embassy/embassy-nrf/src/rng.rs

277 lines
8.3 KiB
Rust
Raw Normal View History

2023-02-01 00:48:33 +01:00
//! Random Number Generator (RNG) driver.
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::ptr;
2022-06-12 22:15:44 +02:00
use core::sync::atomic::{AtomicPtr, Ordering};
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use crate::interrupt::typelevel::Interrupt;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let s = T::state();
let r = T::regs();
// Clear the event.
r.events_valrdy.reset();
// Mutate the slice within a critical section,
// so that the future isn't dropped in between us loading the pointer and actually dereferencing it.
let (ptr, end) = critical_section::with(|_| {
let ptr = s.ptr.load(Ordering::Relaxed);
// We need to make sure we haven't already filled the whole slice,
// in case the interrupt fired again before the executor got back to the future.
let end = s.end.load(Ordering::Relaxed);
if !ptr.is_null() && ptr != end {
// If the future was dropped, the pointer would have been set to null,
// so we're still good to mutate the slice.
// The safety contract of `Rng::new` means that the future can't have been dropped
// without calling its destructor.
unsafe {
*ptr = r.value.read().value().bits();
}
}
(ptr, end)
});
if ptr.is_null() || ptr == end {
// If the future was dropped, there's nothing to do.
// If `ptr == end`, we were called by mistake, so return.
return;
}
let new_ptr = unsafe { ptr.add(1) };
match s
.ptr
.compare_exchange(ptr, new_ptr, Ordering::Relaxed, Ordering::Relaxed)
{
Ok(_) => {
let end = s.end.load(Ordering::Relaxed);
// It doesn't matter if `end` was changed under our feet, because then this will just be false.
if new_ptr == end {
s.waker.wake();
}
}
Err(_) => {
// If the future was dropped or finished, there's no point trying to wake it.
// It will have already stopped the RNG, so there's no need to do that either.
}
}
}
}
/// A wrapper around an nRF RNG peripheral.
///
/// It has a non-blocking API, and a blocking api through `rand`.
pub struct Rng<'d, T: Instance> {
_peri: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Rng<'d, T> {
/// Creates a new RNG driver from the `RNG` peripheral and interrupt.
///
/// SAFETY: The future returned from `fill_bytes` must not have its lifetime end without running its destructor,
/// e.g. using `mem::forget`.
///
/// The synchronous API is safe.
pub fn new(
rng: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
into_ref!(rng);
let this = Self { _peri: rng };
this.stop();
this.disable_irq();
2023-06-01 02:22:46 +02:00
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
this
}
fn stop(&self) {
T::regs().tasks_stop.write(|w| unsafe { w.bits(1) })
}
fn start(&self) {
T::regs().tasks_start.write(|w| unsafe { w.bits(1) })
}
fn enable_irq(&self) {
T::regs().intenset.write(|w| w.valrdy().set());
}
fn disable_irq(&self) {
T::regs().intenclr.write(|w| w.valrdy().clear());
}
/// Enable or disable the RNG's bias correction.
///
/// Bias correction removes any bias towards a '1' or a '0' in the bits generated.
/// However, this makes the generation of numbers slower.
///
/// Defaults to disabled.
2023-02-01 00:48:33 +01:00
pub fn set_bias_correction(&self, enable: bool) {
T::regs().config.write(|w| w.dercen().bit(enable))
}
2023-02-01 00:48:33 +01:00
/// Fill the buffer with random bytes.
pub async fn fill_bytes(&mut self, dest: &mut [u8]) {
if dest.len() == 0 {
return; // Nothing to fill
}
let s = T::state();
let range = dest.as_mut_ptr_range();
// Even if we've preempted the interrupt, it can't preempt us again,
// so we don't need to worry about the order we write these in.
s.ptr.store(range.start, Ordering::Relaxed);
s.end.store(range.end, Ordering::Relaxed);
2021-06-30 01:45:49 +02:00
self.enable_irq();
self.start();
let on_drop = OnDrop::new(|| {
self.stop();
self.disable_irq();
// The interrupt is now disabled and can't preempt us anymore, so the order doesn't matter here.
s.ptr.store(ptr::null_mut(), Ordering::Relaxed);
s.end.store(ptr::null_mut(), Ordering::Relaxed);
});
poll_fn(|cx| {
s.waker.register(cx.waker());
// The interrupt will never modify `end`, so load it first and then get the most up-to-date `ptr`.
let end = s.end.load(Ordering::Relaxed);
let ptr = s.ptr.load(Ordering::Relaxed);
if ptr == end {
// We're done.
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Trigger the teardown
drop(on_drop);
}
2023-02-01 00:48:33 +01:00
/// Fill the buffer with random bytes, blocking version.
pub fn blocking_fill_bytes(&mut self, dest: &mut [u8]) {
self.start();
for byte in dest.iter_mut() {
let regs = T::regs();
while regs.events_valrdy.read().bits() == 0 {}
regs.events_valrdy.reset();
*byte = regs.value.read().value().bits();
}
self.stop();
}
}
impl<'d, T: Instance> Drop for Rng<'d, T> {
fn drop(&mut self) {
self.stop();
let s = T::state();
s.ptr.store(ptr::null_mut(), Ordering::Relaxed);
s.end.store(ptr::null_mut(), Ordering::Relaxed);
}
}
impl<'d, T: Instance> rand_core::RngCore for Rng<'d, T> {
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.blocking_fill_bytes(dest);
}
fn next_u32(&mut self) -> u32 {
let mut bytes = [0; 4];
self.blocking_fill_bytes(&mut bytes);
// We don't care about the endianness, so just use the native one.
u32::from_ne_bytes(bytes)
}
fn next_u64(&mut self) -> u64 {
let mut bytes = [0; 8];
self.blocking_fill_bytes(&mut bytes);
u64::from_ne_bytes(bytes)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
self.blocking_fill_bytes(dest);
Ok(())
}
}
impl<'d, T: Instance> rand_core::CryptoRng for Rng<'d, T> {}
pub(crate) mod sealed {
use super::*;
/// Peripheral static state
pub struct State {
pub ptr: AtomicPtr<u8>,
pub end: AtomicPtr<u8>,
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
ptr: AtomicPtr::new(ptr::null_mut()),
end: AtomicPtr::new(ptr::null_mut()),
waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static crate::pac::rng::RegisterBlock;
fn state() -> &'static State;
}
}
/// RNG peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_rng {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::rng::sealed::Instance for peripherals::$type {
fn regs() -> &'static crate::pac::rng::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::rng::sealed::State {
static STATE: crate::rng::sealed::State = crate::rng::sealed::State::new();
&STATE
}
}
impl crate::rng::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}