embassy/embassy-stm32/src/rcc/f2.rs

527 lines
14 KiB
Rust
Raw Normal View History

2022-04-26 19:33:57 +02:00
use core::convert::TryFrom;
use core::ops::{Div, Mul};
use crate::pac::flash::vals::Latency;
2022-04-26 19:33:57 +02:00
use crate::pac::rcc::vals::{Hpre, Pllp, Pllsrc, Ppre, Sw};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
/// LSI speed
pub const LSI_FREQ: Hertz = Hertz(32_000);
#[derive(Clone, Copy)]
pub struct HSEConfig {
pub frequency: Hertz,
pub source: HSESrc,
}
/// System clock mux source
#[derive(Clone, Copy)]
pub enum ClockSrc {
HSE,
HSI,
2022-04-26 19:33:57 +02:00
PLL,
}
/// HSE clock source
#[derive(Clone, Copy)]
pub enum HSESrc {
/// Crystal/ceramic resonator
Crystal,
/// External clock source, HSE bypassed
Bypass,
}
2022-04-26 19:33:57 +02:00
#[derive(Clone, Copy)]
pub struct PLLConfig {
pub pre_div: PLLPreDiv,
pub mul: PLLMul,
pub main_div: PLLMainDiv,
pub pll48_div: PLL48Div,
}
impl Default for PLLConfig {
fn default() -> Self {
PLLConfig {
pre_div: PLLPreDiv(16),
mul: PLLMul(192),
main_div: PLLMainDiv::Div2,
pll48_div: PLL48Div(4),
}
}
}
impl PLLConfig {
pub fn clocks(&self, src_freq: Hertz) -> PLLClocks {
let in_freq = src_freq / self.pre_div;
let vco_freq = src_freq * self.mul / self.pre_div;
let main_freq = vco_freq / self.main_div;
let pll48_freq = vco_freq / self.pll48_div;
PLLClocks {
in_freq,
vco_freq,
main_freq,
pll48_freq,
}
}
}
/// Clock source for both main PLL and PLLI2S
#[derive(Clone, Copy, PartialEq)]
pub enum PLLSrc {
HSE,
HSI,
}
impl Into<Pllsrc> for PLLSrc {
fn into(self) -> Pllsrc {
match self {
PLLSrc::HSE => Pllsrc::HSE,
PLLSrc::HSI => Pllsrc::HSI,
}
}
}
/// Division factor for both main PLL and PLLI2S
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLLPreDiv(u8);
impl TryFrom<u8> for PLLPreDiv {
type Error = &'static str;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
2..=63 => Ok(PLLPreDiv(value)),
_ => Err("PLLPreDiv must be within range 2..=63"),
}
}
}
impl Div<PLLPreDiv> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLLPreDiv) -> Self::Output {
Hertz(self.0 / u32::from(rhs.0))
}
}
/// Multiplication factor for main PLL
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLLMul(u16);
impl Mul<PLLMul> for Hertz {
type Output = Hertz;
fn mul(self, rhs: PLLMul) -> Self::Output {
Hertz(self.0 * u32::from(rhs.0))
}
}
impl TryFrom<u16> for PLLMul {
type Error = &'static str;
fn try_from(value: u16) -> Result<Self, Self::Error> {
match value {
192..=432 => Ok(PLLMul(value)),
_ => Err("PLLMul must be within range 192..=432"),
}
}
}
/// PLL division factor for the main system clock
#[derive(Clone, Copy, PartialEq)]
pub enum PLLMainDiv {
Div2,
Div4,
Div6,
Div8,
}
impl Into<Pllp> for PLLMainDiv {
fn into(self) -> Pllp {
match self {
PLLMainDiv::Div2 => Pllp::DIV2,
PLLMainDiv::Div4 => Pllp::DIV4,
PLLMainDiv::Div6 => Pllp::DIV8,
PLLMainDiv::Div8 => Pllp::DIV8,
}
}
}
impl Div<PLLMainDiv> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLLMainDiv) -> Self::Output {
let divisor = match rhs {
PLLMainDiv::Div2 => 2,
PLLMainDiv::Div4 => 4,
PLLMainDiv::Div6 => 6,
PLLMainDiv::Div8 => 8,
};
Hertz(self.0 / divisor)
}
}
/// PLL division factor for USB OTG FS / SDIO / RNG
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLL48Div(u8);
impl Div<PLL48Div> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLL48Div) -> Self::Output {
Hertz(self.0 / u32::from(rhs.0))
}
}
impl TryFrom<u8> for PLL48Div {
type Error = &'static str;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
2..=15 => Ok(PLL48Div(value)),
_ => Err("PLL48Div must be within range 2..=15"),
}
}
}
#[derive(Clone, Copy, PartialEq)]
pub struct PLLClocks {
pub in_freq: Hertz,
pub vco_freq: Hertz,
pub main_freq: Hertz,
pub pll48_freq: Hertz,
}
/// AHB prescaler
#[derive(Clone, Copy, PartialEq)]
pub enum AHBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
Div64,
Div128,
Div256,
Div512,
}
impl Div<AHBPrescaler> for Hertz {
type Output = Hertz;
fn div(self, rhs: AHBPrescaler) -> Self::Output {
let divisor = match rhs {
AHBPrescaler::NotDivided => 1,
AHBPrescaler::Div2 => 2,
AHBPrescaler::Div4 => 4,
AHBPrescaler::Div8 => 8,
AHBPrescaler::Div16 => 16,
AHBPrescaler::Div64 => 64,
AHBPrescaler::Div128 => 128,
AHBPrescaler::Div256 => 256,
AHBPrescaler::Div512 => 512,
};
Hertz(self.0 / divisor)
}
}
/// APB prescaler
#[derive(Clone, Copy)]
pub enum APBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
}
impl Div<APBPrescaler> for Hertz {
type Output = Hertz;
fn div(self, rhs: APBPrescaler) -> Self::Output {
let divisor = match rhs {
APBPrescaler::NotDivided => 1,
APBPrescaler::Div2 => 2,
APBPrescaler::Div4 => 4,
APBPrescaler::Div8 => 8,
APBPrescaler::Div16 => 16,
};
Hertz(self.0 / divisor)
}
}
impl Into<Ppre> for APBPrescaler {
fn into(self) -> Ppre {
match self {
APBPrescaler::NotDivided => Ppre::DIV1,
APBPrescaler::Div2 => Ppre::DIV2,
APBPrescaler::Div4 => Ppre::DIV4,
APBPrescaler::Div8 => Ppre::DIV8,
APBPrescaler::Div16 => Ppre::DIV16,
}
}
}
impl Into<Hpre> for AHBPrescaler {
fn into(self) -> Hpre {
match self {
AHBPrescaler::NotDivided => Hpre::DIV1,
AHBPrescaler::Div2 => Hpre::DIV2,
AHBPrescaler::Div4 => Hpre::DIV4,
AHBPrescaler::Div8 => Hpre::DIV8,
AHBPrescaler::Div16 => Hpre::DIV16,
AHBPrescaler::Div64 => Hpre::DIV64,
AHBPrescaler::Div128 => Hpre::DIV128,
AHBPrescaler::Div256 => Hpre::DIV256,
AHBPrescaler::Div512 => Hpre::DIV512,
}
}
}
/// Voltage Range
///
/// Represents the system supply voltage range
#[derive(Copy, Clone, PartialEq)]
pub enum VoltageRange {
/// 1.8 to 3.6 V
Min1V8,
/// 2.1 to 3.6 V
Min2V1,
/// 2.4 to 3.6 V
Min2V4,
/// 2.7 to 3.6 V
Min2V7,
}
impl VoltageRange {
const fn wait_states(&self, ahb_freq: Hertz) -> Option<Latency> {
let ahb_freq = ahb_freq.0;
// Reference: RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock
// frequency
match self {
VoltageRange::Min1V8 => {
if ahb_freq <= 16_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 32_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 48_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 64_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 80_000_000 {
Some(Latency::WS4)
} else if ahb_freq <= 96_000_000 {
Some(Latency::WS5)
} else if ahb_freq <= 112_000_000 {
Some(Latency::WS6)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS7)
} else {
None
}
}
VoltageRange::Min2V1 => {
if ahb_freq <= 18_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 36_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 54_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 72_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 90_000_000 {
Some(Latency::WS4)
} else if ahb_freq <= 108_000_000 {
Some(Latency::WS5)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS6)
} else {
None
}
}
VoltageRange::Min2V4 => {
if ahb_freq <= 24_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 48_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 72_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 96_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS4)
} else {
None
}
}
VoltageRange::Min2V7 => {
if ahb_freq <= 30_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 60_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 90_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS3)
} else {
None
}
}
}
}
}
/// Clocks configuration
pub struct Config {
pub hse: Option<HSEConfig>,
2022-04-26 19:33:57 +02:00
pub hsi: bool,
pub pll_mux: PLLSrc,
pub pll: PLLConfig,
pub mux: ClockSrc,
pub voltage: VoltageRange,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
hse: None,
2022-04-26 19:33:57 +02:00
hsi: true,
pll_mux: PLLSrc::HSI,
pll: PLLConfig::default(),
voltage: VoltageRange::Min1V8,
mux: ClockSrc::HSI,
ahb_pre: AHBPrescaler::NotDivided,
apb1_pre: APBPrescaler::NotDivided,
apb2_pre: APBPrescaler::NotDivided,
}
}
}
2022-04-26 19:33:57 +02:00
pub(crate) unsafe fn init(config: Config) {
// Make sure HSI is enabled
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
if let Some(hse_config) = config.hse {
2022-04-26 19:33:57 +02:00
RCC.cr().modify(|w| {
w.set_hsebyp(match hse_config.source {
HSESrc::Bypass => true,
HSESrc::Crystal => false,
});
w.set_hseon(true)
});
while !RCC.cr().read().hserdy() {}
}
2022-04-26 19:33:57 +02:00
let pll_src_freq = match config.pll_mux {
PLLSrc::HSE => {
2022-04-30 10:41:17 +02:00
let hse_config = config
2022-04-26 19:33:57 +02:00
.hse
2022-04-30 10:41:17 +02:00
.unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input"));
hse_config.frequency
2022-04-26 19:33:57 +02:00
}
PLLSrc::HSI => HSI_FREQ,
2022-04-26 19:33:57 +02:00
};
// Reference: STM32F215xx/217xx datasheet Table 33. Main PLL characteristics
let pll_clocks = config.pll.clocks(pll_src_freq);
assert!(Hertz(950_000) <= pll_clocks.in_freq && pll_clocks.in_freq <= Hertz(2_100_000));
assert!(Hertz(192_000_000) <= pll_clocks.vco_freq && pll_clocks.vco_freq <= Hertz(432_000_000));
2022-06-12 22:15:44 +02:00
assert!(Hertz(24_000_000) <= pll_clocks.main_freq && pll_clocks.main_freq <= Hertz(120_000_000));
2022-04-26 19:33:57 +02:00
// USB actually requires == 48 MHz, but other PLL48 peripherals are fine with <= 48MHz
assert!(pll_clocks.pll48_freq <= Hertz(48_000_000));
RCC.pllcfgr().write(|w| {
w.set_pllsrc(config.pll_mux.into());
w.set_pllm(config.pll.pre_div.0);
w.set_plln(config.pll.mul.0);
w.set_pllp(config.pll.main_div.into());
w.set_pllq(config.pll.pll48_div.0);
});
let (sys_clk, sw) = match config.mux {
ClockSrc::HSI => {
2022-04-26 19:33:57 +02:00
assert!(config.hsi, "HSI must be enabled to be used as system clock");
(HSI, Sw::HSI)
}
ClockSrc::HSE => {
let hse_config = config
.hse
2022-04-30 10:41:17 +02:00
.unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input"));
(hse_config.frequency, Sw::HSE)
}
2022-04-26 19:33:57 +02:00
ClockSrc::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
(pll_clocks.main_freq, Sw::PLL)
}
};
// RM0033 Figure 9. Clock tree suggests max SYSCLK/HCLK is 168 MHz, but datasheet specifies PLL
// max output to be 120 MHz, so there's no way to get higher frequencies
assert!(sys_clk <= Hertz(120_000_000));
let ahb_freq = sys_clk / config.ahb_pre;
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(ahb_freq <= Hertz(120_000_000));
2022-04-30 10:41:17 +02:00
let flash_ws = unwrap!(config.voltage.wait_states(ahb_freq));
FLASH.acr().modify(|w| w.set_latency(flash_ws));
RCC.cfgr().modify(|w| {
w.set_sw(sw.into());
w.set_hpre(config.ahb_pre.into());
w.set_ppre1(config.apb1_pre.into());
w.set_ppre2(config.apb2_pre.into());
});
2022-04-26 19:33:57 +02:00
while RCC.cfgr().read().sws() != sw.0 {}
// Turn off HSI to save power if we don't need it
if !config.hsi {
RCC.cr().modify(|w| w.set_hsion(false));
}
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
APBPrescaler::NotDivided => (ahb_freq, ahb_freq),
pre => {
let freq = ahb_freq / pre;
(freq, Hertz(freq.0 * 2))
}
};
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(apb1_freq <= Hertz(30_000_000));
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
APBPrescaler::NotDivided => (ahb_freq, ahb_freq),
pre => {
let freq = ahb_freq / pre;
(freq, Hertz(freq.0 * 2))
}
};
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(apb2_freq <= Hertz(60_000_000));
set_freqs(Clocks {
sys: sys_clk,
ahb1: ahb_freq,
ahb2: ahb_freq,
ahb3: ahb_freq,
apb1: apb1_freq,
apb1_tim: apb1_tim_freq,
apb2: apb2_freq,
apb2_tim: apb2_tim_freq,
2022-04-26 19:33:57 +02:00
pll48: Some(pll_clocks.pll48_freq),
});
}