1386 lines
47 KiB
Rust
Raw Normal View History

use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::task::Poll;
use atomic_polyfill::{AtomicBool, AtomicU16, Ordering};
use embassy_cortex_m::interrupt::InterruptExt;
use embassy_hal_common::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use embassy_usb_driver::{
self, Direction, EndpointAddress, EndpointAllocError, EndpointError, EndpointIn, EndpointInfo, EndpointOut,
EndpointType, Event, Unsupported,
};
use futures::future::poll_fn;
use super::*;
use crate::gpio::sealed::AFType;
use crate::pac::otg::{regs, vals};
use crate::rcc::sealed::RccPeripheral;
use crate::time::Hertz;
macro_rules! config_ulpi_pins {
($($pin:ident),*) => {
into_ref!($($pin),*);
// NOTE(unsafe) Exclusive access to the registers
critical_section::with(|_| unsafe {
$(
$pin.set_as_af($pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
$pin.set_speed(crate::gpio::Speed::VeryHigh);
)*
})
};
}
// From `synopsys-usb-otg` crate:
// This calculation doesn't correspond to one in a Reference Manual.
// In fact, the required number of words is higher than indicated in RM.
// The following numbers are pessimistic and were figured out empirically.
const RX_FIFO_EXTRA_SIZE_WORDS: u16 = 30;
/// USB PHY type
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum PhyType {
/// Internal Full-Speed PHY
///
/// Available on most High-Speed peripherals.
InternalFullSpeed,
/// Internal High-Speed PHY
///
/// Available on a few STM32 chips.
InternalHighSpeed,
/// External ULPI High-Speed PHY
ExternalHighSpeed,
}
impl PhyType {
pub fn internal(&self) -> bool {
match self {
PhyType::InternalFullSpeed | PhyType::InternalHighSpeed => true,
PhyType::ExternalHighSpeed => false,
}
}
pub fn high_speed(&self) -> bool {
match self {
PhyType::InternalFullSpeed => false,
PhyType::ExternalHighSpeed | PhyType::InternalHighSpeed => true,
}
}
pub fn to_dspd(&self) -> vals::Dspd {
match self {
PhyType::InternalFullSpeed => vals::Dspd::FULL_SPEED_INTERNAL,
PhyType::InternalHighSpeed => vals::Dspd::HIGH_SPEED,
PhyType::ExternalHighSpeed => vals::Dspd::HIGH_SPEED,
}
}
}
/// Indicates that [State::ep_out_buffers] is empty.
const EP_OUT_BUFFER_EMPTY: u16 = u16::MAX;
pub struct State<const EP_COUNT: usize> {
/// Holds received SETUP packets. Available if [State::ep0_setup_ready] is true.
ep0_setup_data: UnsafeCell<[u8; 8]>,
ep0_setup_ready: AtomicBool,
ep_in_wakers: [AtomicWaker; EP_COUNT],
ep_out_wakers: [AtomicWaker; EP_COUNT],
/// RX FIFO is shared so extra buffers are needed to dequeue all data without waiting on each endpoint.
/// Buffers are ready when associated [State::ep_out_size] != [EP_OUT_BUFFER_EMPTY].
ep_out_buffers: [UnsafeCell<*mut u8>; EP_COUNT],
ep_out_size: [AtomicU16; EP_COUNT],
bus_waker: AtomicWaker,
}
unsafe impl<const EP_COUNT: usize> Send for State<EP_COUNT> {}
unsafe impl<const EP_COUNT: usize> Sync for State<EP_COUNT> {}
impl<const EP_COUNT: usize> State<EP_COUNT> {
pub const fn new() -> Self {
const NEW_AW: AtomicWaker = AtomicWaker::new();
const NEW_BUF: UnsafeCell<*mut u8> = UnsafeCell::new(0 as _);
const NEW_SIZE: AtomicU16 = AtomicU16::new(EP_OUT_BUFFER_EMPTY);
Self {
ep0_setup_data: UnsafeCell::new([0u8; 8]),
ep0_setup_ready: AtomicBool::new(false),
ep_in_wakers: [NEW_AW; EP_COUNT],
ep_out_wakers: [NEW_AW; EP_COUNT],
ep_out_buffers: [NEW_BUF; EP_COUNT],
ep_out_size: [NEW_SIZE; EP_COUNT],
bus_waker: NEW_AW,
}
}
}
#[derive(Debug, Clone, Copy)]
struct EndpointData {
ep_type: EndpointType,
max_packet_size: u16,
fifo_size_words: u16,
}
pub struct Driver<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
irq: PeripheralRef<'d, T::Interrupt>,
ep_in: [Option<EndpointData>; MAX_EP_COUNT],
ep_out: [Option<EndpointData>; MAX_EP_COUNT],
ep_out_buffer: &'d mut [u8],
ep_out_buffer_offset: usize,
phy_type: PhyType,
}
impl<'d, T: Instance> Driver<'d, T> {
/// Initializes USB OTG peripheral with internal Full-Speed PHY.
///
/// # Arguments
///
/// * `ep_out_buffer` - An internal buffer used to temporarily store recevied packets.
/// Must be large enough to fit all OUT endpoint max packet sizes.
/// Endpoint allocation will fail if it is too small.
pub fn new_fs(
_peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
dp: impl Peripheral<P = impl DpPin<T>> + 'd,
dm: impl Peripheral<P = impl DmPin<T>> + 'd,
ep_out_buffer: &'d mut [u8],
) -> Self {
into_ref!(dp, dm, irq);
unsafe {
dp.set_as_af(dp.af_num(), AFType::OutputPushPull);
dm.set_as_af(dm.af_num(), AFType::OutputPushPull);
}
Self {
phantom: PhantomData,
irq,
ep_in: [None; MAX_EP_COUNT],
ep_out: [None; MAX_EP_COUNT],
ep_out_buffer,
ep_out_buffer_offset: 0,
phy_type: PhyType::InternalFullSpeed,
}
}
/// Initializes USB OTG peripheral with external High-Speed PHY.
///
/// # Arguments
///
/// * `ep_out_buffer` - An internal buffer used to temporarily store recevied packets.
/// Must be large enough to fit all OUT endpoint max packet sizes.
/// Endpoint allocation will fail if it is too small.
pub fn new_hs_ulpi(
_peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
ulpi_clk: impl Peripheral<P = impl UlpiClkPin<T>> + 'd,
ulpi_dir: impl Peripheral<P = impl UlpiDirPin<T>> + 'd,
ulpi_nxt: impl Peripheral<P = impl UlpiNxtPin<T>> + 'd,
ulpi_stp: impl Peripheral<P = impl UlpiStpPin<T>> + 'd,
ulpi_d0: impl Peripheral<P = impl UlpiD0Pin<T>> + 'd,
ulpi_d1: impl Peripheral<P = impl UlpiD1Pin<T>> + 'd,
ulpi_d2: impl Peripheral<P = impl UlpiD2Pin<T>> + 'd,
ulpi_d3: impl Peripheral<P = impl UlpiD3Pin<T>> + 'd,
ulpi_d4: impl Peripheral<P = impl UlpiD4Pin<T>> + 'd,
ulpi_d5: impl Peripheral<P = impl UlpiD5Pin<T>> + 'd,
ulpi_d6: impl Peripheral<P = impl UlpiD6Pin<T>> + 'd,
ulpi_d7: impl Peripheral<P = impl UlpiD7Pin<T>> + 'd,
ep_out_buffer: &'d mut [u8],
) -> Self {
assert!(T::HIGH_SPEED == true, "Peripheral is not capable of high-speed USB");
config_ulpi_pins!(
ulpi_clk, ulpi_dir, ulpi_nxt, ulpi_stp, ulpi_d0, ulpi_d1, ulpi_d2, ulpi_d3, ulpi_d4, ulpi_d5, ulpi_d6,
ulpi_d7
);
into_ref!(irq);
Self {
phantom: PhantomData,
irq,
ep_in: [None; MAX_EP_COUNT],
ep_out: [None; MAX_EP_COUNT],
ep_out_buffer,
ep_out_buffer_offset: 0,
phy_type: PhyType::ExternalHighSpeed,
}
}
// Returns total amount of words (u32) allocated in dedicated FIFO
fn allocated_fifo_words(&self) -> u16 {
RX_FIFO_EXTRA_SIZE_WORDS + ep_fifo_size(&self.ep_out) + ep_fifo_size(&self.ep_in)
}
fn alloc_endpoint<D: Dir>(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Endpoint<'d, T, D>, EndpointAllocError> {
trace!(
"allocating type={:?} mps={:?} interval={}, dir={:?}",
ep_type,
max_packet_size,
interval,
D::dir()
);
if D::dir() == Direction::Out {
if self.ep_out_buffer_offset + max_packet_size as usize >= self.ep_out_buffer.len() {
error!("Not enough endpoint out buffer capacity");
return Err(EndpointAllocError);
}
};
let fifo_size_words = match D::dir() {
Direction::Out => (max_packet_size + 3) / 4,
// INEPTXFD requires minimum size of 16 words
Direction::In => u16::max((max_packet_size + 3) / 4, 16),
};
if fifo_size_words + self.allocated_fifo_words() > T::FIFO_DEPTH_WORDS {
error!("Not enough FIFO capacity");
return Err(EndpointAllocError);
}
let eps = match D::dir() {
Direction::Out => &mut self.ep_out,
Direction::In => &mut self.ep_in,
};
// Find free endpoint slot
let slot = eps.iter_mut().enumerate().find(|(i, ep)| {
if *i == 0 && ep_type != EndpointType::Control {
// reserved for control pipe
false
} else {
ep.is_none()
}
});
let index = match slot {
Some((index, ep)) => {
*ep = Some(EndpointData {
ep_type,
max_packet_size,
fifo_size_words,
});
index
}
None => {
error!("No free endpoints available");
return Err(EndpointAllocError);
}
};
trace!(" index={}", index);
if D::dir() == Direction::Out {
// Buffer capacity check was done above, now allocation cannot fail
unsafe {
*T::state().ep_out_buffers[index].get() =
self.ep_out_buffer.as_mut_ptr().offset(self.ep_out_buffer_offset as _);
}
self.ep_out_buffer_offset += max_packet_size as usize;
}
Ok(Endpoint {
_phantom: PhantomData,
info: EndpointInfo {
addr: EndpointAddress::from_parts(index, D::dir()),
ep_type,
max_packet_size,
interval,
},
})
}
}
impl<'d, T: Instance> embassy_usb_driver::Driver<'d> for Driver<'d, T> {
type EndpointOut = Endpoint<'d, T, Out>;
type EndpointIn = Endpoint<'d, T, In>;
type ControlPipe = ControlPipe<'d, T>;
type Bus = Bus<'d, T>;
fn alloc_endpoint_in(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointIn, EndpointAllocError> {
self.alloc_endpoint(ep_type, max_packet_size, interval)
}
fn alloc_endpoint_out(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointOut, EndpointAllocError> {
self.alloc_endpoint(ep_type, max_packet_size, interval)
}
fn start(mut self, control_max_packet_size: u16) -> (Self::Bus, Self::ControlPipe) {
let ep_out = self
.alloc_endpoint(EndpointType::Control, control_max_packet_size, 0)
.unwrap();
let ep_in = self
.alloc_endpoint(EndpointType::Control, control_max_packet_size, 0)
.unwrap();
assert_eq!(ep_out.info.addr.index(), 0);
assert_eq!(ep_in.info.addr.index(), 0);
trace!("start");
(
Bus {
phantom: PhantomData,
irq: self.irq,
ep_in: self.ep_in,
ep_out: self.ep_out,
phy_type: self.phy_type,
enabled: false,
},
ControlPipe {
_phantom: PhantomData,
max_packet_size: control_max_packet_size,
ep_out,
ep_in,
},
)
}
}
pub struct Bus<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
irq: PeripheralRef<'d, T::Interrupt>,
ep_in: [Option<EndpointData>; MAX_EP_COUNT],
ep_out: [Option<EndpointData>; MAX_EP_COUNT],
phy_type: PhyType,
enabled: bool,
}
impl<'d, T: Instance> Bus<'d, T> {
fn restore_irqs() {
// SAFETY: atomic write
unsafe {
T::regs().gintmsk().write(|w| {
w.set_usbrst(true);
w.set_enumdnem(true);
w.set_usbsuspm(true);
w.set_wuim(true);
w.set_iepint(true);
w.set_oepint(true);
w.set_rxflvlm(true);
});
}
}
}
impl<'d, T: Instance> Bus<'d, T> {
fn init_fifo(&mut self) {
trace!("init_fifo");
let r = T::regs();
// Configure RX fifo size. All endpoints share the same FIFO area.
let rx_fifo_size_words = RX_FIFO_EXTRA_SIZE_WORDS + ep_fifo_size(&self.ep_out);
trace!("configuring rx fifo size={}", rx_fifo_size_words);
// SAFETY: register is exclusive to `Bus` with `&mut self`
unsafe { r.grxfsiz().modify(|w| w.set_rxfd(rx_fifo_size_words)) };
// Configure TX (USB in direction) fifo size for each endpoint
let mut fifo_top = rx_fifo_size_words;
for i in 0..T::ENDPOINT_COUNT {
if let Some(ep) = self.ep_in[i] {
trace!(
"configuring tx fifo ep={}, offset={}, size={}",
i,
fifo_top,
ep.fifo_size_words
);
let dieptxf = if i == 0 { r.dieptxf0() } else { r.dieptxf(i - 1) };
// SAFETY: register is exclusive to `Bus` with `&mut self`
unsafe {
dieptxf.write(|w| {
w.set_fd(ep.fifo_size_words);
w.set_sa(fifo_top);
});
}
fifo_top += ep.fifo_size_words;
}
}
assert!(
fifo_top <= T::FIFO_DEPTH_WORDS,
"FIFO allocations exceeded maximum capacity"
);
}
fn configure_endpoints(&mut self) {
trace!("configure_endpoints");
let r = T::regs();
// Configure IN endpoints
for (index, ep) in self.ep_in.iter().enumerate() {
if let Some(ep) = ep {
// SAFETY: DIEPCTL is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
r.diepctl(index).write(|w| {
if index == 0 {
w.set_mpsiz(ep0_mpsiz(ep.max_packet_size));
} else {
w.set_mpsiz(ep.max_packet_size);
w.set_eptyp(to_eptyp(ep.ep_type));
w.set_sd0pid_sevnfrm(true);
}
});
});
}
}
// Configure OUT endpoints
for (index, ep) in self.ep_out.iter().enumerate() {
if let Some(ep) = ep {
// SAFETY: DOEPCTL/DOEPTSIZ is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
r.doepctl(index).write(|w| {
if index == 0 {
w.set_mpsiz(ep0_mpsiz(ep.max_packet_size));
} else {
w.set_mpsiz(ep.max_packet_size);
w.set_eptyp(to_eptyp(ep.ep_type));
w.set_sd0pid_sevnfrm(true);
}
});
r.doeptsiz(index).modify(|w| {
w.set_xfrsiz(ep.max_packet_size as _);
if index == 0 {
w.set_rxdpid_stupcnt(1);
} else {
w.set_pktcnt(1);
}
});
});
}
}
// Enable IRQs for allocated endpoints
// SAFETY: register is exclusive to `Bus` with `&mut self`
unsafe {
r.daintmsk().modify(|w| {
w.set_iepm(ep_irq_mask(&self.ep_in));
// OUT interrupts not used, handled in RXFLVL
// w.set_oepm(ep_irq_mask(&self.ep_out));
});
}
}
fn disable(&mut self) {
self.irq.disable();
self.irq.remove_handler();
<T as RccPeripheral>::disable();
#[cfg(stm32l4)]
unsafe {
crate::pac::PWR.cr2().modify(|w| w.set_usv(false));
// Cannot disable PWR, because other peripherals might be using it
}
}
fn on_interrupt(_: *mut ()) {
trace!("irq");
let r = T::regs();
let state = T::state();
// SAFETY: atomic read/write
let ints = unsafe { r.gintsts().read() };
if ints.wkupint() || ints.usbsusp() || ints.usbrst() || ints.enumdne() {
// Mask interrupts and notify `Bus` to process them
unsafe { r.gintmsk().write(|_| {}) };
T::state().bus_waker.wake();
}
// Handle RX
// SAFETY: atomic read with no side effects
while unsafe { r.gintsts().read().rxflvl() } {
// SAFETY: atomic "pop" register
let status = unsafe { r.grxstsp().read() };
let ep_num = status.epnum() as usize;
let len = status.bcnt() as usize;
assert!(ep_num < T::ENDPOINT_COUNT);
match status.pktstsd() {
vals::Pktstsd::SETUP_DATA_RX => {
trace!("SETUP_DATA_RX");
assert!(len == 8, "invalid SETUP packet length={}", len);
assert!(ep_num == 0, "invalid SETUP packet endpoint={}", ep_num);
if state.ep0_setup_ready.load(Ordering::Relaxed) == false {
// SAFETY: exclusive access ensured by atomic bool
let data = unsafe { &mut *state.ep0_setup_data.get() };
// SAFETY: FIFO reads are exclusive to this IRQ
unsafe {
data[0..4].copy_from_slice(&r.fifo(0).read().0.to_ne_bytes());
data[4..8].copy_from_slice(&r.fifo(0).read().0.to_ne_bytes());
}
state.ep0_setup_ready.store(true, Ordering::Release);
state.ep_out_wakers[0].wake();
} else {
error!("received SETUP before previous finished processing");
// discard FIFO
// SAFETY: FIFO reads are exclusive to IRQ
unsafe {
r.fifo(0).read();
r.fifo(0).read();
}
}
}
vals::Pktstsd::OUT_DATA_RX => {
trace!("OUT_DATA_RX ep={} len={}", ep_num, len);
if state.ep_out_size[ep_num].load(Ordering::Acquire) == EP_OUT_BUFFER_EMPTY {
// SAFETY: Buffer size is allocated to be equal to endpoint's maximum packet size
// We trust the peripheral to not exceed its configured MPSIZ
let buf = unsafe { core::slice::from_raw_parts_mut(*state.ep_out_buffers[ep_num].get(), len) };
for chunk in buf.chunks_mut(4) {
// RX FIFO is shared so always read from fifo(0)
// SAFETY: FIFO reads are exclusive to IRQ
let data = unsafe { r.fifo(0).read().0 };
chunk.copy_from_slice(&data.to_ne_bytes()[0..chunk.len()]);
}
state.ep_out_size[ep_num].store(len as u16, Ordering::Release);
state.ep_out_wakers[ep_num].wake();
} else {
error!("ep_out buffer overflow index={}", ep_num);
// discard FIFO data
let len_words = (len + 3) / 4;
for _ in 0..len_words {
// SAFETY: FIFO reads are exclusive to IRQ
unsafe { r.fifo(0).read().data() };
}
}
}
vals::Pktstsd::OUT_DATA_DONE => {
trace!("OUT_DATA_DONE ep={}", ep_num);
}
vals::Pktstsd::SETUP_DATA_DONE => {
trace!("SETUP_DATA_DONE ep={}", ep_num);
}
x => trace!("unknown PKTSTS: {}", x.0),
}
}
// IN endpoint interrupt
if ints.iepint() {
// SAFETY: atomic read with no side effects
let mut ep_mask = unsafe { r.daint().read().iepint() };
let mut ep_num = 0;
// Iterate over endpoints while there are non-zero bits in the mask
while ep_mask != 0 {
if ep_mask & 1 != 0 {
// SAFETY: atomic read with no side effects
let ep_ints = unsafe { r.diepint(ep_num).read() };
// clear all
// SAFETY: DIEPINT is exclusive to IRQ
unsafe { r.diepint(ep_num).write_value(ep_ints) };
// TXFE is cleared in DIEPEMPMSK
if ep_ints.txfe() {
// SAFETY: DIEPEMPMSK is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
r.diepempmsk().modify(|w| {
w.set_ineptxfem(w.ineptxfem() & !(1 << ep_num));
});
});
}
state.ep_in_wakers[ep_num].wake();
trace!("in ep={} irq val={:b}", ep_num, ep_ints.0);
}
ep_mask >>= 1;
ep_num += 1;
}
}
// not needed? reception handled in rxflvl
// OUT endpoint interrupt
// if ints.oepint() {
// let mut ep_mask = r.daint().read().oepint();
// let mut ep_num = 0;
// while ep_mask != 0 {
// if ep_mask & 1 != 0 {
// let ep_ints = r.doepint(ep_num).read();
// // clear all
// r.doepint(ep_num).write_value(ep_ints);
// state.ep_out_wakers[ep_num].wake();
// trace!("out ep={} irq val={=u32:b}", ep_num, ep_ints.0);
// }
// ep_mask >>= 1;
// ep_num += 1;
// }
// }
}
}
impl<'d, T: Instance> embassy_usb_driver::Bus for Bus<'d, T> {
async fn poll(&mut self) -> Event {
poll_fn(move |cx| {
// TODO: implement VBUS detection
if !self.enabled {
return Poll::Ready(Event::PowerDetected);
}
let r = T::regs();
T::state().bus_waker.register(cx.waker());
let ints = unsafe { r.gintsts().read() };
if ints.usbrst() {
trace!("reset");
self.init_fifo();
self.configure_endpoints();
// Reset address
// SAFETY: DCFG is shared with `ControlPipe` so critical section is needed for RMW
critical_section::with(|_| unsafe {
r.dcfg().modify(|w| {
w.set_dad(0);
});
});
// SAFETY: atomic clear on rc_w1 register
unsafe { r.gintsts().write(|w| w.set_usbrst(true)) }; // clear
Self::restore_irqs();
}
if ints.enumdne() {
trace!("enumdne");
// SAFETY: atomic read with no side effects
let speed = unsafe { r.dsts().read().enumspd() };
trace!(" speed={}", speed.0);
// SAFETY: register is only accessed by `Bus` under `&mut self`
unsafe {
r.gusbcfg().modify(|w| {
w.set_trdt(calculate_trdt(speed, T::frequency()));
})
};
// SAFETY: atomic clear on rc_w1 register
unsafe { r.gintsts().write(|w| w.set_enumdne(true)) }; // clear
Self::restore_irqs();
return Poll::Ready(Event::Reset);
}
if ints.usbsusp() {
trace!("suspend");
// SAFETY: atomic clear on rc_w1 register
unsafe { r.gintsts().write(|w| w.set_usbsusp(true)) }; // clear
Self::restore_irqs();
return Poll::Ready(Event::Suspend);
}
if ints.wkupint() {
trace!("resume");
// SAFETY: atomic clear on rc_w1 register
unsafe { r.gintsts().write(|w| w.set_wkupint(true)) }; // clear
Self::restore_irqs();
return Poll::Ready(Event::Resume);
}
Poll::Pending
})
.await
}
fn endpoint_set_stalled(&mut self, ep_addr: EndpointAddress, stalled: bool) {
trace!("endpoint_set_stalled ep={:?} en={}", ep_addr, stalled);
assert!(
ep_addr.index() < T::ENDPOINT_COUNT,
"endpoint_set_stalled index {} out of range",
ep_addr.index()
);
let regs = T::regs();
match ep_addr.direction() {
Direction::Out => {
// SAFETY: DOEPCTL is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
regs.doepctl(ep_addr.index()).modify(|w| {
w.set_stall(stalled);
});
});
T::state().ep_out_wakers[ep_addr.index()].wake();
}
Direction::In => {
// SAFETY: DIEPCTL is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
regs.diepctl(ep_addr.index()).modify(|w| {
w.set_stall(stalled);
});
});
T::state().ep_in_wakers[ep_addr.index()].wake();
}
}
}
fn endpoint_is_stalled(&mut self, ep_addr: EndpointAddress) -> bool {
assert!(
ep_addr.index() < T::ENDPOINT_COUNT,
"endpoint_is_stalled index {} out of range",
ep_addr.index()
);
let regs = T::regs();
// SAFETY: atomic read with no side effects
match ep_addr.direction() {
Direction::Out => unsafe { regs.doepctl(ep_addr.index()).read().stall() },
Direction::In => unsafe { regs.diepctl(ep_addr.index()).read().stall() },
}
}
fn endpoint_set_enabled(&mut self, ep_addr: EndpointAddress, enabled: bool) {
trace!("endpoint_set_enabled ep={:?} en={}", ep_addr, enabled);
assert!(
ep_addr.index() < T::ENDPOINT_COUNT,
"endpoint_set_enabled index {} out of range",
ep_addr.index()
);
let r = T::regs();
match ep_addr.direction() {
Direction::Out => {
// SAFETY: DOEPCTL is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
// cancel transfer if active
if !enabled && r.doepctl(ep_addr.index()).read().epena() {
r.doepctl(ep_addr.index()).modify(|w| {
w.set_snak(true);
w.set_epdis(true);
})
}
r.doepctl(ep_addr.index()).modify(|w| {
w.set_usbaep(enabled);
})
});
// Wake `Endpoint::wait_enabled()`
T::state().ep_out_wakers[ep_addr.index()].wake();
}
Direction::In => {
// SAFETY: DIEPCTL is shared with `Endpoint` so critical section is needed for RMW
critical_section::with(|_| unsafe {
// cancel transfer if active
if !enabled && r.diepctl(ep_addr.index()).read().epena() {
r.diepctl(ep_addr.index()).modify(|w| {
w.set_snak(true);
w.set_epdis(true);
})
}
r.diepctl(ep_addr.index()).modify(|w| {
w.set_usbaep(enabled);
})
});
// Wake `Endpoint::wait_enabled()`
T::state().ep_in_wakers[ep_addr.index()].wake();
}
}
}
async fn enable(&mut self) {
trace!("enable");
// SAFETY: registers are only accessed by `Bus` under `&mut self`
unsafe {
#[cfg(stm32l4)]
{
crate::peripherals::PWR::enable();
critical_section::with(|_| crate::pac::PWR.cr2().modify(|w| w.set_usv(true)));
}
#[cfg(stm32h7)]
{
// If true, VDD33USB is generated by internal regulator from VDD50USB
// If false, VDD33USB and VDD50USB must be suplied directly with 3.3V (default on nucleo)
// TODO: unhardcode
let internal_regulator = false;
// Enable USB power
critical_section::with(|_| {
crate::pac::PWR.cr3().modify(|w| {
w.set_usb33den(true);
w.set_usbregen(internal_regulator);
})
});
// Wait for USB power to stabilize
while !crate::pac::PWR.cr3().read().usb33rdy() {}
// Use internal 48MHz HSI clock. Should be enabled in RCC by default.
critical_section::with(|_| {
crate::pac::RCC
.d2ccip2r()
.modify(|w| w.set_usbsel(crate::pac::rcc::vals::Usbsel::HSI48))
});
// Enable ULPI clock if external PHY is used
let ulpien = !self.phy_type.internal();
critical_section::with(|_| {
crate::pac::RCC.ahb1enr().modify(|w| {
if T::HIGH_SPEED {
w.set_usb_otg_hs_ulpien(ulpien);
} else {
w.set_usb_otg_fs_ulpien(ulpien);
}
});
crate::pac::RCC.ahb1lpenr().modify(|w| {
if T::HIGH_SPEED {
w.set_usb_otg_hs_ulpilpen(ulpien);
} else {
w.set_usb_otg_fs_ulpilpen(ulpien);
}
});
});
}
#[cfg(stm32u5)]
{
// Enable USB power
critical_section::with(|_| {
crate::pac::RCC.ahb3enr().modify(|w| {
w.set_pwren(true);
});
cortex_m::asm::delay(2);
crate::pac::PWR.svmcr().modify(|w| {
w.set_usv(true);
w.set_uvmen(true);
});
});
// Wait for USB power to stabilize
while !crate::pac::PWR.svmsr().read().vddusbrdy() {}
// Select HSI48 as USB clock source.
critical_section::with(|_| {
crate::pac::RCC.ccipr1().modify(|w| {
w.set_iclksel(crate::pac::rcc::vals::Iclksel::HSI48);
})
});
}
<T as RccPeripheral>::enable();
<T as RccPeripheral>::reset();
self.irq.set_handler(Self::on_interrupt);
self.irq.unpend();
self.irq.enable();
let r = T::regs();
let core_id = r.cid().read().0;
info!("Core id {:08x}", core_id);
// Wait for AHB ready.
while !r.grstctl().read().ahbidl() {}
// Configure as device.
r.gusbcfg().write(|w| {
// Force device mode
w.set_fdmod(true);
// Enable internal full-speed PHY
w.set_physel(self.phy_type.internal() && !self.phy_type.high_speed());
});
// Configuring Vbus sense and SOF output
match core_id {
0x0000_1200 | 0x0000_1100 => {
assert!(self.phy_type != PhyType::InternalHighSpeed);
r.gccfg_v1().modify(|w| {
// Enable internal full-speed PHY, logic is inverted
w.set_pwrdwn(self.phy_type.internal());
});
// F429-like chips have the GCCFG.NOVBUSSENS bit
r.gccfg_v1().modify(|w| {
w.set_novbussens(true);
w.set_vbusasen(false);
w.set_vbusbsen(false);
w.set_sofouten(false);
});
}
0x0000_2000 | 0x0000_2100 | 0x0000_2300 | 0x0000_3000 | 0x0000_3100 => {
// F446-like chips have the GCCFG.VBDEN bit with the opposite meaning
r.gccfg_v2().modify(|w| {
// Enable internal full-speed PHY, logic is inverted
w.set_pwrdwn(self.phy_type.internal() && !self.phy_type.high_speed());
w.set_phyhsen(self.phy_type.internal() && self.phy_type.high_speed());
});
r.gccfg_v2().modify(|w| {
w.set_vbden(false);
});
// Force B-peripheral session
r.gotgctl().modify(|w| {
w.set_bvaloen(true);
w.set_bvaloval(true);
});
}
_ => unimplemented!("Unknown USB core id {:X}", core_id),
}
// Soft disconnect.
r.dctl().write(|w| w.set_sdis(true));
// Set speed.
r.dcfg().write(|w| {
w.set_pfivl(vals::Pfivl::FRAME_INTERVAL_80);
w.set_dspd(self.phy_type.to_dspd());
});
// Unmask transfer complete EP interrupt
r.diepmsk().write(|w| {
w.set_xfrcm(true);
});
// Unmask and clear core interrupts
Bus::<T>::restore_irqs();
r.gintsts().write_value(regs::Gintsts(0xFFFF_FFFF));
// Unmask global interrupt
r.gahbcfg().write(|w| {
w.set_gint(true); // unmask global interrupt
});
// Connect
r.dctl().write(|w| w.set_sdis(false));
}
self.enabled = true;
}
async fn disable(&mut self) {
trace!("disable");
Bus::disable(self);
self.enabled = false;
}
async fn remote_wakeup(&mut self) -> Result<(), Unsupported> {
Err(Unsupported)
}
}
impl<'d, T: Instance> Drop for Bus<'d, T> {
fn drop(&mut self) {
Bus::disable(self);
}
}
trait Dir {
fn dir() -> Direction;
}
pub enum In {}
impl Dir for In {
fn dir() -> Direction {
Direction::In
}
}
pub enum Out {}
impl Dir for Out {
fn dir() -> Direction {
Direction::Out
}
}
pub struct Endpoint<'d, T: Instance, D> {
_phantom: PhantomData<(&'d mut T, D)>,
info: EndpointInfo,
}
impl<'d, T: Instance> embassy_usb_driver::Endpoint for Endpoint<'d, T, In> {
fn info(&self) -> &EndpointInfo {
&self.info
}
async fn wait_enabled(&mut self) {
poll_fn(|cx| {
let ep_index = self.info.addr.index();
T::state().ep_in_wakers[ep_index].register(cx.waker());
// SAFETY: atomic read without side effects
if unsafe { T::regs().diepctl(ep_index).read().usbaep() } {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await
}
}
impl<'d, T: Instance> embassy_usb_driver::Endpoint for Endpoint<'d, T, Out> {
fn info(&self) -> &EndpointInfo {
&self.info
}
async fn wait_enabled(&mut self) {
poll_fn(|cx| {
let ep_index = self.info.addr.index();
T::state().ep_out_wakers[ep_index].register(cx.waker());
// SAFETY: atomic read without side effects
if unsafe { T::regs().doepctl(ep_index).read().usbaep() } {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await
}
}
impl<'d, T: Instance> embassy_usb_driver::EndpointOut for Endpoint<'d, T, Out> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> {
trace!("read start len={}", buf.len());
poll_fn(|cx| {
let index = self.info.addr.index();
let state = T::state();
state.ep_out_wakers[index].register(cx.waker());
let len = state.ep_out_size[index].load(Ordering::Relaxed);
if len != EP_OUT_BUFFER_EMPTY {
trace!("read done len={}", len);
if len as usize > buf.len() {
return Poll::Ready(Err(EndpointError::BufferOverflow));
}
// SAFETY: exclusive access ensured by `ep_out_size` atomic variable
let data = unsafe { core::slice::from_raw_parts(*state.ep_out_buffers[index].get(), len as usize) };
buf[..len as usize].copy_from_slice(data);
// Release buffer
state.ep_out_size[index].store(EP_OUT_BUFFER_EMPTY, Ordering::Release);
// SAFETY: DOEPCTL/DOEPTSIZ is shared with `Bus` so a critical section is needed for RMW
critical_section::with(|_| unsafe {
// Receive 1 packet
T::regs().doeptsiz(index).modify(|w| {
w.set_xfrsiz(self.info.max_packet_size as _);
w.set_pktcnt(1);
});
// Clear NAK to indicate we are ready to receive more data
T::regs().doepctl(index).modify(|w| {
w.set_cnak(true);
});
});
Poll::Ready(Ok(len as usize))
} else {
Poll::Pending
}
})
.await
}
}
impl<'d, T: Instance> embassy_usb_driver::EndpointIn for Endpoint<'d, T, In> {
async fn write(&mut self, buf: &[u8]) -> Result<(), EndpointError> {
2023-01-18 03:06:32 +02:00
trace!("write ep={:?} data={:?}", self.info.addr, buf);
if buf.len() > self.info.max_packet_size as usize {
return Err(EndpointError::BufferOverflow);
}
let r = T::regs();
let index = self.info.addr.index();
let state = T::state();
// Wait for previous transfer to complete and check if endpoint is disabled
poll_fn(|cx| {
state.ep_in_wakers[index].register(cx.waker());
// SAFETY: atomic read with no side effects
let diepctl = unsafe { r.diepctl(index).read() };
if !diepctl.usbaep() {
Poll::Ready(Err(EndpointError::Disabled))
} else if !diepctl.epena() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
})
.await?;
if buf.len() > 0 {
poll_fn(|cx| {
state.ep_in_wakers[index].register(cx.waker());
let size_words = (buf.len() + 3) / 4;
// SAFETY: atomic read with no side effects
let fifo_space = unsafe { r.dtxfsts(index).read().ineptfsav() as usize };
if size_words > fifo_space {
// Not enough space in fifo, enable tx fifo empty interrupt
// SAFETY: DIEPEMPMSK is shared with IRQ so critical section is needed for RMW
critical_section::with(|_| unsafe {
r.diepempmsk().modify(|w| {
w.set_ineptxfem(w.ineptxfem() | (1 << index));
});
});
trace!("tx fifo for ep={} full, waiting for txfe", index);
Poll::Pending
} else {
Poll::Ready(())
}
})
.await
}
// SAFETY: DIEPTSIZ is exclusive to this endpoint under `&mut self`
unsafe {
// Setup transfer size
r.dieptsiz(index).write(|w| {
w.set_mcnt(1);
w.set_pktcnt(1);
w.set_xfrsiz(buf.len() as _);
});
}
// SAFETY: DIEPCTL is shared with `Bus` so a critical section is needed for RMW
critical_section::with(|_| unsafe {
// Enable endpoint
r.diepctl(index).modify(|w| {
w.set_cnak(true);
w.set_epena(true);
});
});
// Write data to FIFO
for chunk in buf.chunks(4) {
let mut tmp = [0u8; 4];
tmp[0..chunk.len()].copy_from_slice(chunk);
// SAFETY: FIFO is exclusive to this endpoint under `&mut self`
unsafe { r.fifo(index).write_value(regs::Fifo(u32::from_ne_bytes(tmp))) };
}
2023-01-18 03:06:32 +02:00
trace!("write done ep={:?}", self.info.addr);
Ok(())
}
}
pub struct ControlPipe<'d, T: Instance> {
_phantom: PhantomData<&'d mut T>,
max_packet_size: u16,
ep_in: Endpoint<'d, T, In>,
ep_out: Endpoint<'d, T, Out>,
}
impl<'d, T: Instance> embassy_usb_driver::ControlPipe for ControlPipe<'d, T> {
fn max_packet_size(&self) -> usize {
usize::from(self.max_packet_size)
}
async fn setup(&mut self) -> [u8; 8] {
poll_fn(|cx| {
let state = T::state();
state.ep_out_wakers[0].register(cx.waker());
if state.ep0_setup_ready.load(Ordering::Relaxed) {
let data = unsafe { *state.ep0_setup_data.get() };
state.ep0_setup_ready.store(false, Ordering::Release);
// EP0 should not be controlled by `Bus` so this RMW does not need a critical section
unsafe {
// Receive 1 SETUP packet
T::regs().doeptsiz(self.ep_out.info.addr.index()).modify(|w| {
w.set_rxdpid_stupcnt(1);
});
// Clear NAK to indicate we are ready to receive more data
T::regs().doepctl(self.ep_out.info.addr.index()).modify(|w| {
w.set_cnak(true);
});
}
trace!("SETUP received: {:?}", data);
Poll::Ready(data)
} else {
trace!("SETUP waiting");
Poll::Pending
}
})
.await
}
async fn data_out(&mut self, buf: &mut [u8], _first: bool, _last: bool) -> Result<usize, EndpointError> {
trace!("control: data_out");
let len = self.ep_out.read(buf).await?;
trace!("control: data_out read: {:?}", &buf[..len]);
Ok(len)
}
async fn data_in(&mut self, data: &[u8], _first: bool, last: bool) -> Result<(), EndpointError> {
trace!("control: data_in write: {:?}", data);
self.ep_in.write(data).await?;
// wait for status response from host after sending the last packet
if last {
trace!("control: data_in waiting for status");
self.ep_out.read(&mut []).await?;
trace!("control: complete");
}
Ok(())
}
async fn accept(&mut self) {
trace!("control: accept");
self.ep_in.write(&[]).await.ok();
trace!("control: accept OK");
}
async fn reject(&mut self) {
trace!("control: reject");
// EP0 should not be controlled by `Bus` so this RMW does not need a critical section
unsafe {
let regs = T::regs();
regs.diepctl(self.ep_in.info.addr.index()).modify(|w| {
w.set_stall(true);
});
regs.doepctl(self.ep_out.info.addr.index()).modify(|w| {
w.set_stall(true);
});
}
}
async fn accept_set_address(&mut self, addr: u8) {
trace!("setting addr: {}", addr);
critical_section::with(|_| unsafe {
T::regs().dcfg().modify(|w| {
w.set_dad(addr);
});
});
// synopsys driver requires accept to be sent after changing address
self.accept().await
}
}
/// Translates HAL [EndpointType] into PAC [vals::Eptyp]
fn to_eptyp(ep_type: EndpointType) -> vals::Eptyp {
match ep_type {
EndpointType::Control => vals::Eptyp::CONTROL,
EndpointType::Isochronous => vals::Eptyp::ISOCHRONOUS,
EndpointType::Bulk => vals::Eptyp::BULK,
EndpointType::Interrupt => vals::Eptyp::INTERRUPT,
}
}
/// Calculates total allocated FIFO size in words
fn ep_fifo_size(eps: &[Option<EndpointData>]) -> u16 {
eps.iter().map(|ep| ep.map(|ep| ep.fifo_size_words).unwrap_or(0)).sum()
}
/// Generates IRQ mask for enabled endpoints
fn ep_irq_mask(eps: &[Option<EndpointData>]) -> u16 {
eps.iter().enumerate().fold(
0,
|mask, (index, ep)| {
if ep.is_some() {
mask | (1 << index)
} else {
mask
}
},
)
}
/// Calculates MPSIZ value for EP0, which uses special values.
fn ep0_mpsiz(max_packet_size: u16) -> u16 {
match max_packet_size {
8 => 0b11,
16 => 0b10,
32 => 0b01,
64 => 0b00,
other => panic!("Unsupported EP0 size: {}", other),
}
}
fn calculate_trdt(speed: vals::Dspd, ahb_freq: Hertz) -> u8 {
match speed {
vals::Dspd::HIGH_SPEED => {
// From RM0431 (F72xx), RM0090 (F429), RM0390 (F446)
if ahb_freq.0 >= 30_000_000 {
0x9
} else {
panic!("AHB frequency is too low")
}
}
vals::Dspd::FULL_SPEED_EXTERNAL | vals::Dspd::FULL_SPEED_INTERNAL => {
// From RM0431 (F72xx), RM0090 (F429)
match ahb_freq.0 {
0..=14_199_999 => panic!("AHB frequency is too low"),
14_200_000..=14_999_999 => 0xF,
15_000_000..=15_999_999 => 0xE,
16_000_000..=17_199_999 => 0xD,
17_200_000..=18_499_999 => 0xC,
18_500_000..=19_999_999 => 0xB,
20_000_000..=21_799_999 => 0xA,
21_800_000..=23_999_999 => 0x9,
24_000_000..=27_499_999 => 0x8,
27_500_000..=31_999_999 => 0x7, // 27.7..32 in code from CubeIDE
32_000_000..=u32::MAX => 0x6,
}
}
_ => unimplemented!(),
}
}