embassy/embassy-net-adin1110/src/lib.rs

1317 lines
46 KiB
Rust
Raw Normal View History

#![deny(clippy::pedantic)]
#![feature(async_fn_in_trait)]
#![cfg_attr(not(any(test, feature = "std")), no_std)]
#![allow(clippy::module_name_repetitions)]
#![allow(clippy::missing_errors_doc)]
#![allow(clippy::missing_panics_doc)]
#![doc = include_str!("../README.md")]
// must go first!
mod fmt;
mod crc32;
mod crc8;
mod mdio;
mod phy;
mod regs;
use ch::driver::LinkState;
pub use crc32::ETH_FCS;
use crc8::crc8;
use embassy_futures::select::{select, Either};
use embassy_net_driver_channel as ch;
use embassy_time::{Duration, Timer};
use embedded_hal_1::digital::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::{Error, Operation, SpiDevice};
use heapless::Vec;
pub use mdio::MdioBus;
pub use phy::{Phy10BaseT1x, RegsC22, RegsC45};
pub use regs::{Config0, Config2, SpiRegisters as sr, Status0, Status1};
use crate::fmt::Bytes;
use crate::regs::{LedCntrl, LedFunc, LedPol, LedPolarity, SpiHeader};
pub const PHYID: u32 = 0x0283_BC91;
/// Error values ADIN1110
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(non_camel_case_types)]
pub enum AdinError<E> {
/// SPI-BUS Error
Spi(E),
/// Ethernet FCS error
FCS,
/// SPI Header CRC error
SPI_CRC,
/// Received or sended ethernet packet is too big
PACKET_TOO_BIG,
/// Received or sended ethernet packet is too small
PACKET_TOO_SMALL,
/// MDIO transaction timeout
MDIO_ACC_TIMEOUT,
}
pub type AEResult<T, SPIError> = core::result::Result<T, AdinError<SPIError>>;
/// Internet PHY address
pub const MDIO_PHY_ADDR: u8 = 0x01;
/// Maximum Transmission Unit
pub const MTU: usize = 1514;
/// Max SPI/Frame buffer size
pub const MAX_BUFF: usize = 2048;
const DONT_CARE_BYTE: u8 = 0x00;
const TURN_AROUND_BYTE: u8 = 0x00;
/// Packet minimal frame/packet length
const ETH_MIN_LEN: usize = 64;
/// Ethernet `Frame Check Sequence` length
const FCS_LEN: usize = 4;
/// Packet minimal frame/packet length without `Frame Check Sequence` length
const ETH_MIN_WITHOUT_FCS_LEN: usize = ETH_MIN_LEN - FCS_LEN;
/// SPI Header, contains SPI action and register id.
const SPI_HEADER_LEN: usize = 2;
/// SPI Header CRC length
const SPI_HEADER_CRC_LEN: usize = 1;
/// SPI Header Trun Around length
const SPI_HEADER_TA_LEN: usize = 1;
/// Frame Header length
const FRAME_HEADER_LEN: usize = 2;
/// Space for last bytes to create multipule 4 bytes on the end of a FIFO read/write.
const SPI_SPACE_MULTIPULE: usize = 3;
/// P1 = 0x00, P2 = 0x01
const PORT_ID_BYTE: u8 = 0x00;
/// Type alias for the embassy-net driver for ADIN1110
pub type Device<'d> = embassy_net_driver_channel::Device<'d, MTU>;
/// Internal state for the embassy-net integration.
pub struct State<const N_RX: usize, const N_TX: usize> {
ch_state: ch::State<MTU, N_RX, N_TX>,
}
impl<const N_RX: usize, const N_TX: usize> State<N_RX, N_TX> {
/// Create a new `State`.
#[must_use]
pub const fn new() -> Self {
Self {
ch_state: ch::State::new(),
}
}
}
#[derive(Debug)]
pub struct ADIN1110<SPI> {
/// SPI bus
spi: SPI,
/// Enable CRC on SPI transfer.
/// This must match with the hardware pin `SPI_CFG0` were low = CRC enable, high = CRC disabled.
spi_crc: bool,
/// Append FCS by the application of transmit packet, false = FCS is appended by the MAC, true = FCS appended by the application.
append_fcs_on_tx: bool,
}
impl<SPI: SpiDevice> ADIN1110<SPI> {
pub fn new(spi: SPI, spi_crc: bool, append_fcs_on_tx: bool) -> Self {
Self {
spi,
spi_crc,
append_fcs_on_tx,
}
}
pub async fn read_reg(&mut self, reg: sr) -> AEResult<u32, SPI::Error> {
let mut tx_buf = Vec::<u8, 16>::new();
let mut spi_hdr = SpiHeader(0);
spi_hdr.set_control(true);
spi_hdr.set_addr(reg);
let _ = tx_buf.extend_from_slice(spi_hdr.0.to_be_bytes().as_slice());
if self.spi_crc {
// Add CRC for header data
let _ = tx_buf.push(crc8(&tx_buf));
}
// Turn around byte, TODO: Unknown that this is.
let _ = tx_buf.push(TURN_AROUND_BYTE);
let mut rx_buf = [0; 5];
let spi_read_len = if self.spi_crc { rx_buf.len() } else { rx_buf.len() - 1 };
let mut spi_op = [Operation::Write(&tx_buf), Operation::Read(&mut rx_buf[0..spi_read_len])];
self.spi.transaction(&mut spi_op).await.map_err(AdinError::Spi)?;
if self.spi_crc {
let crc = crc8(&rx_buf[0..4]);
if crc != rx_buf[4] {
return Err(AdinError::SPI_CRC);
}
}
let value = u32::from_be_bytes(rx_buf[0..4].try_into().unwrap());
trace!("REG Read {} = {:08x} SPI {}", reg, value, Bytes(&tx_buf));
Ok(value)
}
pub async fn write_reg(&mut self, reg: sr, value: u32) -> AEResult<(), SPI::Error> {
let mut tx_buf = Vec::<u8, 16>::new();
let mut spi_hdr = SpiHeader(0);
spi_hdr.set_control(true);
spi_hdr.set_write(true);
spi_hdr.set_addr(reg);
let _ = tx_buf.extend_from_slice(spi_hdr.0.to_be_bytes().as_slice());
if self.spi_crc {
// Add CRC for header data
let _ = tx_buf.push(crc8(&tx_buf));
}
let val = value.to_be_bytes();
let _ = tx_buf.extend_from_slice(val.as_slice());
if self.spi_crc {
// Add CRC for header data
let _ = tx_buf.push(crc8(val.as_slice()));
}
trace!("REG Write {} = {:08x} SPI {}", reg, value, Bytes(&tx_buf));
self.spi.write(&tx_buf).await.map_err(AdinError::Spi)
}
/// helper function for write to `MDIO_ACC` register and wait for ready!
async fn write_mdio_acc_reg(&mut self, mdio_acc_val: u32) -> AEResult<u32, SPI::Error> {
self.write_reg(sr::MDIO_ACC, mdio_acc_val).await?;
// TODO: Add proper timeout!
for _ in 0..100_000 {
let val = self.read_reg(sr::MDIO_ACC).await?;
if val & 0x8000_0000 != 0 {
return Ok(val);
}
}
Err(AdinError::MDIO_ACC_TIMEOUT)
}
/// Read out fifo ethernet packet memory received via the wire.
pub async fn read_fifo(&mut self, frame: &mut [u8]) -> AEResult<usize, SPI::Error> {
const HEAD_LEN: usize = SPI_HEADER_LEN + SPI_HEADER_CRC_LEN + SPI_HEADER_TA_LEN;
const TAIL_LEN: usize = FCS_LEN + SPI_SPACE_MULTIPULE;
let mut tx_buf = Vec::<u8, HEAD_LEN>::new();
// Size of the frame, also includes the `frame header` and `FCS`.
let fifo_frame_size = self.read_reg(sr::RX_FSIZE).await? as usize;
if fifo_frame_size < ETH_MIN_LEN + FRAME_HEADER_LEN {
return Err(AdinError::PACKET_TOO_SMALL);
}
let packet_size = fifo_frame_size - FRAME_HEADER_LEN - FCS_LEN;
if packet_size > frame.len() {
trace!("MAX: {} WANT: {}", frame.len(), packet_size);
return Err(AdinError::PACKET_TOO_BIG);
}
let mut spi_hdr = SpiHeader(0);
spi_hdr.set_control(true);
spi_hdr.set_addr(sr::RX);
let _ = tx_buf.extend_from_slice(spi_hdr.0.to_be_bytes().as_slice());
if self.spi_crc {
// Add CRC for header data
let _ = tx_buf.push(crc8(&tx_buf));
}
// Turn around byte, TODO: Unknown that this is.
let _ = tx_buf.push(TURN_AROUND_BYTE);
let mut frame_header = [0, 0];
let mut fcs_and_extra = [0; TAIL_LEN];
// Packet read of write to the MAC packet buffer must be a multipul of 4!
let tail_size = (fifo_frame_size & 0x03) + FCS_LEN;
let mut spi_op = [
Operation::Write(&tx_buf),
Operation::Read(&mut frame_header),
Operation::Read(&mut frame[0..packet_size]),
Operation::Read(&mut fcs_and_extra[0..tail_size]),
];
self.spi.transaction(&mut spi_op).await.map_err(AdinError::Spi)?;
// According to register `CONFIG2`, bit 5 `CRC_APPEND` discription:
// "Similarly, on receive, the CRC32 is forwarded with the frame to the host where the host must verify it is correct."
// The application must allways check the FCS. It seems that the MAC/PHY has no option to handle this.
let fcs_calc = ETH_FCS::new(&frame[0..packet_size]);
if fcs_calc.hton_bytes() == fcs_and_extra[0..4] {
Ok(packet_size)
} else {
Err(AdinError::FCS)
}
}
/// Write to fifo ethernet packet memory send over the wire.
pub async fn write_fifo(&mut self, frame: &[u8]) -> AEResult<(), SPI::Error> {
const HEAD_LEN: usize = SPI_HEADER_LEN + SPI_HEADER_CRC_LEN + FRAME_HEADER_LEN;
const TAIL_LEN: usize = ETH_MIN_LEN - FCS_LEN + FCS_LEN + SPI_SPACE_MULTIPULE;
if frame.len() < (6 + 6 + 2) {
return Err(AdinError::PACKET_TOO_SMALL);
}
if frame.len() > (MAX_BUFF - FRAME_HEADER_LEN) {
return Err(AdinError::PACKET_TOO_BIG);
}
// SPI HEADER + [OPTIONAL SPI CRC] + FRAME HEADER
let mut head_data = Vec::<u8, HEAD_LEN>::new();
// [OPTIONAL PAD DATA] + FCS + [OPTINAL BYTES MAKE SPI FRAME EVEN]
let mut tail_data = Vec::<u8, TAIL_LEN>::new();
let mut spi_hdr = SpiHeader(0);
spi_hdr.set_control(true);
spi_hdr.set_write(true);
spi_hdr.set_addr(sr::TX);
head_data
.extend_from_slice(spi_hdr.0.to_be_bytes().as_slice())
2023-08-20 21:26:43 +02:00
.map_err(|_e| AdinError::PACKET_TOO_BIG)?;
if self.spi_crc {
// Add CRC for header data
head_data
.push(crc8(&head_data[0..2]))
.map_err(|_| AdinError::PACKET_TOO_BIG)?;
}
// Add port number, ADIN1110 its fixed to zero/P1, but for ADIN2111 has two ports.
head_data
.extend_from_slice(u16::from(PORT_ID_BYTE).to_be_bytes().as_slice())
2023-08-20 21:26:43 +02:00
.map_err(|_e| AdinError::PACKET_TOO_BIG)?;
// ADIN1110 MAC and PHY don´t accept ethernet packet smaller than 64 bytes.
// So padded the data minus the FCS, FCS is automatilly added to by the MAC.
if frame.len() < ETH_MIN_WITHOUT_FCS_LEN {
let _ = tail_data.resize(ETH_MIN_WITHOUT_FCS_LEN - frame.len(), 0x00);
}
// Append FCS by the application
if self.append_fcs_on_tx {
let mut frame_fcs = ETH_FCS::new(frame);
if !tail_data.is_empty() {
frame_fcs = frame_fcs.update(&tail_data);
}
let _ = tail_data.extend_from_slice(frame_fcs.hton_bytes().as_slice());
}
// len = frame_size + optional padding + 2 bytes Frame header
let send_len_orig = frame.len() + tail_data.len() + FRAME_HEADER_LEN;
let send_len = u32::try_from(send_len_orig).map_err(|_| AdinError::PACKET_TOO_BIG)?;
// Packet read of write to the MAC packet buffer must be a multipul of 4 bytes!
let pad_len = send_len_orig & 0x03;
if pad_len != 0 {
let spi_pad_len = 4 - pad_len + tail_data.len();
let _ = tail_data.resize(spi_pad_len, DONT_CARE_BYTE);
}
self.write_reg(sr::TX_FSIZE, send_len).await?;
trace!(
"TX: hdr {} [{}] {}-{}-{} SIZE: {}",
head_data.len(),
frame.len(),
Bytes(head_data.as_slice()),
Bytes(frame),
Bytes(tail_data.as_slice()),
send_len,
);
let mut transaction = [
Operation::Write(head_data.as_slice()),
Operation::Write(frame),
Operation::Write(tail_data.as_slice()),
];
self.spi.transaction(&mut transaction).await.map_err(AdinError::Spi)
}
/// Programs the mac address in the mac filters.
/// Also set the boardcast address.
/// The chip supports 2 priority queues but current code doesn't support this mode.
pub async fn set_mac_addr(&mut self, mac: &[u8; 6]) -> AEResult<(), SPI::Error> {
let mac_high_part = u16::from_be_bytes(mac[0..2].try_into().unwrap());
let mac_low_part = u32::from_be_bytes(mac[2..6].try_into().unwrap());
// program our mac address in the mac address filter
self.write_reg(sr::ADDR_FILT_UPR0, (1 << 16) | (1 << 30) | u32::from(mac_high_part))
.await?;
self.write_reg(sr::ADDR_FILT_LWR0, mac_low_part).await?;
self.write_reg(sr::ADDR_MSK_UPR0, u32::from(mac_high_part)).await?;
self.write_reg(sr::ADDR_MSK_LWR0, mac_low_part).await?;
// Also program broadcast address in the mac address filter
self.write_reg(sr::ADDR_FILT_UPR1, (1 << 16) | (1 << 30) | 0xFFFF)
.await?;
self.write_reg(sr::ADDR_FILT_LWR1, 0xFFFF_FFFF).await?;
self.write_reg(sr::ADDR_MSK_UPR1, 0xFFFF).await?;
self.write_reg(sr::ADDR_MSK_LWR1, 0xFFFF_FFFF).await?;
Ok(())
}
}
impl<SPI: SpiDevice> mdio::MdioBus for ADIN1110<SPI> {
type Error = AdinError<SPI::Error>;
/// Read from the PHY Registers as Clause 22.
async fn read_cl22(&mut self, phy_id: u8, reg: u8) -> Result<u16, Self::Error> {
let mdio_acc_val: u32 =
(0x1 << 28) | u32::from(phy_id & 0x1F) << 21 | u32::from(reg & 0x1F) << 16 | (0x3 << 26);
// Result is in the lower half of the answer.
#[allow(clippy::cast_possible_truncation)]
self.write_mdio_acc_reg(mdio_acc_val).await.map(|val| val as u16)
}
/// Read from the PHY Registers as Clause 45.
async fn read_cl45(&mut self, phy_id: u8, regc45: (u8, u16)) -> Result<u16, Self::Error> {
let mdio_acc_val = u32::from(phy_id & 0x1F) << 21 | u32::from(regc45.0 & 0x1F) << 16 | u32::from(regc45.1);
self.write_mdio_acc_reg(mdio_acc_val).await?;
let mdio_acc_val = u32::from(phy_id & 0x1F) << 21 | u32::from(regc45.0 & 0x1F) << 16 | (0x03 << 26);
// Result is in the lower half of the answer.
#[allow(clippy::cast_possible_truncation)]
self.write_mdio_acc_reg(mdio_acc_val).await.map(|val| val as u16)
}
/// Write to the PHY Registers as Clause 22.
async fn write_cl22(&mut self, phy_id: u8, reg: u8, val: u16) -> Result<(), Self::Error> {
let mdio_acc_val: u32 =
(0x1 << 28) | u32::from(phy_id & 0x1F) << 21 | u32::from(reg & 0x1F) << 16 | (0x1 << 26) | u32::from(val);
self.write_mdio_acc_reg(mdio_acc_val).await.map(|_| ())
}
/// Write to the PHY Registers as Clause 45.
async fn write_cl45(&mut self, phy_id: u8, regc45: (u8, u16), value: u16) -> AEResult<(), SPI::Error> {
let phy_id = u32::from(phy_id & 0x1F) << 21;
let dev_addr = u32::from(regc45.0 & 0x1F) << 16;
let reg = u32::from(regc45.1);
let mdio_acc_val: u32 = phy_id | dev_addr | reg;
self.write_mdio_acc_reg(mdio_acc_val).await?;
let mdio_acc_val: u32 = phy_id | dev_addr | (0x01 << 26) | u32::from(value);
self.write_mdio_acc_reg(mdio_acc_val).await.map(|_| ())
}
}
/// Background runner for the ADIN110.
///
/// You must call `.run()` in a background task for the ADIN1100 to operate.
pub struct Runner<'d, SPI, INT, RST> {
mac: ADIN1110<SPI>,
ch: ch::Runner<'d, MTU>,
int: INT,
is_link_up: bool,
_reset: RST,
}
impl<'d, SPI: SpiDevice, INT: Wait, RST: OutputPin> Runner<'d, SPI, INT, RST> {
#[allow(clippy::too_many_lines)]
pub async fn run(mut self) -> ! {
loop {
let (state_chan, mut rx_chan, mut tx_chan) = self.ch.split();
loop {
debug!("Waiting for interrupts");
match select(self.int.wait_for_low(), tx_chan.tx_buf()).await {
Either::First(_) => {
let mut status1_clr = Status1(0);
let mut status1 = Status1(self.mac.read_reg(sr::STATUS1).await.unwrap());
while status1.p1_rx_rdy() {
debug!("alloc RX packet buffer");
match select(rx_chan.rx_buf(), tx_chan.tx_buf()).await {
// Handle frames that needs to transmit from the wire.
// Note: rx_chan.rx_buf() channel don´t accept new request
// when the tx_chan is full. So these will be handled
// automaticly.
Either::First(frame) => match self.mac.read_fifo(frame).await {
Ok(n) => {
rx_chan.rx_done(n);
}
Err(e) => match e {
AdinError::PACKET_TOO_BIG => {
error!("RX Packet too big, DROP");
self.mac.write_reg(sr::FIFO_CLR, 1).await.unwrap();
}
AdinError::PACKET_TOO_SMALL => {
error!("RX Packet too small, DROP");
self.mac.write_reg(sr::FIFO_CLR, 1).await.unwrap();
}
AdinError::Spi(e) => {
error!("RX Spi error {}", e.kind());
}
2023-08-28 19:00:00 +02:00
e => {
error!("RX Error {:?}", e);
}
},
},
Either::Second(frame) => {
// Handle frames that needs to transmit to the wire.
self.mac.write_fifo(frame).await.unwrap();
tx_chan.tx_done();
}
}
status1 = Status1(self.mac.read_reg(sr::STATUS1).await.unwrap());
}
let status0 = Status0(self.mac.read_reg(sr::STATUS0).await.unwrap());
if status1.0 & !0x1b != 0 {
error!("SPE CHIP STATUS 0:{:08x} 1:{:08x}", status0.0, status1.0);
}
if status1.tx_rdy() {
status1_clr.set_tx_rdy(true);
trace!("TX_DONE");
}
if status1.link_change() {
let link = status1.p1_link_status();
self.is_link_up = link;
if link {
let link_status = self
.mac
.read_cl45(MDIO_PHY_ADDR, RegsC45::DA7::AN_STATUS_EXTRA.into())
.await
.unwrap();
let volt = if link_status & (0b11 << 5) == (0b11 << 5) {
"2.4"
} else {
"1.0"
};
let mse = self
.mac
.read_cl45(MDIO_PHY_ADDR, RegsC45::DA1::MSE_VAL.into())
.await
.unwrap();
info!("LINK Changed: Link Up, Volt: {} V p-p, MSE: {:0004}", volt, mse);
} else {
info!("LINK Changed: Link Down");
}
state_chan.set_link_state(if link { LinkState::Up } else { LinkState::Down });
status1_clr.set_link_change(true);
}
if status1.tx_ecc_err() {
error!("SPI TX_ECC_ERR error, CLEAR TX FIFO");
self.mac.write_reg(sr::FIFO_CLR, 2).await.unwrap();
status1_clr.set_tx_ecc_err(true);
}
if status1.rx_ecc_err() {
error!("SPI RX_ECC_ERR error");
status1_clr.set_rx_ecc_err(true);
}
if status1.spi_err() {
error!("SPI SPI_ERR CRC error");
status1_clr.set_spi_err(true);
}
if status0.phyint() {
let crsm_irq_st = self
.mac
.read_cl45(MDIO_PHY_ADDR, RegsC45::DA1E::CRSM_IRQ_STATUS.into())
.await
.unwrap();
let phy_irq_st = self
.mac
.read_cl45(MDIO_PHY_ADDR, RegsC45::DA1F::PHY_SYBSYS_IRQ_STATUS.into())
.await
.unwrap();
2023-08-18 00:46:58 +02:00
warn!(
"SPE CHIP PHY CRSM_IRQ_STATUS {:04x} PHY_SUBSYS_IRQ_STATUS {:04x}",
crsm_irq_st, phy_irq_st
);
}
if status0.txfcse() {
error!("Ethernet Frame FCS and calc FCS don't match!");
}
// Clear status0
self.mac.write_reg(sr::STATUS0, 0xFFF).await.unwrap();
self.mac.write_reg(sr::STATUS1, status1_clr.0).await.unwrap();
}
Either::Second(packet) => {
// Handle frames that needs to transmit to the wire.
self.mac.write_fifo(packet).await.unwrap();
tx_chan.tx_done();
}
}
}
}
}
}
/// Obtain a driver for using the ADIN1110 with [`embassy-net`](crates.io/crates/embassy-net).
pub async fn new<const N_RX: usize, const N_TX: usize, SPI: SpiDevice, INT: Wait, RST: OutputPin>(
mac_addr: [u8; 6],
state: &'_ mut State<N_RX, N_TX>,
spi_dev: SPI,
int: INT,
mut reset: RST,
spi_crc: bool,
append_fcs_on_tx: bool,
) -> (Device<'_>, Runner<'_, SPI, INT, RST>) {
use crate::regs::{IMask0, IMask1};
info!("INIT ADIN1110");
// Reset sequence
reset.set_low().unwrap();
// Wait t1: 20-43mS
Timer::after(Duration::from_millis(30)).await;
reset.set_high().unwrap();
// Wait t3: 50mS
Timer::after(Duration::from_millis(50)).await;
// Create device
let mut mac = ADIN1110::new(spi_dev, spi_crc, append_fcs_on_tx);
// Check PHYID
let id = mac.read_reg(sr::PHYID).await.unwrap();
assert_eq!(id, PHYID);
debug!("SPE: CHIP MAC/ID: {:08x}", id);
#[cfg(any(feature = "defmt", feature = "log"))]
{
let adin_phy = Phy10BaseT1x::default();
let phy_id = adin_phy.get_id(&mut mac).await.unwrap();
debug!("SPE: CHIP: PHY ID: {:08x}", phy_id);
}
let mi_control = mac.read_cl22(MDIO_PHY_ADDR, RegsC22::CONTROL as u8).await.unwrap();
debug!("SPE CHIP PHY MI_CONTROL {:04x}", mi_control);
if mi_control & 0x0800 != 0 {
let val = mi_control & !0x0800;
debug!("SPE CHIP PHY MI_CONTROL Disable PowerDown");
mac.write_cl22(MDIO_PHY_ADDR, RegsC22::CONTROL as u8, val)
.await
.unwrap();
}
// Config0
let mut config0 = Config0(0x0000_0006);
config0.set_txfcsve(mac.append_fcs_on_tx);
mac.write_reg(sr::CONFIG0, config0.0).await.unwrap();
// Config2
let mut config2 = Config2(0x0000_0800);
// crc_append must be disable if tx_fcs_validation_enable is true!
config2.set_crc_append(!mac.append_fcs_on_tx);
mac.write_reg(sr::CONFIG2, config2.0).await.unwrap();
// Pin Mux Config 1
let led_val = (0b11 << 6) | (0b11 << 4); // | (0b00 << 1);
mac.write_cl45(MDIO_PHY_ADDR, RegsC45::DA1E::DIGIO_PINMUX.into(), led_val)
.await
.unwrap();
let mut led_pol = LedPolarity(0);
led_pol.set_led1_polarity(LedPol::ActiveLow);
led_pol.set_led0_polarity(LedPol::ActiveLow);
// Led Polarity Regisgere Active Low
mac.write_cl45(MDIO_PHY_ADDR, RegsC45::DA1E::LED_POLARITY.into(), led_pol.0)
.await
.unwrap();
// Led Both On
let mut led_cntr = LedCntrl(0x0);
// LED1: Yellow
led_cntr.set_led1_en(true);
led_cntr.set_led1_function(LedFunc::TxLevel2P4);
// LED0: Green
led_cntr.set_led0_en(true);
led_cntr.set_led0_function(LedFunc::LinkupTxRxActicity);
mac.write_cl45(MDIO_PHY_ADDR, RegsC45::DA1E::LED_CNTRL.into(), led_cntr.0)
.await
.unwrap();
// Set ADIN1110 Interrupts, RX_READY and LINK_CHANGE
// Enable interrupts LINK_CHANGE, TX_RDY, RX_RDY(P1), SPI_ERR
// Have to clear the mask the enable it.
let mut imask0_val = IMask0(0x0000_1FBF);
imask0_val.set_txfcsem(false);
imask0_val.set_phyintm(false);
imask0_val.set_txboem(false);
imask0_val.set_rxboem(false);
imask0_val.set_txpem(false);
mac.write_reg(sr::IMASK0, imask0_val.0).await.unwrap();
// Set ADIN1110 Interrupts, RX_READY and LINK_CHANGE
// Enable interrupts LINK_CHANGE, TX_RDY, RX_RDY(P1), SPI_ERR
// Have to clear the mask the enable it.
let mut imask1_val = IMask1(0x43FA_1F1A);
imask1_val.set_link_change_mask(false);
imask1_val.set_p1_rx_rdy_mask(false);
imask1_val.set_spi_err_mask(false);
imask1_val.set_tx_ecc_err_mask(false);
imask1_val.set_rx_ecc_err_mask(false);
mac.write_reg(sr::IMASK1, imask1_val.0).await.unwrap();
// Program mac address but also sets mac filters.
mac.set_mac_addr(&mac_addr).await.unwrap();
let (runner, device) = ch::new(&mut state.ch_state, ch::driver::HardwareAddress::Ethernet(mac_addr));
(
device,
Runner {
ch: runner,
mac,
int,
is_link_up: false,
_reset: reset,
},
)
}
#[allow(clippy::similar_names)]
#[cfg(test)]
mod tests {
use core::convert::Infallible;
use embedded_hal_1::digital::{ErrorType, OutputPin};
use embedded_hal_async::delay::DelayUs;
use embedded_hal_bus::spi::ExclusiveDevice;
use embedded_hal_mock::common::Generic;
use embedded_hal_mock::eh1::spi::{Mock as SpiMock, Transaction as SpiTransaction};
#[derive(Debug, Default)]
struct CsPinMock {
pub high: u32,
pub low: u32,
}
impl OutputPin for CsPinMock {
fn set_low(&mut self) -> Result<(), Self::Error> {
self.low += 1;
Ok(())
}
fn set_high(&mut self) -> Result<(), Self::Error> {
self.high += 1;
Ok(())
}
}
impl ErrorType for CsPinMock {
type Error = Infallible;
}
use super::*;
// TODO: This is currently a workaround unit `ExclusiveDevice` is moved to `embedded-hal-bus`
// see https://github.com/rust-embedded/embedded-hal/pull/462#issuecomment-1560014426
struct MockDelay {}
impl DelayUs for MockDelay {
async fn delay_us(&mut self, _us: u32) {
todo!()
}
async fn delay_ms(&mut self, _ms: u32) {
todo!()
}
}
struct TestHarnass {
spe: ADIN1110<ExclusiveDevice<embedded_hal_mock::common::Generic<SpiTransaction>, CsPinMock, MockDelay>>,
spi: Generic<SpiTransaction>,
}
impl TestHarnass {
pub fn new(expectations: &[SpiTransaction], spi_crc: bool, append_fcs_on_tx: bool) -> Self {
let cs = CsPinMock::default();
let delay = MockDelay {};
let spi = SpiMock::new(expectations);
let spi_dev: ExclusiveDevice<embedded_hal_mock::common::Generic<SpiTransaction>, CsPinMock, MockDelay> =
ExclusiveDevice::new(spi.clone(), cs, delay);
let spe: ADIN1110<
ExclusiveDevice<embedded_hal_mock::common::Generic<SpiTransaction>, CsPinMock, MockDelay>,
> = ADIN1110::new(spi_dev, spi_crc, append_fcs_on_tx);
Self { spe, spi }
}
pub fn done(&mut self) {
self.spi.done();
}
}
#[futures_test::test]
async fn mac_read_registers_without_crc() {
// Configure expectations
let expectations = [
// 1st
SpiTransaction::write_vec(vec![0x80, 0x01, TURN_AROUND_BYTE]),
SpiTransaction::read_vec(vec![0x02, 0x83, 0xBC, 0x91]),
SpiTransaction::flush(),
// 2nd
SpiTransaction::write_vec(vec![0x80, 0x02, TURN_AROUND_BYTE]),
SpiTransaction::read_vec(vec![0x00, 0x00, 0x06, 0xC3]),
SpiTransaction::flush(),
];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, false, true);
// Read PHIID
let val = th.spe.read_reg(sr::PHYID).await.expect("Error");
assert_eq!(val, 0x0283_BC91);
// Read CAPAVILITY
let val = th.spe.read_reg(sr::CAPABILITY).await.expect("Error");
assert_eq!(val, 0x0000_06C3);
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn mac_read_registers_with_crc() {
// Configure expectations
let expectations = [
// 1st
SpiTransaction::write_vec(vec![0x80, 0x01, 177, TURN_AROUND_BYTE]),
SpiTransaction::read_vec(vec![0x02, 0x83, 0xBC, 0x91, 215]),
SpiTransaction::flush(),
// 2nd
SpiTransaction::write_vec(vec![0x80, 0x02, 184, TURN_AROUND_BYTE]),
SpiTransaction::read_vec(vec![0x00, 0x00, 0x06, 0xC3, 57]),
SpiTransaction::flush(),
];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
assert_eq!(crc8(0x0283_BC91_u32.to_be_bytes().as_slice()), 215);
assert_eq!(crc8(0x0000_06C3_u32.to_be_bytes().as_slice()), 57);
// Read PHIID
let val = th.spe.read_reg(sr::PHYID).await.expect("Error");
assert_eq!(val, 0x0283_BC91);
// Read CAPAVILITY
let val = th.spe.read_reg(sr::CAPABILITY).await.expect("Error");
assert_eq!(val, 0x0000_06C3);
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn mac_write_registers_without_crc() {
// Configure expectations
let expectations = [
SpiTransaction::write_vec(vec![0xA0, 0x09, 0x12, 0x34, 0x56, 0x78]),
SpiTransaction::flush(),
];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, false, true);
// Write reg: 0x1FFF
assert!(th.spe.write_reg(sr::STATUS1, 0x1234_5678).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn mac_write_registers_with_crc() {
// Configure expectations
let expectations = [
SpiTransaction::write_vec(vec![0xA0, 0x09, 39, 0x12, 0x34, 0x56, 0x78, 28]),
SpiTransaction::flush(),
];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
// Write reg: 0x1FFF
assert!(th.spe.write_reg(sr::STATUS1, 0x1234_5678).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_minimal_with_crc() {
// Configure expectations
let mut expectations = vec![];
// Write TX_SIZE reg
expectations.push(SpiTransaction::write_vec(vec![160, 48, 136, 0, 0, 0, 66, 201]));
expectations.push(SpiTransaction::flush());
// Write TX reg.
// SPI Header + optional CRC + Frame Header
expectations.push(SpiTransaction::write_vec(vec![160, 49, 143, 0, 0]));
// Packet data
let packet = [0xFF_u8; 60];
expectations.push(SpiTransaction::write_vec(packet.to_vec()));
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
// Padding
if let Some(padding_len) = (ETH_MIN_LEN - FCS_LEN).checked_sub(packet.len()) {
tail.resize(padding_len, 0x00);
}
// Packet FCS + optinal padding
tail.extend_from_slice(&[77, 241, 140, 244, DONT_CARE_BYTE, DONT_CARE_BYTE]);
expectations.push(SpiTransaction::write_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
assert!(th.spe.write_fifo(&packet).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_minimal_with_crc_without_fcs() {
// Configure expectations
let mut expectations = vec![];
// Write TX_SIZE reg
expectations.push(SpiTransaction::write_vec(vec![160, 48, 136, 0, 0, 0, 62, 186]));
expectations.push(SpiTransaction::flush());
// Write TX reg.
// SPI Header + optional CRC + Frame Header
expectations.push(SpiTransaction::write_vec(vec![160, 49, 143, 0, 0]));
// Packet data
let packet = [0xFF_u8; 60];
expectations.push(SpiTransaction::write_vec(packet.to_vec()));
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
// Padding
if let Some(padding_len) = (ETH_MIN_LEN - FCS_LEN).checked_sub(packet.len()) {
tail.resize(padding_len, 0x00);
}
// Packet FCS + optinal padding
tail.extend_from_slice(&[DONT_CARE_BYTE, DONT_CARE_BYTE]);
expectations.push(SpiTransaction::write_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, false);
assert!(th.spe.write_fifo(&packet).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_max_mtu_with_crc() {
assert_eq!(MTU, 1514);
// Configure expectations
let mut expectations = vec![];
// Write TX_SIZE reg
expectations.push(SpiTransaction::write_vec(vec![160, 48, 136, 0, 0, 5, 240, 159]));
expectations.push(SpiTransaction::flush());
// Write TX reg.
// SPI Header + optional CRC + Frame Header
expectations.push(SpiTransaction::write_vec(vec![160, 49, 143, 0, 0]));
// Packet data
let packet = [0xAA_u8; MTU];
expectations.push(SpiTransaction::write_vec(packet.to_vec()));
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
// Padding
if let Some(padding_len) = (ETH_MIN_LEN - FCS_LEN).checked_sub(packet.len()) {
tail.resize(padding_len, 0x00);
}
// Packet FCS + optinal padding
tail.extend_from_slice(&[49, 196, 205, 160]);
expectations.push(SpiTransaction::write_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
assert!(th.spe.write_fifo(&packet).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_invalid_lengths() {
assert_eq!(MTU, 1514);
// Configure expectations
let expectations = vec![];
// Max packet size = MAX_BUFF - FRAME_HEADER_LEN
let packet = [0xAA_u8; MAX_BUFF - FRAME_HEADER_LEN + 1];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
// minimal
assert!(matches!(
th.spe.write_fifo(&packet[0..(6 + 6 + 2 - 1)]).await,
Err(AdinError::PACKET_TOO_SMALL)
));
// max + 1
assert!(matches!(
th.spe.write_fifo(&packet).await,
Err(AdinError::PACKET_TOO_BIG)
));
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_arp_46bytes_with_crc() {
// Configure expectations
let mut expectations = vec![];
// Write TX_SIZE reg
expectations.push(SpiTransaction::write_vec(vec![160, 48, 136, 0, 0, 0, 66, 201]));
expectations.push(SpiTransaction::flush());
// Write TX reg.
// Header
expectations.push(SpiTransaction::write_vec(vec![160, 49, 143, 0, 0]));
// Packet data
let packet = [
34, 51, 68, 85, 102, 119, 18, 52, 86, 120, 154, 188, 8, 6, 0, 1, 8, 0, 6, 4, 0, 2, 18, 52, 86, 120, 154,
188, 192, 168, 16, 4, 34, 51, 68, 85, 102, 119, 192, 168, 16, 1,
];
expectations.push(SpiTransaction::write_vec(packet.to_vec()));
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
// Padding
if let Some(padding_len) = (ETH_MIN_LEN - FCS_LEN).checked_sub(packet.len()) {
tail.resize(padding_len, 0x00);
}
// Packet FCS + optinal padding
tail.extend_from_slice(&[147, 149, 213, 68, DONT_CARE_BYTE, DONT_CARE_BYTE]);
expectations.push(SpiTransaction::write_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
assert!(th.spe.write_fifo(&packet).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn write_packet_to_fifo_arp_46bytes_without_crc() {
// Configure expectations
let mut expectations = vec![];
// Write TX_SIZE reg
expectations.push(SpiTransaction::write_vec(vec![160, 48, 0, 0, 0, 66]));
expectations.push(SpiTransaction::flush());
// Write TX reg.
// SPI Header + Frame Header
expectations.push(SpiTransaction::write_vec(vec![160, 49, 0, 0]));
// Packet data
let packet = [
34, 51, 68, 85, 102, 119, 18, 52, 86, 120, 154, 188, 8, 6, 0, 1, 8, 0, 6, 4, 0, 2, 18, 52, 86, 120, 154,
188, 192, 168, 16, 4, 34, 51, 68, 85, 102, 119, 192, 168, 16, 1,
];
expectations.push(SpiTransaction::write_vec(packet.to_vec()));
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
// Padding
if let Some(padding_len) = (ETH_MIN_LEN - FCS_LEN).checked_sub(packet.len()) {
tail.resize(padding_len, 0x00);
}
// Packet FCS + optinal padding
tail.extend_from_slice(&[147, 149, 213, 68, DONT_CARE_BYTE, DONT_CARE_BYTE]);
expectations.push(SpiTransaction::write_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, false, true);
assert!(th.spe.write_fifo(&packet).await.is_ok());
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn read_packet_from_fifo_packet_too_big_for_frame_buffer() {
// Configure expectations
let mut expectations = vec![];
// Read RX_SIZE reg
let rx_size: u32 = u32::try_from(ETH_MIN_LEN + FRAME_HEADER_LEN + FCS_LEN).unwrap();
let mut rx_size_vec = rx_size.to_be_bytes().to_vec();
rx_size_vec.push(crc8(&rx_size_vec));
expectations.push(SpiTransaction::write_vec(vec![128, 144, 79, TURN_AROUND_BYTE]));
expectations.push(SpiTransaction::read_vec(rx_size_vec));
expectations.push(SpiTransaction::flush());
let mut frame = [0; MTU];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
let ret = th.spe.read_fifo(&mut frame[0..ETH_MIN_LEN - 1]).await;
assert!(matches!(dbg!(ret), Err(AdinError::PACKET_TOO_BIG)));
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn read_packet_from_fifo_packet_too_small() {
// Configure expectations
let mut expectations = vec![];
// This value is importen for this test!
assert_eq!(ETH_MIN_LEN, 64);
// Packet data, size = `ETH_MIN_LEN` - `FCS_LEN` - 1
let packet = [0; 64 - FCS_LEN - 1];
// Read RX_SIZE reg
let rx_size: u32 = u32::try_from(packet.len() + FRAME_HEADER_LEN + FCS_LEN).unwrap();
let mut rx_size_vec = rx_size.to_be_bytes().to_vec();
rx_size_vec.push(crc8(&rx_size_vec));
expectations.push(SpiTransaction::write_vec(vec![128, 144, 79, TURN_AROUND_BYTE]));
expectations.push(SpiTransaction::read_vec(rx_size_vec));
expectations.push(SpiTransaction::flush());
let mut frame = [0; MTU];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, true);
let ret = th.spe.read_fifo(&mut frame).await;
assert!(matches!(dbg!(ret), Err(AdinError::PACKET_TOO_SMALL)));
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn read_packet_from_fifo_packet_corrupted_fcs() {
let mut frame = [0; MTU];
// Configure expectations
let mut expectations = vec![];
let packet = [0xDE; 60];
let crc_en = true;
// Read RX_SIZE reg
let rx_size: u32 = u32::try_from(packet.len() + FRAME_HEADER_LEN + FCS_LEN).unwrap();
let mut rx_size_vec = rx_size.to_be_bytes().to_vec();
if crc_en {
rx_size_vec.push(crc8(&rx_size_vec));
}
// SPI Header with CRC
let mut rx_fsize = vec![128, 144, 79, TURN_AROUND_BYTE];
if !crc_en {
// remove the CRC on idx 2
rx_fsize.swap_remove(2);
}
expectations.push(SpiTransaction::write_vec(rx_fsize));
expectations.push(SpiTransaction::read_vec(rx_size_vec));
expectations.push(SpiTransaction::flush());
// Read RX reg, SPI Header with CRC
let mut rx_reg = vec![128, 145, 72, TURN_AROUND_BYTE];
if !crc_en {
// remove the CRC on idx 2
rx_reg.swap_remove(2);
}
expectations.push(SpiTransaction::write_vec(rx_reg));
// Frame Header
expectations.push(SpiTransaction::read_vec(vec![0, 0]));
// Packet data
expectations.push(SpiTransaction::read_vec(packet.to_vec()));
let packet_crc = ETH_FCS::new(&packet);
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
tail.extend_from_slice(&packet_crc.hton_bytes());
// increase last byte with 1.
if let Some(crc) = tail.last_mut() {
*crc = crc.wrapping_add(1);
}
// Need extra bytes?
let pad = (packet.len() + FCS_LEN + FRAME_HEADER_LEN) & 0x03;
if pad != 0 {
// Packet FCS + optinal padding
tail.resize(tail.len() + pad, DONT_CARE_BYTE);
}
expectations.push(SpiTransaction::read_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, crc_en, false);
let ret = th.spe.read_fifo(&mut frame).await.expect_err("Error!");
assert!(matches!(ret, AdinError::FCS));
// Mark end of the SPI test.
th.done();
}
#[futures_test::test]
async fn read_packet_to_fifo_check_spi_read_multipule_of_u32_valid_lengths() {
let packet_buffer = [0; MTU];
let mut frame = [0; MTU];
let mut expectations = std::vec::Vec::with_capacity(16);
// Packet data, size = `ETH_MIN_LEN` - `FCS_LEN`
for packet_size in [60, 61, 62, 63, 64, MTU - 4, MTU - 3, MTU - 2, MTU - 1, MTU] {
for crc_en in [false, true] {
expectations.clear();
let packet = &packet_buffer[0..packet_size];
// Read RX_SIZE reg
let rx_size: u32 = u32::try_from(packet.len() + FRAME_HEADER_LEN + FCS_LEN).unwrap();
let mut rx_size_vec = rx_size.to_be_bytes().to_vec();
if crc_en {
rx_size_vec.push(crc8(&rx_size_vec));
}
// SPI Header with CRC
let mut rx_fsize = vec![128, 144, 79, TURN_AROUND_BYTE];
if !crc_en {
// remove the CRC on idx 2
rx_fsize.swap_remove(2);
}
expectations.push(SpiTransaction::write_vec(rx_fsize));
expectations.push(SpiTransaction::read_vec(rx_size_vec));
expectations.push(SpiTransaction::flush());
// Read RX reg, SPI Header with CRC
let mut rx_reg = vec![128, 145, 72, TURN_AROUND_BYTE];
if !crc_en {
// remove the CRC on idx 2
rx_reg.swap_remove(2);
}
expectations.push(SpiTransaction::write_vec(rx_reg));
// Frame Header
expectations.push(SpiTransaction::read_vec(vec![0, 0]));
// Packet data
expectations.push(SpiTransaction::read_vec(packet.to_vec()));
let packet_crc = ETH_FCS::new(packet);
let mut tail = std::vec::Vec::<u8>::with_capacity(100);
tail.extend_from_slice(&packet_crc.hton_bytes());
// Need extra bytes?
let pad = (packet_size + FCS_LEN + FRAME_HEADER_LEN) & 0x03;
if pad != 0 {
// Packet FCS + optinal padding
tail.resize(tail.len() + pad, DONT_CARE_BYTE);
}
expectations.push(SpiTransaction::read_vec(tail));
expectations.push(SpiTransaction::flush());
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, crc_en, false);
let ret = th.spe.read_fifo(&mut frame).await.expect("Error!");
assert_eq!(ret, packet_size);
// Mark end of the SPI test.
th.done();
}
}
}
#[futures_test::test]
async fn spi_crc_error() {
// Configure expectations
let expectations = vec![
SpiTransaction::write_vec(vec![128, 144, 79, TURN_AROUND_BYTE]),
SpiTransaction::read_vec(vec![0x00, 0x00, 0x00, 0x00, 0xDD]),
SpiTransaction::flush(),
];
// Create TestHarnass
let mut th = TestHarnass::new(&expectations, true, false);
let ret = th.spe.read_reg(sr::RX_FSIZE).await;
assert!(matches!(dbg!(ret), Err(AdinError::SPI_CRC)));
// Mark end of the SPI test.
th.done();
}
}