Slave: write Starts working work in progress

This commit is contained in:
anton smeenk 2023-10-20 22:12:37 +02:00
parent 9424379268
commit 007855423e
4 changed files with 743 additions and 108 deletions

View File

@ -9,16 +9,23 @@ pub use _version::*;
use crate::peripherals;
#[derive(Debug, PartialEq, Eq)]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
Bus,
Arbitration,
Arbitration, // in case of master mode: lost arbitration to another master
Nack,
Timeout,
Crc,
Overrun,
ZeroLengthTransfer,
Collission, // in case of slave mode, during sending data to master
BufferEmpty,
BufferFull,
BufferNotEmpty,
BufferNotFilled,
BufferSize,
OkBufferTransferred, // not really an error, but signalling that the slave does nack the last byte
}
pub(crate) mod sealed {

View File

@ -1,3 +1,4 @@
use core::cell::RefCell;
use core::cmp;
#[cfg(feature = "time")]
use core::future::poll_fn;
@ -9,9 +10,12 @@ use embassy_embedded_hal::SetConfig;
#[cfg(feature = "time")]
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::blocking_mutex::Mutex;
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use stm32_metapac::i2c::vals;
use crate::dma::NoDma;
#[cfg(feature = "time")]
@ -34,11 +38,101 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandl
let regs = T::regs();
let isr = regs.isr().read();
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
if state_m.slave_mode {
// ============================================ slave interrupt state_m machine
if isr.berr() {
regs.icr().modify(|w| {
w.set_berrcf(true);
});
state_m.errors += 1;
state_m.result = Err(Error::Bus);
} else if isr.arlo() {
regs.icr().write(|w| w.set_arlocf(true));
state_m.result = Err(Error::Arbitration);
} else if isr.nackf() {
regs.icr().write(|w| w.set_nackcf(true));
// Make one extra loop to wait on the stop condition
} else if isr.txis() {
// send the next byte to the master, or NACK in case of error, then end transaction
match state_m.read_byte() {
Ok(b) => regs.txdr().write(|w| w.set_txdata(b)),
Err(Error::OkBufferTransferred) => {
state_m.result = Ok(());
// Send a NACK, set nbytes to clear tcr flag
regs.cr2().modify(|w| {
w.set_nack(true);
})
}
Err(e) => {
state_m.result = Err(e);
state_m.errors += 1;
// Send a NACK, set nbytes to clear tcr flag
regs.cr2().modify(|w| {
w.set_nack(true);
})
}
};
} else if isr.rxne() {
let b = regs.rxdr().read().rxdata();
// byte is received from master. Store in buffer. In case of error send NACK, then end transaction
match state_m.write_byte(b) {
Ok(()) => (),
Err(e) => {
state_m.result = Err(e);
state_m.errors += 1;
// Send a NACK, set nbytes to clear tcr flag
regs.cr2().modify(|w| {
w.set_nack(true);
})
}
}
} else if isr.stopf() {
// Clear the stop condition flag
regs.icr().write(|w| w.set_stopcf(true));
state_m.ready = true;
T::state().waker.wake();
} else if isr.tcr() {
// This condition Will only happen when reload == 1 and sbr == 1 (slave) and nbytes was written.
// Send a NACK, set nbytes to clear tcr flag
regs.cr2().modify(|w| {
w.set_nack(true);
});
// Make one extra loop here to wait on the stop condition
} else if isr.addr() {
// handle the slave is addressed case, first step in the transaction
state_m.current_address = isr.addcode();
state_m.dir = isr.dir();
if state_m.dir == vals::Dir::READ {
// Set the nbytes START and prepare to receive bytes into `buffer`.
regs.cr2().modify(|w| {
// Set number of bytes to transfer: maximum as all incoming bytes will be ACK'ed
w.set_nbytes(state_m.get_size());
// during sending nbytes automatically send a ACK, stretch clock after last byte
w.set_reload(vals::Reload::COMPLETED);
});
} else {
// Set the nbytes to the maximum buffer size and wait for the bytes from the master
regs.cr2().modify(|w| {
w.set_nbytes(BUFFER_SIZE as u8);
w.set_reload(vals::Reload::COMPLETED)
});
// flush i2c tx register
regs.isr().write(|w| w.set_txe(true));
}
// end address phase, release clock stretching
regs.icr().write(|w| w.set_addrcf(true));
}
// ============================================ end slave interrupt state machine
} else {
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
}
}); // end of mutex
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
@ -50,15 +144,43 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandl
pub struct Config {
pub sda_pullup: bool,
pub scl_pullup: bool,
pub slave_address_1: u16,
pub slave_address_2: u8,
pub slave_address_mask: vals::Oamsk,
pub address_11bits: bool,
#[cfg(feature = "time")]
pub transaction_timeout: Duration,
}
impl Config {
/// Slave address 1 as 7 bit address, in range 0 .. 127
pub fn slave_address_7bits(&mut self, address: u8) {
// assert!(address < (2 ^ 7));
self.slave_address_1 = address as u16;
self.address_11bits = false;
}
/// Slave address 1 as 11 bit address in range 0 .. 2047
pub fn slave_address_11bits(&mut self, address: u16) {
// assert!(address < (2 ^ 11));
self.slave_address_1 = address;
self.address_11bits = true;
}
/// Slave address 2 as 7 bit address in range 0 .. 127.
/// The mask makes all slaves within the mask addressable
pub fn slave_address_2(&mut self, address: u8, mask: vals::Oamsk) {
// assert!(address < (2 ^ 7));
self.slave_address_2 = address;
self.slave_address_mask = mask;
}
}
impl Default for Config {
fn default() -> Self {
Self {
sda_pullup: false,
scl_pullup: false,
slave_address_1: 0,
slave_address_2: 0,
slave_address_mask: vals::Oamsk::NOMASK,
address_11bits: false,
#[cfg(feature = "time")]
transaction_timeout: Duration::from_millis(100),
}
@ -67,15 +189,150 @@ impl Default for Config {
pub struct State {
waker: AtomicWaker,
mutex: Mutex<CriticalSectionRawMutex, RefCell<I2cStateMachine>>,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
mutex: Mutex::new(RefCell::new(I2cStateMachine::new())),
}
}
}
struct I2cStateMachine {
buffers: [[I2cBuffer; 2]; 2],
result: Result<(), Error>,
slave_mode: bool,
dir: vals::Dir,
address1: u16,
current_address: u8,
errors: u32,
ready: bool,
}
impl I2cStateMachine {
pub(crate) const fn new() -> Self {
Self {
// first dimension: address type, main or generic, second dimension read or write
buffers: [
[I2cBuffer::new(), I2cBuffer::new()],
[I2cBuffer::new(), I2cBuffer::new()],
],
result: Ok(()),
slave_mode: false,
dir: vals::Dir::READ,
address1: 0,
current_address: 0,
errors: 0,
ready: false,
}
}
fn read_byte(&mut self) -> Result<u8, Error> {
let adress_type = if self.address1 == self.current_address as u16 {
AddressType::MainAddress
} else {
AddressType::GenericAddress
};
self.buffers[adress_type as usize][vals::Dir::READ as usize as usize].master_read()
}
fn write_byte(&mut self, b: u8) -> Result<(), Error> {
let adress_type = if self.address1 == self.current_address as u16 {
AddressType::MainAddress
} else {
AddressType::GenericAddress
};
self.buffers[adress_type as usize][vals::Dir::WRITE as usize].master_write(b)
}
fn get_size(&self) -> u8 {
let adress_type = if self.address1 == self.current_address as u16 {
AddressType::MainAddress
} else {
AddressType::GenericAddress
};
self.buffers[adress_type as usize][self.dir as usize].size
}
}
const BUFFER_SIZE: usize = 64;
#[repr(usize)]
pub enum AddressType {
MainAddress = 0,
GenericAddress,
}
struct I2cBuffer {
buffer: [u8; BUFFER_SIZE],
index: usize,
size: u8, // only used for the master read slave write scenario
}
impl I2cBuffer {
const fn new() -> Self {
I2cBuffer {
buffer: [0; BUFFER_SIZE],
index: 0,
size: 0,
}
}
fn reset(&mut self) {
self.index = 0;
self.size = 0;
}
/// master read slave write scenario. Master can read until self.size bytes
/// If no data available (self.size == 0)
fn master_read(&mut self) -> Result<u8, Error> {
if self.size == 0 {
return Err(Error::BufferEmpty);
};
if self.index < self.size as usize {
let b = self.buffer[self.index];
self.index += 1;
Ok(b)
} else {
self.size = 0; // mark buffer empty
Err(Error::OkBufferTransferred) // not really an error, but to signal slave should send NACK
}
}
/// master write slave read scenario. Master can write until buffer full
fn master_write(&mut self, b: u8) -> Result<(), Error> {
if self.index < BUFFER_SIZE {
self.buffer[self.index] = b;
self.index += 1;
self.size = self.index as u8;
Ok(())
} else {
Err(Error::BufferFull)
}
}
// read data into this buffer (master read, slave write)
fn from_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
let len = buffer.len();
if len > self.buffer.len() {
return Err(Error::BufferSize);
};
for i in 0..len {
self.buffer[i] = buffer[i];
}
self.size = len as u8;
self.index = 0;
Ok(())
}
// read data from this buffer, and leave empty at the end (master write, slave read)
fn to_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if self.size == 0 {
return Err(Error::BufferNotFilled);
}
if buffer.len() < self.size as usize {
return Err(Error::BufferSize);
}
for i in 0..buffer.len() {
buffer[i] = self.buffer[i];
}
self.size = 0;
self.index = 0;
Ok(())
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
_peri: PeripheralRef<'d, T>,
@ -136,7 +393,39 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
T::regs().cr1().modify(|reg| {
reg.set_pe(true);
reg.set_nostretch(false);
reg.set_sbc(true);
});
if config.slave_address_1 > 0 {
T::regs().oar1().write(|reg| {
reg.set_oa1en(false);
});
let mode = if config.address_11bits {
vals::Addmode::BIT10
} else {
vals::Addmode::BIT7
};
T::regs().oar1().write(|reg| {
reg.set_oa1(config.slave_address_1);
reg.set_oa1mode(mode);
reg.set_oa1en(true);
});
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
state_m.address1 = config.slave_address_1;
});
}
if config.slave_address_2 > 0 {
T::regs().oar2().write(|reg| {
reg.set_oa2en(false);
});
T::regs().oar2().write(|reg| {
reg.set_oa2msk(config.slave_address_mask);
reg.set_oa2(config.slave_address_2);
reg.set_oa2en(true);
});
}
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
@ -746,7 +1035,95 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
// =========================
// async Slave implementation
/// Starts listening for slave transactions
pub fn slave_start_listen(&mut self) -> Result<(), super::Error> {
T::regs().cr1().modify(|reg| {
reg.set_addrie(true);
reg.set_txie(true);
reg.set_addrie(true);
reg.set_rxie(true);
reg.set_nackie(true);
reg.set_stopie(true);
reg.set_errie(true);
reg.set_tcie(true);
});
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
for i in 0..1 {
for j in 0..1 {
state_m.buffers[i][j].reset();
}
}
state_m.slave_mode = true;
state_m.ready = false;
});
Ok(())
}
// slave stop listening for slave transactions and switch back to master role
pub fn slave_stop_listen(&mut self) -> Result<(), super::Error> {
T::regs().cr1().modify(|reg| {
reg.set_addrie(false);
reg.set_txie(false);
reg.set_addrie(false);
reg.set_rxie(false);
reg.set_nackie(false);
reg.set_stopie(false);
reg.set_errie(false);
reg.set_tcie(false);
});
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
state_m.slave_mode = false;
});
Ok(())
}
/// Prepare write data to master (master_read_slave_write) before transaction starts
/// Only possible if the buffer is empty, other wise error BufferNotEmpty error
pub fn slave_write_buffer(&mut self, buffer: &[u8], address_type: AddressType) -> Result<(), super::Error> {
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
let buf = &mut state_m.buffers[address_type as usize][vals::Dir::READ as usize];
if buf.size > 0 {
return Err(Error::BufferNotEmpty);
};
buf.from_buffer(buffer)
})
}
/// Read data from master (master_write_slave_read) after transaction is finished
/// Only possible if the buffer is not empty, other wise error BufferNotFilled error
pub fn slave_read_buffer(&mut self, buffer: &mut [u8], address_type: AddressType) -> Result<(), super::Error> {
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
let buf = &mut state_m.buffers[address_type as usize][vals::Dir::WRITE as usize];
if buf.size == 0 {
return Err(Error::BufferEmpty);
};
buf.to_buffer(buffer)
})
}
/// wait until a slave transaction is finished, and return tuple address, direction and data size
pub async fn slave_transaction(&mut self) -> Result<(u8, vals::Dir, u8), Error> {
// async wait until addressed
poll_fn(|cx| {
T::state().waker.register(cx.waker());
T::state().mutex.lock(|f| {
let mut state_m = f.borrow_mut();
if state_m.ready {
state_m.ready = false;
// if the dir bit is set it is a master write slave read operation
match state_m.result {
Ok(()) => return Poll::Ready(Ok((state_m.current_address, state_m.dir, state_m.get_size()))),
Err(e) => return Poll::Ready(Err(e)),
}
} else {
return Poll::Pending;
}
})
})
.await
}
// =========================
// Blocking public API

View File

@ -75,60 +75,89 @@ async fn main(_spawner: Spawner) {
counter += 1;
writeln!(&mut writer, "Loop counter: {:?}", counter).unwrap();
let mut buf_long: [u8; 50] = [0; 50];
let mut buf_short: [u8; 20] = [0; 20];
let mut buf_rcv: [u8; 20] = [0; 20];
let mut buf_10: [u8; 10] = [0; 10];
let mut buf_io = [0_u8; 1];
let mut buf_20 = [0_u8; 20];
let mut buf_64 = [0_u8; 64];
let mut buf_65 = [0_u8; 65];
writeln!(&mut writer, "Start of test").unwrap();
for i in 0..buf_short.len() {
buf_short[i] = 0x41 + (i as u8)
for i in 0..buf_20.len() {
buf_20[i] = 0x20 + (i as u8)
}
for i in 0..buf_64.len() {
buf_64[i] = 0x40 + (i as u8)
}
for i in 0..buf_65.len() {
buf_65[i] = 0x60 + (i as u8)
}
// test 1: slave address 0x61 should not be addressable
match i2c.blocking_write(0x61, &buf_short) {
match i2c.blocking_write(0x61, &buf_20) {
Ok(_) => writeln!(&mut writer, "Test 1 Error: would expect nack").unwrap(),
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 1 OK: expected NACK error: {:?}", err).unwrap(),
};
// 0x41 good case master write slave read: master does send 20 bytes slave receives 20 bytes
match i2c.blocking_write(0x41, &buf_short) {
match i2c.blocking_write(0x41, &buf_20) {
Ok(_) => writeln!(&mut writer, "Test 0x41 Ok").unwrap(),
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x41 Error: {:?}", err).unwrap(),
};
// 0x42 bad case master write slave read: master does send less than 20 bytes
for i in 0..buf_10.len() {
buf_10[i] = 0x20 + (i as u8)
}
match i2c.blocking_write(0x42, &buf_10) {
Ok(_) => writeln!(
&mut writer,
"Test 0x42 Ok. (Master cannot detect that frame is too short) "
)
.unwrap(),
// 0x42 edge case master write exact 64 bytes: must succeed on master and slave
match i2c.blocking_write(0x42, &buf_64) {
Ok(_) => writeln!(&mut writer, "Test 0x42 Ok. Master write exact 64 bytes").unwrap(),
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x42 error IncorrectFramesize: {:?}", err).unwrap(),
};
// 0x43 bad case master write slave read: master does send more than 20 bytes, slave does NACK
for i in 0..buf_long.len() {
buf_long[i] = 0x61 + (i as u8)
}
match i2c.blocking_write(0x43, &buf_long) {
Ok(_) => writeln!(&mut writer, "Test 0x43 not ok expected error IncorrectFramesize: ").unwrap(),
// 0x43 edge case master write exact 65 bytes: 1 too manyu must fail on master and slave
match i2c.blocking_write(0x43, &buf_64) {
Ok(_) => writeln!(&mut writer, "Test 0x42 Failed. Expected a Nack").unwrap(),
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x43 Ok Expected IncorrectFrameSize: {:?}", err).unwrap(),
Err(err) => writeln!(
&mut writer,
"Test 0x43 Ok: Got error NACK du to buffer of 1 too big {:?}",
err
)
.unwrap(),
};
// 0x44 master write_read good case: master sends and expects 20 bytes
for i in 0..buf_short.len() {
buf_short[i] = 0x41 + (i as u8)
}
for i in 0..buf_rcv.len() {
buf_rcv[i] = 0x30 + (i as u8)
}
match i2c.blocking_write_read(0x44, &buf_short, &mut buf_rcv) {
match i2c.blocking_read(0x48, &mut buf_20) {
Ok(_) => {
writeln!(&mut writer, "Test 0x48 Read expected to fail!").unwrap();
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(
&mut writer,
"Test 0x48 Ok. First time, slave did not yet prepare a buffer Error: {:?}",
err
)
.unwrap(),
};
match i2c.blocking_read(0x49, &mut buf_20) {
Ok(_) => {
writeln!(&mut writer, "Test 0x49 Read Ok").unwrap();
print_buffer(&mut writer, &buf_20);
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x49 Error: {:?}", err).unwrap(),
};
match i2c.blocking_read(0x4A, &mut buf_64) {
Ok(_) => {
writeln!(&mut writer, "Test 0x4A failed. Expected was a NACK error").unwrap();
print_buffer(&mut writer, &buf_64);
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x4A Ok. Expected to fail. Error: {:?}", err).unwrap(),
};
match i2c.blocking_read(0x4B, &mut buf_64) {
Ok(_) => {
writeln!(&mut writer, "Test 0x4B succeeded: edge case read exact the buffer size").unwrap();
print_buffer(&mut writer, &buf_64);
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x4B failed. Error: {:?}", err).unwrap(),
};
/*
match i2c.blocking_write_read(0x44, &buf_20, &mut buf_64) {
Ok(_) => {
writeln!(&mut writer, "Test 0x44 Ok ").unwrap();
writeln!(
@ -145,52 +174,7 @@ async fn main(_spawner: Spawner) {
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x44 error: {:?}", err).unwrap(),
};
// 0x48 master read slave write good case: exact 20 characters
for i in 0..buf_short.len() {
buf_short[i] = 0x61 + (i as u8)
}
match i2c.blocking_read(0x48, &mut buf_short) {
Ok(_) => {
writeln!(&mut writer, "Test 0x48 Ok ").unwrap();
for i in 0..buf_short.len() {
writeln!(&mut writer, "{}", buf_short[i]).unwrap();
}
writeln!(&mut writer, "").unwrap()
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x48 unexpected error: {:?}", err).unwrap(),
};
// 0x49 master read slave write bad case: master expects 50 slave does send 20 characters
for i in 0..buf_long.len() {
buf_long[i] = 0x61 + (i as u8)
}
match i2c.blocking_read(0x49, &mut buf_long) {
Ok(_) => {
writeln!(&mut writer, "Test 0x49 Ok ").unwrap();
for i in 0..buf_long.len() {
writeln!(&mut writer, "{}", buf_long[i]).unwrap();
}
writeln!(&mut writer, "").unwrap()
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x49 error: {:?}", err).unwrap(),
};
// 0x4A master read slave write bad case: master expects 20 does slave does send 50 characters
for i in 0..buf_short.len() {
buf_short[i] = 0x41 + (i as u8)
}
match i2c.blocking_read(0x4A, &mut buf_short) {
Ok(_) => {
writeln!(&mut writer, "Test 0x4A Ok ").unwrap();
for i in 0..buf_short.len() {
writeln!(&mut writer, "{}", buf_short[i]).unwrap();
}
writeln!(&mut writer, "").unwrap()
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x4A error: {:?}", err).unwrap(),
};
*/
// 0x4F test end and slave will present results
let mut result: [u8; 2] = [0, 0];
match i2c.blocking_read(0x4F, &mut result) {
@ -204,24 +188,12 @@ async fn main(_spawner: Spawner) {
Err(err) => writeln!(&mut writer, "Test 0x4F unexpected error: {:?}", err).unwrap(),
};
writeln!(&mut writer, "").unwrap();
let mut joyb = [0_u8; 3];
match i2c.blocking_read(0x52, &mut joyb) {
Ok(_) => {
writeln!(&mut writer, "Test 0x52 Ok ").unwrap();
for i in 0..joyb.len() {
writeln!(&mut writer, " {} ", joyb[i]).unwrap();
}
writeln!(&mut writer, "").unwrap()
}
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x52 unexpected error: {:?}", err).unwrap(),
};
match i2c.blocking_write(0x21, &mut buf_io) {
Ok(_) => (),
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out").unwrap(),
Err(err) => writeln!(&mut writer, "Test 0x21 unexpected error: {:?}", err).unwrap(),
};
buf_io[0] += 1;
Timer::after(Duration::from_millis(10_000)).await;
}
fn print_buffer(writer: &mut SerialWriter, buf: &[u8]) {
for i in 0..buf.len() {
write!(writer, " {:2x} ", buf[i]).unwrap();
}
writeln!(writer, "\n\r").unwrap()
}
}

View File

@ -0,0 +1,279 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use core::fmt::{self, Write};
use embassy_executor::Spawner;
use embassy_stm32::dma::NoDma;
use embassy_stm32::i2c::I2c;
use embassy_stm32::pac::i2c::vals;
use embassy_stm32::time::Hertz;
use embassy_stm32::usart::UartTx;
use embassy_stm32::{bind_interrupts, i2c, peripherals, usart};
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
I2C1 => i2c::InterruptHandler<peripherals::I2C1>;
USART1 => usart::InterruptHandler<peripherals::USART1>;
});
macro_rules! checkIsWrite {
($writer:ident, $direction:ident) => {
match $direction {
vals::Dir::WRITE => (),
_ => {
write!($writer, "Error incorrect direction {:?}\r", $direction as usize).unwrap();
continue;
}
}
};
}
macro_rules! checkIsRead {
($writer:ident, $direction:ident) => {
match $direction {
vals::Dir::READ => (),
_ => {
write!($writer, "Error incorrect direction {:?}\r", $direction as usize).unwrap();
continue;
}
}
};
}
pub struct SerialWriter {
tx: UartTx<'static, peripherals::USART1, peripherals::DMA1_CH1>,
}
impl SerialWriter {
pub fn new(tx: UartTx<'static, peripherals::USART1, peripherals::DMA1_CH1>) -> Self {
SerialWriter { tx }
}
}
impl fmt::Write for SerialWriter {
fn write_str(&mut self, s: &str) -> fmt::Result {
_ = self.tx.blocking_write(s.as_bytes());
Ok(())
}
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
let uart = usart::Uart::new(
p.USART1,
p.PB7,
p.PB6,
Irqs,
p.DMA1_CH1,
p.DMA1_CH2,
usart::Config::default(),
)
.unwrap();
let (tx, _rx) = uart.split();
let mut writer = SerialWriter::new(tx);
writeln!(
&mut writer,
"async i2c slave test. Should be used together with i2c_master test\r"
)
.unwrap();
let mut config = i2c::Config::default();
config.slave_address_7bits(0x4);
config.slave_address_2(0x41, vals::Oamsk::MASK4);
writeln!(&mut writer, "After config:\r",).unwrap();
let mut i2c = I2c::new(p.I2C1, p.PB8, p.PB9, Irqs, NoDma, NoDma, Hertz(100_000), config);
writeln!(&mut writer, "After i2c init\r").unwrap();
let mut buf_64 = [0; 64]; // buffer is longer than master will send: wait for STOP condition
let mut buf_20 = [0; 20]; // buffer is shorter than master will send: wait for STOP condition
let mut errors = 0;
let mut address = 0;
let mut dir = vals::Dir::READ;
let mut tcount = 0;
let mut counter = 0;
let mut error = Ok((0, vals::Dir::READ, 0));
// start of the actual test
i2c.slave_start_listen().unwrap();
loop {
counter += 1;
writeln!(&mut writer, "Loop: {}\r", counter).unwrap();
for i in 0..buf_20.len() {
buf_20[i] = 0x61 + (i as u8)
}
for i in 0..buf_64.len() {
buf_64[i] = 0x41 + (i as u8)
}
writeln!(&mut writer, "Waiting for master activity\r").unwrap();
error = Ok((0, vals::Dir::WRITE, 0));
match i2c.slave_transaction().await {
Ok((taddr, tdir, tsize)) => {
address = taddr;
dir = tdir;
writeln!(
&mut writer,
"Test ok. Address: x{:2x} dir: {:?} size: x{:2x}\r",
taddr, tdir as u8, tsize
)
.unwrap();
}
Err(e) => {
error = Err(e);
writeln!(&mut writer, "Test failed: Error: {:?}", e).unwrap()
}
}
tcount += 1;
match address {
0x41 => {
// 0x41 good case master write slave read: master does send 20 bytes slave receives 20 bytes
checkIsWrite!(writer, dir);
_ = i2c.slave_read_buffer(&mut buf_20, i2c::AddressType::GenericAddress);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x41 Ok. send 20 bytes").unwrap();
print_buffer(&mut writer, &buf_20);
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x41 failed. Error: {:?}\r", err).unwrap()
}
};
}
0x42 => {
// 0x42 good case edge case: exact 64 bytes master write slave read:
checkIsWrite!(writer, dir);
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::GenericAddress);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x42 Ok. send 64 bytes").unwrap();
print_buffer(&mut writer, &buf_64);
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x42 failed. Error: {:?}\r", err).unwrap()
}
};
}
0x43 => {
// 0x43 bad case master write slave read: master does send more than 64 bytes, slave does NACK
checkIsWrite!(writer, dir);
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::GenericAddress);
match i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::GenericAddress) {
Ok(_) => {
{
writeln!(&mut writer, "Test 0x43 failed. Expected to fail. with FrameError\r").unwrap()
};
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x43 Ok Expected error. Error: {:?}\r", err).unwrap()
}
};
}
0x48 => {
// 0x48 master read slave write slave did not yet prepare a buffer, master will fail
checkIsRead!(writer, dir);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x48 fail expected to fail: \r").unwrap();
errors += 1;
}
Err(err) => writeln!(&mut writer, "Test 0x48 Ok. Expected error: {:?}\r", err).unwrap(),
};
// prepare buffer for next round
for i in 0..buf_20.len() {
buf_20[i] = 0x61 + (i as u8)
}
_ = i2c.slave_write_buffer(&buf_20, i2c::AddressType::GenericAddress);
}
0x49 => {
// 0x49 master read slave write bad case: master expects 50 does slave does send 20 characters
checkIsRead!(writer, dir);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x49 Ok. master did read 20 bytes").unwrap();
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x49 failed. Error: {:?}\r", err).unwrap()
}
};
// prepare buffer for next round
for i in 0..buf_20.len() {
buf_20[i] = 0x41 + (i as u8)
}
_ = i2c.slave_write_buffer(&buf_20, i2c::AddressType::GenericAddress);
}
0x4A => {
// 0x4A master read slave write bad case: master expects 64 does slave does prepare 20 characters
checkIsRead!(writer, dir);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x4A failed . Expected an errpr").unwrap();
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x4A ok. Expected errore rror: {:?}\r", err).unwrap()
}
}
_ = i2c.slave_write_buffer(&buf_20, i2c::AddressType::GenericAddress);
// prepare buffer for next round
for i in 0..buf_64.len() {
buf_64[i] = 0x41 + (i as u8)
}
_ = i2c.slave_write_buffer(&buf_64, i2c::AddressType::GenericAddress);
}
0x4B => {
// 0x4B master write_read good case each 20 chars
checkIsRead!(writer, dir);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x4B Ok\r").unwrap();
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x4B failed. Error: {:?}\r", err).unwrap()
}
};
let result: [u8; 2] = [tcount, errors];
_ = i2c.slave_write_buffer(&result, i2c::AddressType::GenericAddress);
}
0x4F => {
checkIsRead!(writer, dir);
match error {
Ok(_) => {
writeln!(&mut writer, "Test 0x4F Result send to master\r").unwrap();
}
Err(err) => {
errors += 1;
writeln!(&mut writer, "Test 0x4F failed. Error: {:?}\r", err).unwrap()
}
};
writeln!(
&mut writer,
"Test finished. nr tests/nr errors: {}/{}!\r",
tcount, errors
)
.unwrap();
writeln!(&mut writer, "-----\r").unwrap();
tcount = 0;
errors = 0;
}
_ => (),
}
}
fn print_buffer(writer: &mut SerialWriter, buf: &[u8]) {
for i in 0..buf.len() {
write!(writer, " {:2x} ", buf[i]).unwrap();
}
writeln!(writer, "\n\r").unwrap()
}
}