embassy/embassy-rp/src/uart/buffered.rs

287 lines
7.9 KiB
Rust
Raw Normal View History

use core::future::Future;
use core::task::Poll;
use atomic_polyfill::{compiler_fence, Ordering};
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_hal_common::ring_buffer::RingBuffer;
use embassy_sync::waitqueue::WakerRegistration;
use futures::future::poll_fn;
use super::*;
pub struct State<'d, T: Instance>(StateStorage<StateInner<'d, T>>);
impl<'d, T: Instance> State<'d, T> {
pub fn new() -> Self {
Self(StateStorage::new())
}
}
struct StateInner<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
rx_waker: WakerRegistration,
rx: RingBuffer<'d>,
tx_waker: WakerRegistration,
tx: RingBuffer<'d>,
}
unsafe impl<'d, T: Instance> Send for StateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for StateInner<'d, T> {}
pub struct BufferedUart<'d, T: Instance> {
inner: PeripheralMutex<'d, StateInner<'d, T>>,
}
impl<'d, T: Instance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new<M: Mode>(
state: &'d mut State<'d, T>,
_uart: Uart<'d, T, M>,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) -> BufferedUart<'d, T> {
into_ref!(irq);
let r = T::regs();
unsafe {
r.uartimsc().modify(|w| {
// TODO: Should and more or fewer interrupts be enabled?
w.set_rxim(true);
w.set_rtim(true);
});
}
Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || StateInner {
phantom: PhantomData,
tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(),
rx: RingBuffer::new(rx_buffer),
rx_waker: WakerRegistration::new(),
}),
}
}
}
impl<'d, T: Instance> StateInner<'d, T>
where
Self: 'd,
{
fn on_rx(&mut self) {
let r = T::regs();
unsafe {
let ris = r.uartris().read();
// Clear interrupt flags
r.uarticr().write(|w| {
w.set_rxic(true);
w.set_rtic(true);
});
if ris.rxris() {
if ris.peris() {
warn!("Parity error");
}
if ris.feris() {
warn!("Framing error");
}
if ris.beris() {
warn!("Break error");
}
if ris.oeris() {
warn!("Overrun error");
}
let buf = self.rx.push_buf();
if !buf.is_empty() {
buf[0] = r.uartdr().read().data();
self.rx.push(1);
} else {
warn!("RX buffer full, discard received byte");
}
if self.rx.is_full() {
self.rx_waker.wake();
}
}
if ris.rtris() {
self.rx_waker.wake();
};
}
}
fn on_tx(&mut self) {
let r = T::regs();
unsafe {
let ris = r.uartris().read();
// Clear interrupt flags
r.uarticr().write(|w| {
w.set_rtic(true);
});
if ris.txris() {
let buf = self.tx.pop_buf();
if !buf.is_empty() {
r.uartimsc().modify(|w| {
w.set_txim(true);
});
r.uartdr().write(|w| w.set_data(buf[0].into()));
self.tx.pop(1);
self.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.uartimsc().modify(|w| {
w.set_txim(false);
});
}
}
}
}
}
impl<'d, T: Instance> PeripheralState for StateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.on_rx();
self.on_tx();
}
}
impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind {
embedded_io::ErrorKind::Other
}
}
impl<'d, T: Instance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUart<'d, T> {
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
where
Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
poll_fn(move |cx| {
let mut do_pend = false;
let res = self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
});
if do_pend {
self.inner.pend();
}
res
})
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
where
Self: 'a;
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
poll_fn(move |cx| {
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], Self::Error>>::Pending
})
})
}
fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| {
let full = state.rx.is_full();
state.rx.pop(amt);
full
});
if signal {
self.inner.pend();
}
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> {
type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
where
Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
poll_fn(move |cx| {
let (poll, empty) = self.inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
self.inner.pend();
}
poll
})
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
where
Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
poll_fn(move |cx| {
self.inner.with(|state| {
if !state.tx.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
})
}
}