embassy/examples/stm32f4/src/bin/usb_raw.rs

223 lines
8.2 KiB
Rust
Raw Normal View History

//! Example of using USB without a pre-defined class, but instead responding to
//! raw USB control requests.
//!
//! The host computer can either:
//! * send a command, with a 16-bit request ID, a 16-bit value, and an optional data buffer
//! * request some data, with a 16-bit request ID, a 16-bit value, and a length of data to receive
//!
//! For higher throughput data, you can add some bulk endpoints after creating the alternate,
//! but for low rate command/response, plain control transfers can be very simple and effective.
//!
//! Example code to send/receive data using `nusb`:
//!
//! ```ignore
//! use futures_lite::future::block_on;
//! use nusb::transfer::{ControlIn, ControlOut, ControlType, Recipient};
//!
//! fn main() {
//! let di = nusb::list_devices()
//! .unwrap()
//! .find(|d| d.vendor_id() == 0xc0de && d.product_id() == 0xcafe)
//! .expect("no device found");
//! let device = di.open().expect("error opening device");
//! let interface = device.claim_interface(0).expect("error claiming interface");
//!
//! // Send "hello world" to device
//! let result = block_on(interface.control_out(ControlOut {
//! control_type: ControlType::Vendor,
//! recipient: Recipient::Interface,
//! request: 100,
//! value: 200,
//! index: 0,
//! data: b"hello world",
//! }));
//! println!("{result:?}");
//!
//! // Receive "hello" from device
//! let result = block_on(interface.control_in(ControlIn {
//! control_type: ControlType::Vendor,
//! recipient: Recipient::Interface,
//! request: 101,
//! value: 201,
//! index: 0,
//! length: 5,
//! }));
//! println!("{result:?}");
//! }
//! ```
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::time::Hertz;
use embassy_stm32::usb_otg::Driver;
use embassy_stm32::{bind_interrupts, peripherals, usb_otg, Config};
use embassy_usb::control::{InResponse, OutResponse, Recipient, Request, RequestType};
use embassy_usb::msos::{self, windows_version};
use embassy_usb::types::InterfaceNumber;
use embassy_usb::{Builder, Handler};
use {defmt_rtt as _, panic_probe as _};
// Randomly generated UUID because Windows requires you provide one to use WinUSB.
// In principle WinUSB-using software could find this device (or a specific interface
// on it) by its GUID instead of using the VID/PID, but in practice that seems unhelpful.
const DEVICE_INTERFACE_GUIDS: &[&str] = &["{DAC2087C-63FA-458D-A55D-827C0762DEC7}"];
bind_interrupts!(struct Irqs {
OTG_FS => usb_otg::InterruptHandler<peripherals::USB_OTG_FS>;
});
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello World!");
let mut config = Config::default();
{
use embassy_stm32::rcc::*;
config.rcc.hse = Some(Hse {
freq: Hertz(8_000_000),
mode: HseMode::Bypass,
});
config.rcc.pll_src = PllSource::HSE;
config.rcc.pll = Some(Pll {
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL168,
divp: Some(Pllp::DIV2), // 8mhz / 4 * 168 / 2 = 168Mhz.
divq: Some(Pllq::DIV7), // 8mhz / 4 * 168 / 7 = 48Mhz.
divr: None,
});
config.rcc.ahb_pre = AHBPrescaler::DIV1;
config.rcc.apb1_pre = APBPrescaler::DIV4;
config.rcc.apb2_pre = APBPrescaler::DIV2;
config.rcc.sys = Sysclk::PLL1_P;
}
let p = embassy_stm32::init(config);
// Create the driver, from the HAL.
let mut ep_out_buffer = [0u8; 256];
let mut config = embassy_stm32::usb_otg::Config::default();
config.vbus_detection = true;
let driver = Driver::new_fs(p.USB_OTG_FS, Irqs, p.PA12, p.PA11, &mut ep_out_buffer, config);
// Create embassy-usb Config
let mut config = embassy_usb::Config::new(0xc0de, 0xcafe);
config.manufacturer = Some("Embassy");
config.product = Some("USB-raw example");
config.serial_number = Some("12345678");
// Required for windows compatibility.
// https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.9.1/kconfig/CONFIG_CDC_ACM_IAD.html#help
config.device_class = 0xEF;
config.device_sub_class = 0x02;
config.device_protocol = 0x01;
config.composite_with_iads = true;
// Create embassy-usb DeviceBuilder using the driver and config.
// It needs some buffers for building the descriptors.
let mut device_descriptor = [0; 256];
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 256];
let mut msos_descriptor = [0; 256];
let mut control_buf = [0; 64];
let mut handler = ControlHandler {
if_num: InterfaceNumber(0),
};
let mut builder = Builder::new(
driver,
config,
&mut device_descriptor,
&mut config_descriptor,
&mut bos_descriptor,
&mut msos_descriptor,
&mut control_buf,
);
// Add the Microsoft OS Descriptor (MSOS/MOD) descriptor.
// We tell Windows that this entire device is compatible with the "WINUSB" feature,
// which causes it to use the built-in WinUSB driver automatically, which in turn
// can be used by libusb/rusb software without needing a custom driver or INF file.
// In principle you might want to call msos_feature() just on a specific function,
// if your device also has other functions that still use standard class drivers.
builder.msos_descriptor(windows_version::WIN8_1, 0);
builder.msos_feature(msos::CompatibleIdFeatureDescriptor::new("WINUSB", ""));
builder.msos_feature(msos::RegistryPropertyFeatureDescriptor::new(
"DeviceInterfaceGUIDs",
msos::PropertyData::RegMultiSz(DEVICE_INTERFACE_GUIDS),
));
// Add a vendor-specific function (class 0xFF), and corresponding interface,
// that uses our custom handler.
let mut function = builder.function(0xFF, 0, 0);
let mut interface = function.interface();
let _alternate = interface.alt_setting(0xFF, 0, 0, None);
handler.if_num = interface.interface_number();
drop(function);
builder.handler(&mut handler);
// Build the builder.
let mut usb = builder.build();
// Run the USB device.
usb.run().await;
}
/// Handle CONTROL endpoint requests and responses. For many simple requests and responses
/// you can get away with only using the control endpoint.
struct ControlHandler {
if_num: InterfaceNumber,
}
impl Handler for ControlHandler {
/// Respond to HostToDevice control messages, where the host sends us a command and
/// optionally some data, and we can only acknowledge or reject it.
fn control_out<'a>(&'a mut self, req: Request, buf: &'a [u8]) -> Option<OutResponse> {
// Log the request before filtering to help with debugging.
info!("Got control_out, request={}, buf={:a}", req, buf);
// Only handle Vendor request types to an Interface.
if req.request_type != RequestType::Vendor || req.recipient != Recipient::Interface {
return None;
}
// Ignore requests to other interfaces.
if req.index != self.if_num.0 as u16 {
return None;
}
// Accept request 100, value 200, reject others.
if req.request == 100 && req.value == 200 {
Some(OutResponse::Accepted)
} else {
Some(OutResponse::Rejected)
}
}
/// Respond to DeviceToHost control messages, where the host requests some data from us.
fn control_in<'a>(&'a mut self, req: Request, buf: &'a mut [u8]) -> Option<InResponse<'a>> {
info!("Got control_in, request={}", req);
// Only handle Vendor request types to an Interface.
if req.request_type != RequestType::Vendor || req.recipient != Recipient::Interface {
return None;
}
// Ignore requests to other interfaces.
if req.index != self.if_num.0 as u16 {
return None;
}
// Respond "hello" to request 101, value 201, when asked for 5 bytes, otherwise reject.
if req.request == 101 && req.value == 201 && req.length == 5 {
buf[..5].copy_from_slice(b"hello");
Some(InResponse::Accepted(&buf[..5]))
} else {
Some(InResponse::Rejected)
}
}
}