embassy/embassy-stm32/src/low_power.rs

159 lines
4.9 KiB
Rust
Raw Normal View History

2023-08-23 00:31:40 +02:00
use core::arch::asm;
use core::marker::PhantomData;
2023-08-23 03:00:00 +02:00
use cortex_m::peripheral::SCB;
2023-08-23 00:31:40 +02:00
use embassy_executor::*;
2023-08-23 03:00:00 +02:00
use embassy_time::Duration;
use crate::interrupt;
use crate::interrupt::typelevel::Interrupt;
2023-08-24 02:52:32 +02:00
use crate::pac::EXTI;
2023-08-24 03:22:11 +02:00
use crate::rcc::low_power_ready;
2023-08-25 02:29:11 +02:00
use crate::time_driver::{pause_time, resume_time, time_until_next_alarm};
2023-08-23 00:31:40 +02:00
const THREAD_PENDER: usize = usize::MAX;
2023-08-23 03:00:00 +02:00
const THRESHOLD: Duration = Duration::from_millis(500);
2023-08-23 00:31:40 +02:00
2023-08-23 00:00:00 +02:00
use crate::rtc::{Rtc, RtcInstant};
static mut RTC: Option<&'static Rtc> = None;
2023-08-25 02:29:11 +02:00
static mut STOP_TIME: embassy_time::Duration = Duration::from_ticks(0);
static mut NEXT_ALARM: embassy_time::Duration = Duration::from_ticks(u64::MAX);
static mut RTC_INSTANT: Option<crate::rtc::RtcInstant> = None;
2023-08-23 00:00:00 +02:00
2023-08-23 03:00:00 +02:00
foreach_interrupt! {
(RTC, rtc, $block:ident, WKUP, $irq:ident) => {
#[interrupt]
unsafe fn $irq() {
Executor::on_wakeup_irq();
}
};
}
2023-08-23 00:00:00 +02:00
pub fn stop_with_rtc(rtc: &'static Rtc) {
2023-08-23 03:00:00 +02:00
crate::interrupt::typelevel::RTC_WKUP::unpend();
unsafe { crate::interrupt::typelevel::RTC_WKUP::enable() };
2023-08-24 02:52:32 +02:00
EXTI.rtsr(0).modify(|w| w.set_line(22, true));
EXTI.imr(0).modify(|w| w.set_line(22, true));
2023-08-23 00:00:00 +02:00
unsafe { RTC = Some(rtc) };
}
pub fn start_wakeup_alarm(requested_duration: embassy_time::Duration) -> RtcInstant {
unsafe { RTC }.unwrap().start_wakeup_alarm(requested_duration)
}
pub fn stop_wakeup_alarm() -> RtcInstant {
unsafe { RTC }.unwrap().stop_wakeup_alarm()
}
2023-08-23 00:31:40 +02:00
/// Thread mode executor, using WFE/SEV.
///
/// This is the simplest and most common kind of executor. It runs on
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
/// is executed, to make the `WFE` exit from sleep and poll the task.
///
/// This executor allows for ultra low power consumption for chips where `WFE`
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
/// you may use [`raw::Executor`] directly to program custom behavior.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(THREAD_PENDER as *mut ()),
not_send: PhantomData,
}
}
2023-08-23 03:00:00 +02:00
unsafe fn on_wakeup_irq() {
2023-08-25 02:29:11 +02:00
trace!("on wakeup irq");
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
let elapsed = RTC_INSTANT.take().unwrap() - stop_wakeup_alarm();
STOP_TIME += elapsed;
// let to_next = NEXT_ALARM - STOP_TIME;
let to_next = Duration::from_secs(3);
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
trace!("on wakeup irq: to next: {}", to_next);
if to_next > THRESHOLD {
trace!("start wakeup alarm");
RTC_INSTANT.replace(start_wakeup_alarm(to_next));
trace!("set sleeponexit");
Self::get_scb().set_sleeponexit();
} else {
Self::get_scb().clear_sleeponexit();
Self::get_scb().clear_sleepdeep();
}
2023-08-23 03:00:00 +02:00
}
2023-08-24 03:22:11 +02:00
fn get_scb() -> SCB {
2023-08-23 03:00:00 +02:00
unsafe { cortex_m::Peripherals::steal() }.SCB
}
fn configure_pwr(&self) {
2023-08-24 03:22:11 +02:00
trace!("configure_pwr");
2023-08-23 03:00:00 +02:00
2023-08-24 03:22:11 +02:00
if !low_power_ready() {
2023-08-25 02:29:11 +02:00
trace!("configure_pwr: low power not ready");
2023-08-23 03:00:00 +02:00
return;
}
2023-08-25 02:29:11 +02:00
let time_until_next_alarm = time_until_next_alarm();
2023-08-23 03:00:00 +02:00
if time_until_next_alarm < THRESHOLD {
2023-08-25 02:29:11 +02:00
trace!("configure_pwr: not enough time until next alarm");
2023-08-23 03:00:00 +02:00
return;
}
2023-08-25 02:29:11 +02:00
unsafe {
NEXT_ALARM = time_until_next_alarm;
RTC_INSTANT = Some(start_wakeup_alarm(time_until_next_alarm))
};
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
// return;
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
pause_time();
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
trace!("enter stop...");
2023-08-23 03:00:00 +02:00
2023-08-25 02:29:11 +02:00
Self::get_scb().set_sleepdeep();
2023-08-23 00:31:40 +02:00
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
2023-08-23 03:00:00 +02:00
self.configure_pwr();
2023-08-23 00:31:40 +02:00
asm!("wfe");
};
}
}
}