embassy/embassy-stm32/src/rcc/h7/mod.rs

539 lines
18 KiB
Rust
Raw Normal View History

2021-05-19 02:52:34 +02:00
use core::marker::PhantomData;
use embassy::util::Unborrow;
2021-05-21 03:08:07 +02:00
use crate::pac::rcc::vals::Timpre;
use crate::pac::{DBGMCU, RCC, SYSCFG};
2021-05-31 03:21:44 +02:00
use crate::peripherals;
2021-05-21 03:08:07 +02:00
use crate::pwr::{Power, VoltageScale};
2021-06-14 10:48:14 +02:00
use crate::rcc::{set_freqs, Clocks};
2021-05-19 02:52:34 +02:00
use crate::time::Hertz;
2021-05-18 02:35:29 +02:00
mod pll;
2021-05-19 02:52:34 +02:00
use pll::pll_setup;
2021-05-18 02:35:29 +02:00
pub use pll::PllConfig;
2021-05-19 02:52:34 +02:00
const HSI: Hertz = Hertz(64_000_000);
const CSI: Hertz = Hertz(4_000_000);
const HSI48: Hertz = Hertz(48_000_000);
const LSI: Hertz = Hertz(32_000);
2021-05-18 02:35:29 +02:00
2021-05-21 03:08:07 +02:00
/// Core clock frequencies
#[derive(Clone, Copy)]
pub struct CoreClocks {
pub hclk: Hertz,
pub pclk1: Hertz,
pub pclk2: Hertz,
pub pclk3: Hertz,
pub pclk4: Hertz,
pub ppre1: u8,
pub ppre2: u8,
pub ppre3: u8,
pub ppre4: u8,
pub csi_ck: Option<Hertz>,
pub hsi_ck: Option<Hertz>,
pub hsi48_ck: Option<Hertz>,
pub lsi_ck: Option<Hertz>,
pub per_ck: Option<Hertz>,
pub hse_ck: Option<Hertz>,
pub pll1_p_ck: Option<Hertz>,
pub pll1_q_ck: Option<Hertz>,
pub pll1_r_ck: Option<Hertz>,
pub pll2_p_ck: Option<Hertz>,
pub pll2_q_ck: Option<Hertz>,
pub pll2_r_ck: Option<Hertz>,
pub pll3_p_ck: Option<Hertz>,
pub pll3_q_ck: Option<Hertz>,
pub pll3_r_ck: Option<Hertz>,
pub timx_ker_ck: Option<Hertz>,
pub timy_ker_ck: Option<Hertz>,
pub sys_ck: Hertz,
pub c_ck: Hertz,
}
2021-05-18 02:35:29 +02:00
/// Configuration of the core clocks
#[non_exhaustive]
#[derive(Default)]
pub struct Config {
2021-05-19 02:52:34 +02:00
pub hse: Option<Hertz>,
2021-05-18 02:35:29 +02:00
pub bypass_hse: bool,
2021-05-19 02:52:34 +02:00
pub sys_ck: Option<Hertz>,
pub per_ck: Option<Hertz>,
rcc_hclk: Option<Hertz>,
pub hclk: Option<Hertz>,
pub pclk1: Option<Hertz>,
pub pclk2: Option<Hertz>,
pub pclk3: Option<Hertz>,
pub pclk4: Option<Hertz>,
2021-05-18 02:35:29 +02:00
pub pll1: PllConfig,
pub pll2: PllConfig,
pub pll3: PllConfig,
2021-05-19 02:52:34 +02:00
}
pub struct Rcc<'d> {
inner: PhantomData<&'d ()>,
config: Config,
}
impl<'d> Rcc<'d> {
pub fn new(_rcc: impl Unborrow<Target = peripherals::RCC> + 'd, config: Config) -> Self {
Self {
inner: PhantomData,
config,
}
}
/// Freeze the core clocks, returning a Core Clocks Distribution
/// and Reset (CCDR) structure. The actual frequency of the clocks
/// configured is returned in the `clocks` member of the CCDR
/// structure.
///
/// Note that `freeze` will never result in a clock _faster_ than
/// that specified. It may result in a clock that is a factor of [1,
/// 2) slower.
///
/// `syscfg` is required to enable the I/O compensation cell.
///
/// # Panics
///
/// If a clock specification cannot be achieved within the
/// hardware specification then this function will panic. This
/// function may also panic if a clock specification can be
/// achieved, but the mechanism for doing so is not yet
/// implemented here.
2021-05-21 03:08:07 +02:00
pub fn freeze(mut self, pwr: &Power) -> CoreClocks {
2021-06-07 12:03:31 +02:00
use crate::pac::rcc::vals::{Ckpersel, Dppre, Hpre, Hsebyp, Hsidiv, Pllsrc, Sw};
2021-05-19 02:52:34 +02:00
let srcclk = self.config.hse.unwrap_or(HSI); // Available clocks
let (sys_ck, sys_use_pll1_p) = self.sys_ck_setup(srcclk);
2021-05-21 03:08:07 +02:00
// Configure traceclk from PLL if needed
self.traceclk_setup(sys_use_pll1_p);
2021-05-19 02:52:34 +02:00
// NOTE(unsafe) We have exclusive access to the RCC
let (pll1_p_ck, pll1_q_ck, pll1_r_ck) =
unsafe { pll_setup(srcclk.0, &self.config.pll1, 0) };
let (pll2_p_ck, pll2_q_ck, pll2_r_ck) =
unsafe { pll_setup(srcclk.0, &self.config.pll2, 1) };
let (pll3_p_ck, pll3_q_ck, pll3_r_ck) =
unsafe { pll_setup(srcclk.0, &self.config.pll3, 2) };
let sys_ck = if sys_use_pll1_p {
Hertz(pll1_p_ck.unwrap()) // Must have been set by sys_ck_setup
} else {
sys_ck
};
// NOTE(unsafe) We own the regblock
unsafe {
// This routine does not support HSIDIV != 1. To
// do so it would need to ensure all PLLxON bits are clear
// before changing the value of HSIDIV
let cr = RCC.cr().read();
2021-06-07 12:03:31 +02:00
assert!(cr.hsion());
2021-05-19 02:52:34 +02:00
assert!(cr.hsidiv() == Hsidiv::DIV1);
2021-06-07 12:03:31 +02:00
RCC.csr().modify(|w| w.set_lsion(true));
2021-05-19 02:52:34 +02:00
while !RCC.csr().read().lsirdy() {}
}
// per_ck from HSI by default
let (per_ck, ckpersel) = match (self.config.per_ck == self.config.hse, self.config.per_ck) {
(true, Some(hse)) => (hse, Ckpersel::HSE), // HSE
(_, Some(CSI)) => (CSI, Ckpersel::CSI), // CSI
_ => (HSI, Ckpersel::HSI), // HSI
};
// D1 Core Prescaler
// Set to 1
let d1cpre_bits = 0;
let d1cpre_div = 1;
let sys_d1cpre_ck = sys_ck.0 / d1cpre_div;
// Refer to part datasheet "General operating conditions"
// table for (rev V). We do not assert checks for earlier
// revisions which may have lower limits.
2021-05-21 03:08:07 +02:00
let (sys_d1cpre_ck_max, rcc_hclk_max, pclk_max) = match pwr.vos {
2021-05-19 02:52:34 +02:00
VoltageScale::Scale0 => (480_000_000, 240_000_000, 120_000_000),
VoltageScale::Scale1 => (400_000_000, 200_000_000, 100_000_000),
VoltageScale::Scale2 => (300_000_000, 150_000_000, 75_000_000),
_ => (200_000_000, 100_000_000, 50_000_000),
};
assert!(sys_d1cpre_ck <= sys_d1cpre_ck_max);
let rcc_hclk = self
.config
.rcc_hclk
.map(|v| v.0)
.unwrap_or(sys_d1cpre_ck / 2);
assert!(rcc_hclk <= rcc_hclk_max);
// Estimate divisor
let (hpre_bits, hpre_div) = match (sys_d1cpre_ck + rcc_hclk - 1) / rcc_hclk {
2021-05-21 03:08:07 +02:00
0 => panic!(),
2021-05-19 02:52:34 +02:00
1 => (Hpre::DIV1, 1),
2 => (Hpre::DIV2, 2),
3..=5 => (Hpre::DIV4, 4),
6..=11 => (Hpre::DIV8, 8),
12..=39 => (Hpre::DIV16, 16),
40..=95 => (Hpre::DIV64, 64),
96..=191 => (Hpre::DIV128, 128),
192..=383 => (Hpre::DIV256, 256),
_ => (Hpre::DIV512, 512),
};
// Calculate real AXI and AHB clock
let rcc_hclk = sys_d1cpre_ck / hpre_div;
assert!(rcc_hclk <= rcc_hclk_max);
let rcc_aclk = rcc_hclk; // AXI clock is always equal to AHB clock on H7
2021-05-21 03:08:07 +02:00
// Timer prescaler selection
let timpre = Timpre::DEFAULTX2;
let requested_pclk1 = self
.config
.pclk1
.map(|v| v.0)
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
let (rcc_pclk1, ppre1_bits, ppre1, rcc_timerx_ker_ck) =
Self::ppre_calculate(requested_pclk1, rcc_hclk, pclk_max, Some(timpre));
let requested_pclk2 = self
.config
.pclk2
.map(|v| v.0)
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
let (rcc_pclk2, ppre2_bits, ppre2, rcc_timery_ker_ck) =
Self::ppre_calculate(requested_pclk2, rcc_hclk, pclk_max, Some(timpre));
let requested_pclk3 = self
.config
.pclk3
.map(|v| v.0)
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
let (rcc_pclk3, ppre3_bits, ppre3, _) =
Self::ppre_calculate(requested_pclk3, rcc_hclk, pclk_max, None);
let requested_pclk4 = self
.config
.pclk4
.map(|v| v.0)
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
let (rcc_pclk4, ppre4_bits, ppre4, _) =
Self::ppre_calculate(requested_pclk4, rcc_hclk, pclk_max, None);
Self::flash_setup(rcc_aclk, pwr.vos);
// Start switching clocks -------------------
// NOTE(unsafe) We have the RCC singleton
unsafe {
// Ensure CSI is on and stable
2021-06-07 12:03:31 +02:00
RCC.cr().modify(|w| w.set_csion(true));
2021-05-21 03:08:07 +02:00
while !RCC.cr().read().csirdy() {}
// Ensure HSI48 is on and stable
2021-06-07 12:03:31 +02:00
RCC.cr().modify(|w| w.set_hsi48on(true));
while !RCC.cr().read().hsi48on() {}
2021-05-21 03:08:07 +02:00
// XXX: support MCO ?
let hse_ck = match self.config.hse {
Some(hse) => {
// Ensure HSE is on and stable
RCC.cr().modify(|w| {
2021-06-07 12:03:31 +02:00
w.set_hseon(true);
2021-05-21 03:08:07 +02:00
w.set_hsebyp(if self.config.bypass_hse {
Hsebyp::BYPASSED
} else {
Hsebyp::NOTBYPASSED
});
});
while !RCC.cr().read().hserdy() {}
Some(hse)
}
None => None,
};
let pllsrc = if self.config.hse.is_some() {
Pllsrc::HSE
} else {
Pllsrc::HSI
};
RCC.pllckselr().modify(|w| w.set_pllsrc(pllsrc));
2021-06-07 12:03:31 +02:00
let enable_pll = |pll| {
RCC.cr().modify(|w| w.set_pllon(pll, true));
while !RCC.cr().read().pllrdy(pll) {}
};
2021-05-21 03:08:07 +02:00
if pll1_p_ck.is_some() {
2021-06-07 12:03:31 +02:00
enable_pll(0);
2021-05-21 03:08:07 +02:00
}
if pll2_p_ck.is_some() {
2021-06-07 12:03:31 +02:00
enable_pll(1);
2021-05-21 03:08:07 +02:00
}
if pll3_p_ck.is_some() {
2021-06-07 12:03:31 +02:00
enable_pll(2);
2021-05-21 03:08:07 +02:00
}
2021-05-19 02:52:34 +02:00
2021-05-21 03:08:07 +02:00
// Core Prescaler / AHB Prescaler / APB3 Prescaler
RCC.d1cfgr().modify(|w| {
w.set_d1cpre(Hpre(d1cpre_bits));
2021-06-07 12:03:31 +02:00
w.set_d1ppre(Dppre(ppre3_bits));
2021-05-21 03:08:07 +02:00
w.set_hpre(hpre_bits)
});
// Ensure core prescaler value is valid before future lower
// core voltage
while RCC.d1cfgr().read().d1cpre().0 != d1cpre_bits {}
// APB1 / APB2 Prescaler
RCC.d2cfgr().modify(|w| {
2021-06-07 12:03:31 +02:00
w.set_d2ppre1(Dppre(ppre1_bits));
w.set_d2ppre2(Dppre(ppre2_bits));
2021-05-21 03:08:07 +02:00
});
// APB4 Prescaler
2021-06-07 12:03:31 +02:00
RCC.d3cfgr().modify(|w| w.set_d3ppre(Dppre(ppre4_bits)));
2021-05-21 03:08:07 +02:00
// Peripheral Clock (per_ck)
RCC.d1ccipr().modify(|w| w.set_ckpersel(ckpersel));
// Set timer clocks prescaler setting
RCC.cfgr().modify(|w| w.set_timpre(timpre));
// Select system clock source
let sw = match (sys_use_pll1_p, self.config.hse.is_some()) {
(true, _) => Sw::PLL1,
(false, true) => Sw::HSE,
_ => Sw::HSI,
};
RCC.cfgr().modify(|w| w.set_sw(sw));
while RCC.cfgr().read().sws() != sw.0 {}
// IO compensation cell - Requires CSI clock and SYSCFG
assert!(RCC.cr().read().csirdy());
2021-06-07 12:03:31 +02:00
RCC.apb4enr().modify(|w| w.set_syscfgen(true));
2021-05-21 03:08:07 +02:00
// Enable the compensation cell, using back-bias voltage code
// provide by the cell.
critical_section::with(|_| {
SYSCFG.cccsr().modify(|w| {
w.set_en(true);
w.set_cs(false);
w.set_hslv(false);
})
});
while !SYSCFG.cccsr().read().ready() {}
CoreClocks {
hclk: Hertz(rcc_hclk),
pclk1: Hertz(rcc_pclk1),
pclk2: Hertz(rcc_pclk2),
pclk3: Hertz(rcc_pclk3),
pclk4: Hertz(rcc_pclk4),
ppre1,
ppre2,
ppre3,
ppre4,
csi_ck: Some(CSI),
hsi_ck: Some(HSI),
hsi48_ck: Some(HSI48),
lsi_ck: Some(LSI),
per_ck: Some(per_ck),
hse_ck,
pll1_p_ck: pll1_p_ck.map(Hertz),
pll1_q_ck: pll1_q_ck.map(Hertz),
pll1_r_ck: pll1_r_ck.map(Hertz),
pll2_p_ck: pll2_p_ck.map(Hertz),
pll2_q_ck: pll2_q_ck.map(Hertz),
pll2_r_ck: pll2_r_ck.map(Hertz),
pll3_p_ck: pll3_p_ck.map(Hertz),
pll3_q_ck: pll3_q_ck.map(Hertz),
pll3_r_ck: pll3_r_ck.map(Hertz),
timx_ker_ck: rcc_timerx_ker_ck.map(Hertz),
timy_ker_ck: rcc_timery_ker_ck.map(Hertz),
sys_ck,
c_ck: Hertz(sys_d1cpre_ck),
}
}
}
/// Enables debugging during WFI/WFE
///
/// Set `enable_dma1` to true if you do not have at least one bus master (other than the CPU)
/// enable during WFI/WFE
pub fn enable_debug_wfe(&mut self, _dbg: &mut peripherals::DBGMCU, enable_dma1: bool) {
// NOTE(unsafe) We have exclusive access to the RCC and DBGMCU
2021-05-21 03:08:07 +02:00
unsafe {
if enable_dma1 {
2021-06-07 12:03:31 +02:00
RCC.ahb1enr().modify(|w| w.set_dma1en(true));
2021-05-21 03:08:07 +02:00
}
DBGMCU.cr().modify(|w| {
w.set_dbgsleep_d1(true);
w.set_dbgstby_d1(true);
w.set_dbgstop_d1(true);
});
2021-05-21 03:08:07 +02:00
}
}
/// Setup traceclk
/// Returns a pll1_r_ck
fn traceclk_setup(&mut self, sys_use_pll1_p: bool) {
let pll1_r_ck = match (sys_use_pll1_p, self.config.pll1.r_ck) {
// pll1_p_ck selected as system clock but pll1_r_ck not
// set. The traceclk mux is synchronous with the system
// clock mux, but has pll1_r_ck as an input. In order to
// keep traceclk running, we force a pll1_r_ck.
(true, None) => Some(Hertz(self.config.pll1.p_ck.unwrap().0 / 2)),
// Either pll1 not selected as system clock, free choice
// of pll1_r_ck. Or pll1 is selected, assume user has set
// a suitable pll1_r_ck frequency.
_ => self.config.pll1.r_ck,
};
self.config.pll1.r_ck = pll1_r_ck;
}
/// Divider calculator for pclk 1 - 4
///
/// Returns real pclk, bits, ppre and the timer kernel clock
fn ppre_calculate(
requested_pclk: u32,
hclk: u32,
max_pclk: u32,
tim_pre: Option<Timpre>,
) -> (u32, u8, u8, Option<u32>) {
let (bits, ppre) = match (hclk + requested_pclk - 1) / requested_pclk {
0 => panic!(),
1 => (0b000, 1),
2 => (0b100, 2),
3..=5 => (0b101, 4),
6..=11 => (0b110, 8),
_ => (0b111, 16),
};
let real_pclk = hclk / u32::from(ppre);
2021-05-21 04:21:22 +02:00
assert!(real_pclk <= max_pclk);
2021-05-21 03:08:07 +02:00
let tim_ker_clk = if let Some(tim_pre) = tim_pre {
let clk = match (bits, tim_pre) {
(0b101, Timpre::DEFAULTX2) => hclk / 2,
(0b110, Timpre::DEFAULTX4) => hclk / 2,
(0b110, Timpre::DEFAULTX2) => hclk / 4,
(0b111, Timpre::DEFAULTX4) => hclk / 4,
(0b111, Timpre::DEFAULTX2) => hclk / 8,
_ => hclk,
};
Some(clk)
} else {
None
};
(real_pclk, bits, ppre, tim_ker_clk)
2021-05-19 02:52:34 +02:00
}
/// Setup sys_ck
/// Returns sys_ck frequency, and a pll1_p_ck
fn sys_ck_setup(&mut self, srcclk: Hertz) -> (Hertz, bool) {
// Compare available with wanted clocks
let sys_ck = self.config.sys_ck.unwrap_or(srcclk);
if sys_ck != srcclk {
// The requested system clock is not the immediately available
// HSE/HSI clock. Perhaps there are other ways of obtaining
// the requested system clock (such as `HSIDIV`) but we will
// ignore those for now.
//
// Therefore we must use pll1_p_ck
let pll1_p_ck = match self.config.pll1.p_ck {
Some(p_ck) => {
assert!(p_ck == sys_ck,
"Error: Cannot set pll1_p_ck independently as it must be used to generate sys_ck");
Some(p_ck)
}
None => Some(sys_ck),
};
self.config.pll1.p_ck = pll1_p_ck;
(sys_ck, true)
} else {
// sys_ck is derived directly from a source clock
// (HSE/HSI). pll1_p_ck can be as requested
(sys_ck, false)
}
}
2021-05-21 03:08:07 +02:00
fn flash_setup(rcc_aclk: u32, vos: VoltageScale) {
use crate::pac::FLASH;
// ACLK in MHz, round down and subtract 1 from integers. eg.
// 61_999_999 -> 61MHz
// 62_000_000 -> 61MHz
// 62_000_001 -> 62MHz
let rcc_aclk_mhz = (rcc_aclk - 1) / 1_000_000;
// See RM0433 Rev 7 Table 17. FLASH recommended number of wait
// states and programming delay
let (wait_states, progr_delay) = match vos {
// VOS 0 range VCORE 1.26V - 1.40V
VoltageScale::Scale0 => match rcc_aclk_mhz {
0..=69 => (0, 0),
70..=139 => (1, 1),
140..=184 => (2, 1),
185..=209 => (2, 2),
210..=224 => (3, 2),
225..=239 => (4, 2),
_ => (7, 3),
},
// VOS 1 range VCORE 1.15V - 1.26V
VoltageScale::Scale1 => match rcc_aclk_mhz {
0..=69 => (0, 0),
70..=139 => (1, 1),
140..=184 => (2, 1),
185..=209 => (2, 2),
210..=224 => (3, 2),
_ => (7, 3),
},
// VOS 2 range VCORE 1.05V - 1.15V
VoltageScale::Scale2 => match rcc_aclk_mhz {
0..=54 => (0, 0),
55..=109 => (1, 1),
110..=164 => (2, 1),
165..=224 => (3, 2),
_ => (7, 3),
},
// VOS 3 range VCORE 0.95V - 1.05V
VoltageScale::Scale3 => match rcc_aclk_mhz {
0..=44 => (0, 0),
45..=89 => (1, 1),
90..=134 => (2, 1),
135..=179 => (3, 2),
180..=224 => (4, 2),
_ => (7, 3),
},
};
// NOTE(unsafe) Atomic write
unsafe {
FLASH.acr().write(|w| {
w.set_wrhighfreq(progr_delay);
w.set_latency(wait_states)
});
while FLASH.acr().read().latency() != wait_states {}
}
}
2021-05-18 02:35:29 +02:00
}
2021-06-14 10:48:14 +02:00
pub unsafe fn init(config: Config) {
let mut power = Power::new(<peripherals::PWR as embassy::util::Steal>::steal(), false);
let rcc = Rcc::new(<peripherals::RCC as embassy::util::Steal>::steal(), config);
let core_clocks = rcc.freeze(&mut power);
set_freqs(Clocks {
sys: core_clocks.c_ck,
ahb1: core_clocks.hclk,
ahb2: core_clocks.hclk,
apb1: core_clocks.pclk1,
apb2: core_clocks.pclk2,
apb4: core_clocks.pclk4,
});
}