
fn active_addr(&self, n: usize) -> usize {
self.active.from + n * PAGE_SIZE
}
fn dfu_addr(&self, n: usize) -> usize {
self.dfu.from + n * PAGE_SIZE
}
fn copy_page_once_to_active<P: FlashProvider>(
&mut self,
idx: usize,
from_page: usize,
to_page: usize,
p: &mut P,
) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
if self.current_progress(p.state())? <= idx {
let mut offset = from_page;
for chunk in buf.chunks_mut(P::DFU::BLOCK_SIZE) {
p.dfu().flash().read(offset as u32, chunk)?;
offset += chunk.len();
}
2022-06-12 22:15:44 +02:00
p.active().flash().erase(to_page as u32, (to_page + PAGE_SIZE) as u32)?;
let mut offset = to_page;
for chunk in buf.chunks(P::ACTIVE::BLOCK_SIZE) {
p.active().flash().write(offset as u32, &chunk)?;
offset += chunk.len();
}
self.update_progress(idx, p.state())?;
}
Ok(())
}
fn copy_page_once_to_dfu<P: FlashProvider>(
&mut self,
idx: usize,
from_page: usize,
to_page: usize,
p: &mut P,
) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
if self.current_progress(p.state())? <= idx {
let mut offset = from_page;
for chunk in buf.chunks_mut(P::ACTIVE::BLOCK_SIZE) {
p.active().flash().read(offset as u32, chunk)?;
offset += chunk.len();
}
2022-06-12 22:15:44 +02:00
p.dfu().flash().erase(to_page as u32, (to_page + PAGE_SIZE) as u32)?;
let mut offset = to_page;
for chunk in buf.chunks(P::DFU::BLOCK_SIZE) {
p.dfu().flash().write(offset as u32, chunk)?;
offset += chunk.len();
}
self.update_progress(idx, p.state())?;
}
Ok(())
}
fn swap<P: FlashProvider>(&mut self, p: &mut P) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / PAGE_SIZE;
trace!("Page count: {}", page_count);
for page in 0..page_count {
trace!("COPY PAGE {}", page);
// Copy active page to the 'next' DFU page.
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - page);
//trace!("Copy active {} to dfu {}", active_page, dfu_page);
self.copy_page_once_to_dfu(page * 2, active_page, dfu_page, p)?;
// Copy DFU page to the active page
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - 1 - page);
//trace!("Copy dfy {} to active {}", dfu_page, active_page);
self.copy_page_once_to_active(page * 2 + 1, dfu_page, active_page, p)?;
}
Ok(())
}
fn revert<P: FlashProvider>(&mut self, p: &mut P) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / PAGE_SIZE;
for page in 0..page_count {
// Copy the bad active page to the DFU page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page);
self.copy_page_once_to_dfu(page_count * 2 + page * 2, active_page, dfu_page, p)?;
// Copy the DFU page back to the active page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page + 1);
self.copy_page_once_to_active(page_count * 2 + page * 2 + 1, dfu_page, active_page, p)?;
}
Ok(())
}
fn read_state<P: FlashConfig>(&mut self, p: &mut P) -> Result<State, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let mut magic: [u8; P::FLASH::WRITE_SIZE] = [0; P::FLASH::WRITE_SIZE];
let flash = p.flash();
flash.read(self.state.from as u32, &mut magic)?;
if magic == [SWAP_MAGIC; P::FLASH::WRITE_SIZE] {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
}
/// Convenience provider that uses a single flash for everything
pub struct SingleFlashProvider<'a, F, const ERASE_VALUE: u8 = 0xFF>
where
F: NorFlash + ReadNorFlash,
{
config: SingleFlashConfig<'a, F, ERASE_VALUE>,
}
impl<'a, F, const ERASE_VALUE: u8> SingleFlashProvider<'a, F, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
pub fn new(flash: &'a mut F) -> Self {
Self {
config: SingleFlashConfig { flash },
}
}
}
pub struct SingleFlashConfig<'a, F, const ERASE_VALUE: u8 = 0xFF>
where
F: NorFlash + ReadNorFlash,
{
flash: &'a mut F,
}
impl<'a, F> FlashProvider for SingleFlashProvider<'a, F>
where
F: NorFlash + ReadNorFlash,
{
type STATE = SingleFlashConfig<'a, F>;
type ACTIVE = SingleFlashConfig<'a, F>;
type DFU = SingleFlashConfig<'a, F>;
fn active(&mut self) -> &mut Self::STATE {
&mut self.config
}
fn dfu(&mut self) -> &mut Self::ACTIVE {
&mut self.config
}
fn state(&mut self) -> &mut Self::DFU {
&mut self.config
}
}
impl<'a, F, const ERASE_VALUE: u8> FlashConfig for SingleFlashConfig<'a, F, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
const BLOCK_SIZE: usize = F::ERASE_SIZE;
const ERASE_VALUE: u8 = ERASE_VALUE;
type FLASH = F;
fn flash(&mut self) -> &mut F {
self.flash
}
}
/// Convenience provider that uses a single flash for everything
pub struct MultiFlashProvider<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
{
active: SingleFlashConfig<'a, ACTIVE>,
state: SingleFlashConfig<'a, STATE>,
dfu: SingleFlashConfig<'a, DFU>,
}
impl<'a, ACTIVE, STATE, DFU> MultiFlashProvider<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
{
pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self {
Self {
active: SingleFlashConfig { flash: active },
state: SingleFlashConfig { flash: state },
dfu: SingleFlashConfig { flash: dfu },
}
}
}
impl<'a, ACTIVE, STATE, DFU> FlashProvider for MultiFlashProvider<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
{
type STATE = SingleFlashConfig<'a, STATE>;
type ACTIVE = SingleFlashConfig<'a, ACTIVE>;
type DFU = SingleFlashConfig<'a, DFU>;
fn active(&mut self) -> &mut Self::ACTIVE {
&mut self.active
}
fn dfu(&mut self) -> &mut Self::DFU {
&mut self.dfu
}
fn state(&mut self) -> &mut Self::STATE {
&mut self.state
}
}
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
/// 'mess up' the internal bootloader state
pub struct FirmwareUpdater {
state: Partition,
dfu: Partition,
}
2022-04-26 18:33:09 +02:00
// NOTE: Aligned to the largest write size supported by flash
#[repr(align(32))]
pub struct Aligned<const N: usize>([u8; N]);
impl Default for FirmwareUpdater {
fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
2022-04-26 18:33:09 +02:00
trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to);
trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to);
FirmwareUpdater::new(dfu, state)
}
}
impl FirmwareUpdater {
pub const fn new(dfu: Partition, state: Partition) -> Self {
Self { dfu, state }
}
/// Return the length of the DFU area
pub fn firmware_len(&self) -> usize {
self.dfu.len()
}
/// Instruct bootloader that DFU should commence at next boot.
/// Must be provided with an aligned buffer to use for reading and writing magic;
pub async fn update<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error>
2022-04-26 18:33:09 +02:00
where
[(); F::WRITE_SIZE]:,
{
let mut aligned = Aligned([0; { F::WRITE_SIZE }]);
self.set_magic(&mut aligned.0, SWAP_MAGIC, flash).await
}
/// Mark firmware boot successfully
2022-04-26 18:33:09 +02:00
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error>
where
[(); F::WRITE_SIZE]:,
{
let mut aligned = Aligned([0; { F::WRITE_SIZE }]);
self.set_magic(&mut aligned.0, BOOT_MAGIC, flash).await
}
async fn set_magic<F: AsyncNorFlash>(
&mut self,
aligned: &mut [u8],
magic: u8,
flash: &mut F,
) -> Result<(), F::Error> {
flash.read(self.state.from as u32, aligned).await?;
2022-06-30 14:46:17 +02:00
if aligned.iter().find(|&&b| b != magic).is_some() {
aligned.fill(0);
flash.write(self.state.from as u32, aligned).await?;
2022-06-12 22:15:44 +02:00
flash.erase(self.state.from as u32, self.state.to as u32).await?;
2022-06-30 14:46:17 +02:00
aligned.fill(magic);
flash.write(self.state.from as u32, aligned).await?;
}
Ok(())
}
// Write to a region of the DFU page
pub async fn write_firmware<F: AsyncNorFlash>(
&mut self,
offset: usize,
data: &[u8],
flash: &mut F,
block_size: usize,
) -> Result<(), F::Error> {
assert!(data.len() >= F::ERASE_SIZE);
trace!(
"Writing firmware at offset 0x{:x} len {}",
self.dfu.from + offset,
data.len()
);
flash
.erase(
(self.dfu.from + offset) as u32,
(self.dfu.from + offset + data.len()) as u32,
)
.await?;
trace!(
"Erased from {} to {}",
self.dfu.from + offset,
self.dfu.from + offset + data.len()
);
let mut write_offset = self.dfu.from + offset;
for chunk in data.chunks(block_size) {
trace!("Wrote chunk at {}: {:?}", write_offset, chunk);
flash.write(write_offset as u32, chunk).await?;
write_offset += chunk.len();
}
/*
trace!("Wrote data, reading back for verification");
let mut buf: [u8; 4096] = [0; 4096];
let mut data_offset = 0;
let mut read_offset = self.dfu.from + offset;
for chunk in buf.chunks_mut(block_size) {
flash.read(read_offset as u32, chunk).await?;
trace!("Read chunk at {}: {:?}", read_offset, chunk);
assert_eq!(&data[data_offset..data_offset + block_size], chunk);
read_offset += chunk.len();
data_offset += chunk.len();
}
*/
Ok(())
}
}
#[cfg(test)]
mod tests {
use core::convert::Infallible;
use core::future::Future;
2022-06-12 22:15:44 +02:00
use embedded_storage::nor_flash::ErrorType;
use embedded_storage_async::nor_flash::AsyncReadNorFlash;
use futures::executor::block_on;
2022-06-12 22:15:44 +02:00
use super::*;
/*
#[test]
fn test_bad_magic() {
let mut flash = MemFlash([0xff; 131072]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
assert_eq!(
bootloader.prepare_boot(&mut flash),
Err(BootError::BadMagic)
);
}
*/
#[test]
fn test_boot_state() {
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
}
#[test]
fn test_swap_state() {
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
flash.0[i] = original[i - ACTIVE.from];
}
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, &chunk, &mut flash, 4096)).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut flash)).unwrap();
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
// Running again should cause a revert
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
}
// Last page is untouched
for i in DFU.from..DFU.to - 4096 {
assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i);
}
// Mark as booted
block_on(updater.mark_booted(&mut flash)).unwrap();
assert_eq!(
State::Boot,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
}
#[test]
fn test_separate_flash_active_page_biggest() {
const STATE: Partition = Partition::new(2048, 4096);
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut active = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 2048, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(2048) {
block_on(updater.write_firmware(offset, &chunk, &mut dfu, chunk.len())).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut state)).unwrap();
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
assert_eq!(
State::Swap,
bootloader
2022-06-12 22:15:44 +02:00
.prepare_boot(&mut MultiFlashProvider::new(&mut active, &mut state, &mut dfu,))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
#[test]
fn test_separate_flash_dfu_page_biggest() {
const STATE: Partition = Partition::new(2048, 4096);
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut active = MemFlash::<16384, 2048, 4>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, &chunk, &mut dfu, chunk.len())).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut state)).unwrap();
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
assert_eq!(
State::Swap,
bootloader
2022-06-12 22:15:44 +02:00
.prepare_boot(&mut MultiFlashProvider::new(&mut active, &mut state, &mut dfu,))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
2022-06-12 22:15:44 +02:00
struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize>([u8; SIZE]);
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
2022-06-12 22:15:44 +02:00
assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE);
for i in from..to {
self.0[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(offset as usize + data.len() <= SIZE);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = Infallible;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 4;
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 4;
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, offset: u32, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
type EraseFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn erase<'a>(&'a mut self, from: u32, to: u32) -> Self::EraseFuture<'a> {
async move {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0);
for i in from..to {
self.0[i] = 0xFF;
}
Ok(())
}
}
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn write<'a>(&'a mut self, offset: u32, data: &'a [u8]) -> Self::WriteFuture<'a> {
info!("Writing {} bytes to 0x{:x}", data.len(), offset);
async move {
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(
offset as usize + data.len() <= SIZE,
"OFFSET: {}, LEN: {}, FLASH SIZE: {}",
offset,
data.len(),
SIZE
);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
}
}