overhaul implementation
This commit is contained in:
parent
3cf85df176
commit
04944b6379
@ -39,4 +39,5 @@ log = { version = "0.4.11", optional = true }
|
||||
cortex-m-rt = "0.6.13"
|
||||
cortex-m = { version = "0.6.4" }
|
||||
embedded-hal = { version = "0.2.4" }
|
||||
embedded-dma = { version = "0.1.2" }
|
||||
stm32f4xx-hal = { version = "0.8.3", features = ["rt"], git = "https://github.com/stm32-rs/stm32f4xx-hal.git" }
|
||||
|
@ -1,129 +0,0 @@
|
||||
//! Interrupt management
|
||||
//!
|
||||
//! This module implements an API for managing interrupts compatible with
|
||||
//! nrf_softdevice::interrupt. Intended for switching between the two at compile-time.
|
||||
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use crate::pac::{NVIC, NVIC_PRIO_BITS};
|
||||
|
||||
// Re-exports
|
||||
pub use crate::pac::Interrupt;
|
||||
pub use crate::pac::Interrupt::*; // needed for cortex-m-rt #[interrupt]
|
||||
pub use cortex_m::interrupt::{CriticalSection, Mutex};
|
||||
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
#[repr(u8)]
|
||||
pub enum Priority {
|
||||
Level0 = 0,
|
||||
Level1 = 1,
|
||||
Level2 = 2,
|
||||
Level3 = 3,
|
||||
Level4 = 4,
|
||||
Level5 = 5,
|
||||
Level6 = 6,
|
||||
Level7 = 7,
|
||||
}
|
||||
|
||||
impl Priority {
|
||||
#[inline]
|
||||
fn to_nvic(self) -> u8 {
|
||||
(self as u8) << (8 - NVIC_PRIO_BITS)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn from_nvic(priority: u8) -> Self {
|
||||
match priority >> (8 - NVIC_PRIO_BITS) {
|
||||
0 => Self::Level0,
|
||||
1 => Self::Level1,
|
||||
2 => Self::Level2,
|
||||
3 => Self::Level3,
|
||||
4 => Self::Level4,
|
||||
5 => Self::Level5,
|
||||
6 => Self::Level6,
|
||||
7 => Self::Level7,
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn free<F, R>(f: F) -> R
|
||||
where
|
||||
F: FnOnce(&CriticalSection) -> R,
|
||||
{
|
||||
unsafe {
|
||||
// TODO: assert that we're in privileged level
|
||||
// Needed because disabling irqs in non-privileged level is a noop, which would break safety.
|
||||
|
||||
let primask: u32;
|
||||
asm!("mrs {}, PRIMASK", out(reg) primask);
|
||||
|
||||
asm!("cpsid i");
|
||||
|
||||
// Prevent compiler from reordering operations inside/outside the critical section.
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
|
||||
let r = f(&CriticalSection::new());
|
||||
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
|
||||
if primask & 1 == 0 {
|
||||
asm!("cpsie i");
|
||||
}
|
||||
|
||||
r
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn enable(irq: Interrupt) {
|
||||
unsafe {
|
||||
NVIC::unmask(irq);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn disable(irq: Interrupt) {
|
||||
NVIC::mask(irq);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn is_active(irq: Interrupt) -> bool {
|
||||
NVIC::is_active(irq)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn is_enabled(irq: Interrupt) -> bool {
|
||||
NVIC::is_enabled(irq)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn is_pending(irq: Interrupt) -> bool {
|
||||
NVIC::is_pending(irq)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn pend(irq: Interrupt) {
|
||||
NVIC::pend(irq)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn unpend(irq: Interrupt) {
|
||||
NVIC::unpend(irq)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get_priority(irq: Interrupt) -> Priority {
|
||||
Priority::from_nvic(NVIC::get_priority(irq))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn set_priority(irq: Interrupt, prio: Priority) {
|
||||
unsafe {
|
||||
cortex_m::peripheral::Peripherals::steal()
|
||||
.NVIC
|
||||
.set_priority(irq, prio.to_nvic())
|
||||
}
|
||||
}
|
@ -331,6 +331,7 @@ pub use stm32f4xx_hal::stm32 as pac;
|
||||
macro_rules! waker_interrupt {
|
||||
($INT:ident, $waker:expr) => {{
|
||||
use core::sync::atomic::{self, Ordering};
|
||||
use core::task::Waker;
|
||||
use stm32f4xx_hal::pac::{interrupt, Interrupt, NVIC};
|
||||
|
||||
static mut WAKER: Option<Waker> = None;
|
||||
@ -359,7 +360,6 @@ macro_rules! waker_interrupt {
|
||||
// This mod MUST go first, so that the others see its macros.
|
||||
pub(crate) mod fmt;
|
||||
|
||||
pub mod interrupt;
|
||||
pub mod uarte;
|
||||
|
||||
pub use cortex_m_rt::interrupt;
|
||||
|
@ -1,11 +1,12 @@
|
||||
//! HAL interface to the UARTE peripheral
|
||||
//! Async low power UARTE.
|
||||
//!
|
||||
//! See product specification:
|
||||
//!
|
||||
//! - nrf52832: Section 35
|
||||
//! - nrf52840: Section 6.34
|
||||
//! The peripheral is autmatically enabled and disabled as required to save power.
|
||||
//! Lowest power consumption can only be guaranteed if the send receive futures
|
||||
//! are dropped correctly (e.g. not using `mem::forget()`).
|
||||
|
||||
use core::cell::UnsafeCell;
|
||||
use core::cmp::min;
|
||||
use core::future::Future;
|
||||
use core::marker::PhantomPinned;
|
||||
use core::ops::Deref;
|
||||
use core::pin::Pin;
|
||||
@ -14,10 +15,17 @@ use core::sync::atomic::{compiler_fence, Ordering};
|
||||
use core::task::{Context, Poll};
|
||||
use cortex_m::singleton;
|
||||
|
||||
use embassy::util::Signal;
|
||||
use embedded_dma::{StaticReadBuffer, StaticWriteBuffer};
|
||||
|
||||
use crate::fmt::assert;
|
||||
use crate::hal::dma::config::DmaConfig;
|
||||
use crate::hal::dma::{Channel4, PeripheralToMemory, Stream2, StreamsTuple, Transfer};
|
||||
use crate::hal::gpio::gpioa::{PA10, PA9};
|
||||
use crate::hal::gpio::{Alternate, AF10, AF7, AF9};
|
||||
use crate::hal::gpio::{Floating, Input, Output, PushPull};
|
||||
use crate::hal::pac;
|
||||
use crate::hal::prelude::*;
|
||||
use crate::hal::rcc::Clocks;
|
||||
use crate::hal::serial::config::{
|
||||
Config as SerialConfig, DmaConfig as SerialDmaConfig, Parity, StopBits, WordLength,
|
||||
@ -26,156 +34,51 @@ use crate::hal::serial::Serial;
|
||||
use crate::hal::time::Bps;
|
||||
|
||||
use crate::interrupt;
|
||||
use crate::interrupt::CriticalSection;
|
||||
|
||||
use crate::pac::Interrupt;
|
||||
use crate::pac::{DMA2, USART1};
|
||||
|
||||
use embedded_hal::digital::v2::OutputPin;
|
||||
|
||||
// Re-export SVD variants to allow user to directly set values
|
||||
// pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
|
||||
// Re-export SVD variants to allow user to directly set values.
|
||||
// pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
|
||||
|
||||
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
|
||||
use embassy::util::WakerStore;
|
||||
|
||||
use crate::fmt::{assert, panic, todo, *};
|
||||
|
||||
//use crate::trace;
|
||||
|
||||
const RINGBUF_SIZE: usize = 512;
|
||||
struct RingBuf {
|
||||
buf: [u8; RINGBUF_SIZE],
|
||||
start: usize,
|
||||
end: usize,
|
||||
empty: bool,
|
||||
/// Interface to the UARTE peripheral
|
||||
pub struct Uarte {
|
||||
instance: Serial<USART1, (PA9<Alternate<AF7>>, PA10<Alternate<AF7>>)>,
|
||||
usart: USART1,
|
||||
dma: DMA2,
|
||||
}
|
||||
|
||||
impl RingBuf {
|
||||
fn new() -> Self {
|
||||
RingBuf {
|
||||
buf: [0; RINGBUF_SIZE],
|
||||
start: 0,
|
||||
end: 0,
|
||||
empty: true,
|
||||
}
|
||||
}
|
||||
|
||||
fn push_buf(&mut self) -> &mut [u8] {
|
||||
if self.start == self.end && !self.empty {
|
||||
trace!(" ringbuf: push_buf empty");
|
||||
return &mut self.buf[..0];
|
||||
}
|
||||
|
||||
let n = if self.start <= self.end {
|
||||
RINGBUF_SIZE - self.end
|
||||
} else {
|
||||
self.start - self.end
|
||||
};
|
||||
|
||||
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
|
||||
&mut self.buf[self.end..self.end + n]
|
||||
}
|
||||
|
||||
fn push(&mut self, n: usize) {
|
||||
trace!(" ringbuf: push {:?}", n);
|
||||
if n == 0 {
|
||||
return;
|
||||
}
|
||||
|
||||
self.end = Self::wrap(self.end + n);
|
||||
self.empty = false;
|
||||
}
|
||||
|
||||
fn pop_buf(&mut self) -> &mut [u8] {
|
||||
if self.empty {
|
||||
trace!(" ringbuf: pop_buf empty");
|
||||
return &mut self.buf[..0];
|
||||
}
|
||||
|
||||
let n = if self.end <= self.start {
|
||||
RINGBUF_SIZE - self.start
|
||||
} else {
|
||||
self.end - self.start
|
||||
};
|
||||
|
||||
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
|
||||
&mut self.buf[self.start..self.start + n]
|
||||
}
|
||||
|
||||
fn pop(&mut self, n: usize) {
|
||||
trace!(" ringbuf: pop {:?}", n);
|
||||
if n == 0 {
|
||||
return;
|
||||
}
|
||||
|
||||
self.start = Self::wrap(self.start + n);
|
||||
self.empty = self.start == self.end;
|
||||
}
|
||||
|
||||
fn wrap(n: usize) -> usize {
|
||||
assert!(n <= RINGBUF_SIZE);
|
||||
if n == RINGBUF_SIZE {
|
||||
0
|
||||
} else {
|
||||
n
|
||||
}
|
||||
}
|
||||
struct State {
|
||||
tx_done: Signal<()>,
|
||||
rx_done: Signal<u32>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
enum RxState {
|
||||
Idle,
|
||||
Receiving,
|
||||
ReceivingReady,
|
||||
Stopping,
|
||||
}
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
enum TxState {
|
||||
Idle,
|
||||
Transmitting(usize),
|
||||
static STATE: State = State {
|
||||
tx_done: Signal::new(),
|
||||
rx_done: Signal::new(),
|
||||
};
|
||||
|
||||
pub struct Pins {
|
||||
pub rxd: PA10<Alternate<AF7>>,
|
||||
pub txd: PA9<Alternate<AF7>>,
|
||||
pub dma: DMA2,
|
||||
pub usart: USART1,
|
||||
}
|
||||
|
||||
/// Interface to a UARTE instance
|
||||
///
|
||||
/// This is a very basic interface that comes with the following limitations:
|
||||
/// - The UARTE instances share the same address space with instances of UART.
|
||||
/// You need to make sure that conflicting instances
|
||||
/// are disabled before using `Uarte`. See product specification:
|
||||
/// - nrf52832: Section 15.2
|
||||
/// - nrf52840: Section 6.1.2
|
||||
pub struct Uarte<T: Instance> {
|
||||
started: bool,
|
||||
state: UnsafeCell<UarteState<T>>,
|
||||
}
|
||||
impl Uarte {
|
||||
pub fn new(mut pins: Pins, parity: Parity, baudrate: Bps, clocks: Clocks) -> Self {
|
||||
// // Enable interrupts
|
||||
// uarte.events_endtx.reset();
|
||||
// uarte.events_endrx.reset();
|
||||
// uarte
|
||||
// .intenset
|
||||
// .write(|w| w.endtx().set().txstopped().set().endrx().set().rxto().set());
|
||||
// // TODO: Set interrupt priority?
|
||||
// interrupt::unpend(interrupt::UARTE0_UART0);
|
||||
// interrupt::enable(interrupt::UARTE0_UART0);
|
||||
|
||||
// public because it needs to be used in Instance::{get_state, set_state}, but
|
||||
// should not be used outside the module
|
||||
#[doc(hidden)]
|
||||
pub struct UarteState<T> {
|
||||
inner: T,
|
||||
|
||||
rx: RingBuf,
|
||||
rx_state: RxState,
|
||||
rx_waker: WakerStore,
|
||||
|
||||
tx: RingBuf,
|
||||
tx_state: TxState,
|
||||
tx_waker: WakerStore,
|
||||
|
||||
_pin: PhantomPinned,
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "52833", feature = "52840"))]
|
||||
fn port_bit(port: GpioPort) -> bool {
|
||||
match port {
|
||||
GpioPort::Port0 => false,
|
||||
GpioPort::Port1 => true,
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> Uarte<T> {
|
||||
pub fn new(uarte: T, mut pins: Pins, parity: Parity, baudrate: Bps, clocks: Clocks) -> Self {
|
||||
// Select pins
|
||||
// Serial<USART1, (PA9<Alternate<AF7>>, PA10<Alternate<AF7>>)>
|
||||
let mut serial = Serial::usart1(
|
||||
pins.usart,
|
||||
@ -191,411 +94,246 @@ impl<T: Instance> Uarte<T> {
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let isr = pins.dma.hisr;
|
||||
// self.isr().$tcifX().bit_is_clear()
|
||||
let isr = pins.dma.hisr;0
|
||||
|
||||
// Enable interrupts
|
||||
// serial.listen(Event::Txe);
|
||||
// serial.listen(Event::Txe);
|
||||
Uarte { instance: serial, dma: pins.dma, usart: pins.usart }
|
||||
}
|
||||
|
||||
// TODO: Enable idle interrupt? Use DMA interrupt?
|
||||
|
||||
// STREAM: Stream,
|
||||
// CHANNEL: Channel,
|
||||
// DIR: Direction,
|
||||
// PERIPHERAL: PeriAddress,
|
||||
// BUF: WriteBuffer<Word = <PERIPHERAL as PeriAddress>::MemSize> + 'static,
|
||||
/// Sets the baudrate, parity and assigns the pins to the UARTE peripheral.
|
||||
// TODO: Make it take the same `Pins` structs nrf-hal (with optional RTS/CTS).
|
||||
// // TODO: #[cfg()] for smaller device variants without port register (nrf52810, ...).
|
||||
// pub fn configure(
|
||||
// &mut self,
|
||||
// rxd: &Pin<Input<Floating>>,
|
||||
// txd: &mut Pin<Output<PushPull>>,
|
||||
// parity: Parity,
|
||||
// baudrate: Baudrate,
|
||||
// ) {
|
||||
// let uarte = &self.instance;
|
||||
// assert!(uarte.enable.read().enable().is_disabled());
|
||||
//
|
||||
// (Stream2<DMA2>, Channel4, Rx<pac::USART1>, PeripheralToMemory), //USART1_RX
|
||||
// (Stream7<DMA2>, Channel4, Tx<pac::USART1>, MemoryToPeripheral), //USART1_TX
|
||||
|
||||
/*
|
||||
Taken from https://gist.github.com/thalesfragoso/a07340c5df6eee3b04c42fdc69ecdcb1
|
||||
*/
|
||||
|
||||
// let rcc = unsafe { &*RCC::ptr() };
|
||||
// rcc.apb2enr.modify(|_, w| w.adc1en().enabled());
|
||||
// rcc.apb2rstr.modify(|_, w| w.adcrst().set_bit());
|
||||
// rcc.apb2rstr.modify(|_, w| w.adcrst().clear_bit());
|
||||
// let adc = cx.device.ADC1;
|
||||
// adc.cr2.modify(|_, w| {
|
||||
// w.dma()
|
||||
// .enabled()
|
||||
// .cont()
|
||||
// .continuous()
|
||||
// .dds()
|
||||
// .continuous()
|
||||
// .adon()
|
||||
// .enabled()
|
||||
// uarte.psel.rxd.write(|w| {
|
||||
// let w = unsafe { w.pin().bits(rxd.pin()) };
|
||||
// let w = w.port().bit(rxd.port().bit());
|
||||
// w.connect().connected()
|
||||
// });
|
||||
|
||||
// Configure
|
||||
//let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
|
||||
//uarte
|
||||
// .config
|
||||
// .write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
|
||||
|
||||
// Configure frequency
|
||||
//
|
||||
// txd.set_high().unwrap();
|
||||
// uarte.psel.txd.write(|w| {
|
||||
// let w = unsafe { w.pin().bits(txd.pin()) };
|
||||
// let w = w.port().bit(txd.port().bit());
|
||||
// w.connect().connected()
|
||||
// });
|
||||
//
|
||||
// uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
|
||||
// uarte.config.write(|w| w.parity().variant(parity));
|
||||
// }
|
||||
|
||||
Uarte {
|
||||
started: false,
|
||||
state: UnsafeCell::new(UarteState {
|
||||
inner: uarte,
|
||||
// fn enable(&mut self) {
|
||||
// self.instance.enable.write(|w| w.enable().enabled());
|
||||
// }
|
||||
|
||||
rx: RingBuf::new(),
|
||||
rx_state: RxState::Idle,
|
||||
rx_waker: WakerStore::new(),
|
||||
/// Sends serial data.
|
||||
///
|
||||
/// `tx_buffer` is marked as static as per `embedded-dma` requirements.
|
||||
/// It it safe to use a buffer with a non static lifetime if memory is not
|
||||
/// reused until the future has finished.
|
||||
pub fn send<'a, B>(&'a mut self, tx_buffer: B) -> SendFuture<'a, B>
|
||||
where
|
||||
B: StaticReadBuffer<Word = u8>,
|
||||
{
|
||||
// Panic if TX is running which can happen if the user has called
|
||||
// `mem::forget()` on a previous future after polling it once.
|
||||
assert!(!self.tx_started());
|
||||
|
||||
tx: RingBuf::new(),
|
||||
tx_state: TxState::Idle,
|
||||
tx_waker: WakerStore::new(),
|
||||
self.enable();
|
||||
|
||||
_pin: PhantomPinned,
|
||||
}),
|
||||
SendFuture {
|
||||
uarte: self,
|
||||
buf: tx_buffer,
|
||||
}
|
||||
}
|
||||
|
||||
fn with_state<'a, R>(
|
||||
self: Pin<&'a mut Self>,
|
||||
f: impl FnOnce(Pin<&'a mut UarteState<T>>) -> R,
|
||||
) -> R {
|
||||
let Self { state, started } = unsafe { self.get_unchecked_mut() };
|
||||
|
||||
interrupt::free(|cs| {
|
||||
let ptr = state.get();
|
||||
|
||||
if !*started {
|
||||
T::set_state(cs, ptr);
|
||||
|
||||
*started = true;
|
||||
|
||||
// safety: safe because critical section ensures only one *mut UartState
|
||||
// exists at the same time.
|
||||
unsafe { Pin::new_unchecked(&mut *ptr) }.start();
|
||||
fn tx_started(&self) -> bool {
|
||||
// self.instance.events_txstarted.read().bits() != 0
|
||||
false
|
||||
}
|
||||
|
||||
// safety: safe because critical section ensures only one *mut UartState
|
||||
// exists at the same time.
|
||||
f(unsafe { Pin::new_unchecked(&mut *ptr) })
|
||||
})
|
||||
/// Receives serial data.
|
||||
///
|
||||
/// The future is pending until the buffer is completely filled.
|
||||
/// A common pattern is to use [`stop()`](ReceiveFuture::stop) to cancel
|
||||
/// unfinished transfers after a timeout to prevent lockup when no more data
|
||||
/// is incoming.
|
||||
///
|
||||
/// `rx_buffer` is marked as static as per `embedded-dma` requirements.
|
||||
/// It it safe to use a buffer with a non static lifetime if memory is not
|
||||
/// reused until the future has finished.
|
||||
pub fn receive<'a, B>(&'a mut self, rx_buffer: B) -> ReceiveFuture<'a, B>
|
||||
where
|
||||
B: StaticWriteBuffer<Word = u8>,
|
||||
{
|
||||
// Panic if RX is running which can happen if the user has called
|
||||
// `mem::forget()` on a previous future after polling it once.
|
||||
assert!(!self.rx_started());
|
||||
|
||||
self.enable();
|
||||
|
||||
ReceiveFuture {
|
||||
uarte: self,
|
||||
buf: Some(rx_buffer),
|
||||
}
|
||||
}
|
||||
|
||||
fn rx_started(&self) -> bool {
|
||||
self.instance.events_rxstarted.read().bits() != 0
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> Drop for Uarte<T> {
|
||||
fn drop(&mut self) {
|
||||
// stop DMA before dropping, because DMA is using the buffer in `self`.
|
||||
todo!()
|
||||
/// Future for the [`LowPowerUarte::send()`] method.
|
||||
pub struct SendFuture<'a, B> {
|
||||
uarte: &'a Uarte,
|
||||
buf: B,
|
||||
}
|
||||
|
||||
impl<'a, B> Drop for SendFuture<'a, B> {
|
||||
fn drop(self: &mut Self) {
|
||||
if self.uarte.tx_started() {
|
||||
trace!("stoptx");
|
||||
|
||||
// Stop the transmitter to minimize the current consumption.
|
||||
self.uarte
|
||||
.instance
|
||||
.tasks_stoptx
|
||||
.write(|w| unsafe { w.bits(1) });
|
||||
self.uarte.instance.events_txstarted.reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> AsyncBufRead for Uarte<T> {
|
||||
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
|
||||
self.with_state(|s| s.poll_fill_buf(cx))
|
||||
}
|
||||
impl<'a, B> Future for SendFuture<'a, B>
|
||||
where
|
||||
B: StaticReadBuffer<Word = u8>,
|
||||
{
|
||||
type Output = ();
|
||||
|
||||
fn consume(self: Pin<&mut Self>, amt: usize) {
|
||||
self.with_state(|s| s.consume(amt))
|
||||
}
|
||||
}
|
||||
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
|
||||
if self.is_ready() {
|
||||
Poll::Ready(())
|
||||
} else {
|
||||
// Start DMA transaction
|
||||
let uarte = &self.uarte.instance;
|
||||
|
||||
impl<T: Instance> AsyncWrite for Uarte<T> {
|
||||
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
|
||||
self.with_state(|s| s.poll_write(cx, buf))
|
||||
}
|
||||
}
|
||||
STATE.tx_done.reset();
|
||||
|
||||
impl<T: Instance> UarteState<T> {
|
||||
pub fn start(self: Pin<&mut Self>) {
|
||||
interrupt::set_priority(T::interrupt(), interrupt::Priority::Level7);
|
||||
interrupt::enable(T::interrupt());
|
||||
interrupt::pend(T::interrupt());
|
||||
}
|
||||
let (ptr, len) = unsafe { self.buf.read_buffer() };
|
||||
// assert!(len <= EASY_DMA_SIZE);
|
||||
// TODO: panic if buffer is not in SRAM
|
||||
|
||||
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
|
||||
let this = unsafe { self.get_unchecked_mut() };
|
||||
|
||||
// Conservative compiler fence to prevent optimizations that do not
|
||||
// take in to account actions by DMA. The fence has been placed here,
|
||||
// before any DMA action has started
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
trace!("poll_read");
|
||||
// uarte.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
|
||||
// uarte
|
||||
// .txd
|
||||
// .maxcnt
|
||||
// .write(|w| unsafe { w.maxcnt().bits(len as _) });
|
||||
|
||||
// We have data ready in buffer? Return it.
|
||||
let buf = this.rx.pop_buf();
|
||||
if buf.len() != 0 {
|
||||
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
|
||||
return Poll::Ready(Ok(buf));
|
||||
}
|
||||
|
||||
trace!(" empty");
|
||||
|
||||
if this.rx_state == RxState::ReceivingReady {
|
||||
trace!(" stopping");
|
||||
this.rx_state = RxState::Stopping;
|
||||
this.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
|
||||
}
|
||||
|
||||
this.rx_waker.store(cx.waker());
|
||||
Poll::Pending
|
||||
}
|
||||
|
||||
fn consume(self: Pin<&mut Self>, amt: usize) {
|
||||
let this = unsafe { self.get_unchecked_mut() };
|
||||
trace!("consume {:?}", amt);
|
||||
this.rx.pop(amt);
|
||||
interrupt::pend(T::interrupt());
|
||||
}
|
||||
|
||||
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
|
||||
let this = unsafe { self.get_unchecked_mut() };
|
||||
|
||||
trace!("poll_write: {:?}", buf.len());
|
||||
|
||||
let tx_buf = this.tx.push_buf();
|
||||
if tx_buf.len() == 0 {
|
||||
trace!("poll_write: pending");
|
||||
this.tx_waker.store(cx.waker());
|
||||
return Poll::Pending;
|
||||
}
|
||||
|
||||
let n = min(tx_buf.len(), buf.len());
|
||||
tx_buf[..n].copy_from_slice(&buf[..n]);
|
||||
this.tx.push(n);
|
||||
|
||||
trace!("poll_write: queued {:?}", n);
|
||||
|
||||
// Conservative compiler fence to prevent optimizations that do not
|
||||
// take in to account actions by DMA. The fence has been placed here,
|
||||
// before any DMA action has started
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
|
||||
interrupt::pend(T::interrupt());
|
||||
|
||||
Poll::Ready(Ok(n))
|
||||
}
|
||||
|
||||
fn on_interrupt(&mut self) {
|
||||
trace!("irq: start");
|
||||
let mut more_work = true;
|
||||
while more_work {
|
||||
more_work = false;
|
||||
match self.rx_state {
|
||||
RxState::Idle => {
|
||||
trace!(" irq_rx: in state idle");
|
||||
|
||||
if self.inner.events_rxdrdy.read().bits() != 0 {
|
||||
trace!(" irq_rx: rxdrdy?????");
|
||||
self.inner.events_rxdrdy.reset();
|
||||
}
|
||||
|
||||
if self.inner.events_endrx.read().bits() != 0 {
|
||||
panic!("unexpected endrx");
|
||||
}
|
||||
|
||||
let buf = self.rx.push_buf();
|
||||
if buf.len() != 0 {
|
||||
trace!(" irq_rx: starting {:?}", buf.len());
|
||||
self.rx_state = RxState::Receiving;
|
||||
|
||||
// Set up the DMA read
|
||||
self.inner.rxd.ptr.write(|w|
|
||||
// The PTR field is a full 32 bits wide and accepts the full range
|
||||
// of values.
|
||||
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
|
||||
self.inner.rxd.maxcnt.write(|w|
|
||||
// We're giving it the length of the buffer, so no danger of
|
||||
// accessing invalid memory. We have verified that the length of the
|
||||
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
||||
//
|
||||
// The MAXCNT field is at least 8 bits wide and accepts the full
|
||||
// range of values.
|
||||
unsafe { w.maxcnt().bits(buf.len() as _) });
|
||||
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
|
||||
|
||||
// Enable RXRDY interrupt.
|
||||
self.inner.events_rxdrdy.reset();
|
||||
self.inner.intenset.write(|w| w.rxdrdy().set());
|
||||
|
||||
// Start UARTE Receive transaction
|
||||
self.inner.tasks_startrx.write(|w|
|
||||
// `1` is a valid value to write to task registers.
|
||||
unsafe { w.bits(1) });
|
||||
}
|
||||
}
|
||||
RxState::Receiving => {
|
||||
trace!(" irq_rx: in state receiving");
|
||||
if self.inner.events_rxdrdy.read().bits() != 0 {
|
||||
trace!(" irq_rx: rxdrdy");
|
||||
|
||||
// Disable the RXRDY event interrupt
|
||||
// RXRDY is triggered for every byte, but we only care about whether we have
|
||||
// some bytes or not. So as soon as we have at least one, disable it, to avoid
|
||||
// wasting CPU cycles in interrupts.
|
||||
self.inner.intenclr.write(|w| w.rxdrdy().clear());
|
||||
|
||||
self.inner.events_rxdrdy.reset();
|
||||
|
||||
self.rx_waker.wake();
|
||||
self.rx_state = RxState::ReceivingReady;
|
||||
more_work = true; // in case we also have endrx pending
|
||||
}
|
||||
}
|
||||
RxState::ReceivingReady | RxState::Stopping => {
|
||||
trace!(" irq_rx: in state ReceivingReady");
|
||||
|
||||
if self.inner.events_rxdrdy.read().bits() != 0 {
|
||||
trace!(" irq_rx: rxdrdy");
|
||||
self.inner.events_rxdrdy.reset();
|
||||
}
|
||||
|
||||
if self.inner.events_endrx.read().bits() != 0 {
|
||||
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
|
||||
trace!(" irq_rx: endrx {:?}", n);
|
||||
self.rx.push(n);
|
||||
|
||||
self.inner.events_endrx.reset();
|
||||
|
||||
self.rx_waker.wake();
|
||||
self.rx_state = RxState::Idle;
|
||||
more_work = true; // start another rx if possible
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
more_work = true;
|
||||
while more_work {
|
||||
more_work = false;
|
||||
match self.tx_state {
|
||||
TxState::Idle => {
|
||||
trace!(" irq_tx: in state Idle");
|
||||
let buf = self.tx.pop_buf();
|
||||
if buf.len() != 0 {
|
||||
trace!(" irq_tx: starting {:?}", buf.len());
|
||||
self.tx_state = TxState::Transmitting(buf.len());
|
||||
|
||||
// Set up the DMA write
|
||||
self.inner.txd.ptr.write(|w|
|
||||
// The PTR field is a full 32 bits wide and accepts the full range
|
||||
// of values.
|
||||
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
|
||||
self.inner.txd.maxcnt.write(|w|
|
||||
// We're giving it the length of the buffer, so no danger of
|
||||
// accessing invalid memory. We have verified that the length of the
|
||||
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
||||
//
|
||||
// The MAXCNT field is 8 bits wide and accepts the full range of
|
||||
// values.
|
||||
unsafe { w.maxcnt().bits(buf.len() as _) });
|
||||
|
||||
// Start UARTE Transmit transaction
|
||||
self.inner.tasks_starttx.write(|w|
|
||||
// `1` is a valid value to write to task registers.
|
||||
unsafe { w.bits(1) });
|
||||
}
|
||||
}
|
||||
TxState::Transmitting(n) => {
|
||||
trace!(" irq_tx: in state Transmitting");
|
||||
// Start the DMA transfer
|
||||
// See https://github.com/mwkroening/async-stm32f1xx/blob/78c46d1bff124eae4ebc7a2f4d40e6ed74def8b5/src/serial.rs#L118-L129
|
||||
// https://github.com/stm32-rs/stm32f1xx-hal/blob/68fd3d6f282173816fd3181e795988d314cb17d0/src/serial.rs#L649-L671
|
||||
|
||||
let first_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
let second_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
let triple_buffer = Some(singleton!(: [u8; 128] = [0; 128]).unwrap());
|
||||
// let first_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
// let second_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
// let triple_buffer = Some(singleton!(: [u8; 128] = [0; 128]).unwrap());
|
||||
|
||||
let transfer = Transfer::init(
|
||||
StreamsTuple::new(pins.dma).7,
|
||||
pins.usart,
|
||||
first_buffer,
|
||||
Some(second_buffer),
|
||||
StreamsTuple::new(self.dma).2,
|
||||
self.usart,
|
||||
self.buf,
|
||||
// Some(second_buffer),
|
||||
None,
|
||||
DmaConfig::default()
|
||||
.transfer_complete_interrupt(true)
|
||||
.memory_increment(true)
|
||||
.double_buffer(true),
|
||||
.double_buffer(false),
|
||||
);
|
||||
|
||||
if self.inner.events_endtx.read().bits() != 0 {
|
||||
self.inner.events_endtx.reset();
|
||||
|
||||
trace!(" irq_tx: endtx {:?}", n);
|
||||
self.tx.pop(n);
|
||||
self.tx_waker.wake();
|
||||
self.tx_state = TxState::Idle;
|
||||
more_work = true; // start another tx if possible
|
||||
waker_interrupt!(DMA2_STREAM2, cx.waker().clone());
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
trace!("irq: end");
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Pins {
|
||||
pub rxd: PA10<Alternate<AF7>>,
|
||||
pub txd: PA9<Alternate<AF7>>,
|
||||
pub dma: DMA2,
|
||||
pub usart: USART1,
|
||||
// pub cts: Option<GpioPin<Input<Floating>>>,
|
||||
// pub rts: Option<GpioPin<Output<PushPull>>>,
|
||||
/// Future for the [`Uarte::receive()`] method.
|
||||
pub struct ReceiveFuture<'a, B> {
|
||||
uarte: &'a Uarte,
|
||||
buf: Option<B>,
|
||||
}
|
||||
|
||||
mod private {
|
||||
pub trait Sealed {}
|
||||
impl<'a, B> Drop for ReceiveFuture<'a, B> {
|
||||
fn drop(self: &mut Self) {
|
||||
if self.uarte.rx_started() {
|
||||
trace!("stoprx");
|
||||
|
||||
impl Sealed for crate::pac::UARTE0 {}
|
||||
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
|
||||
impl Sealed for crate::pac::UARTE1 {}
|
||||
}
|
||||
|
||||
pub trait Instance: Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed {
|
||||
fn interrupt() -> Interrupt;
|
||||
|
||||
#[doc(hidden)]
|
||||
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self>;
|
||||
|
||||
#[doc(hidden)]
|
||||
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>);
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
unsafe fn DMA2_CHANNEL2() {
|
||||
interrupt::free(|cs| UARTE0::get_state(cs).as_mut().unwrap().on_interrupt());
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
unsafe fn DMA2_CHANNEL7() {
|
||||
interrupt::free(|cs| UARTE1::get_state(cs).as_mut().unwrap().on_interrupt());
|
||||
}
|
||||
|
||||
static mut UARTE0_STATE: *mut UarteState<UARTE0> = ptr::null_mut();
|
||||
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
|
||||
static mut UARTE1_STATE: *mut UarteState<UARTE1> = ptr::null_mut();
|
||||
|
||||
impl Instance for DMA_CHANNEL1 {
|
||||
fn interrupt() -> Interrupt {
|
||||
Interrupt::UARTE0_UART0
|
||||
self.uarte
|
||||
.instance
|
||||
.tasks_stoprx
|
||||
.write(|w| unsafe { w.bits(1) });
|
||||
self.uarte.instance.events_rxstarted.reset();
|
||||
}
|
||||
|
||||
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
|
||||
unsafe { UARTE0_STATE } // Safe because of CriticalSection
|
||||
}
|
||||
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
|
||||
unsafe { UARTE0_STATE = state } // Safe because of CriticalSection
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
|
||||
impl Instance for UARTE1 {
|
||||
fn interrupt() -> Interrupt {
|
||||
Interrupt::UARTE1
|
||||
}
|
||||
impl<'a, B> Future for ReceiveFuture<'a, B>
|
||||
where
|
||||
B: StaticWriteBuffer<Word = u8>,
|
||||
{
|
||||
type Output = B;
|
||||
|
||||
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
|
||||
unsafe { UARTE1_STATE } // Safe because of CriticalSection
|
||||
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<B> {
|
||||
if self.is_ready() {
|
||||
Poll::Ready(())
|
||||
} else {
|
||||
// Start DMA transaction
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
// uarte.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
|
||||
// uarte
|
||||
// .txd
|
||||
// .maxcnt
|
||||
// .write(|w| unsafe { w.maxcnt().bits(len as _) });
|
||||
|
||||
// Start the DMA transfer
|
||||
// See https://github.com/mwkroening/async-stm32f1xx/blob/78c46d1bff124eae4ebc7a2f4d40e6ed74def8b5/src/serial.rs#L118-L129
|
||||
// https://github.com/stm32-rs/stm32f1xx-hal/blob/68fd3d6f282173816fd3181e795988d314cb17d0/src/serial.rs#L649-L671
|
||||
|
||||
// let first_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
// let second_buffer = singleton!(: [u8; 128] = [0; 128]).unwrap();
|
||||
// let triple_buffer = Some(singleton!(: [u8; 128] = [0; 128]).unwrap());
|
||||
|
||||
let transfer = Transfer::init(
|
||||
StreamsTuple::new(self.dma).7,
|
||||
self.usart,
|
||||
self.buf,
|
||||
// Some(second_buffer),
|
||||
None,
|
||||
DmaConfig::default()
|
||||
.transfer_complete_interrupt(true)
|
||||
.memory_increment(true)
|
||||
.double_buffer(false),
|
||||
);
|
||||
|
||||
waker_interrupt!(DMA2_STREAM7, cx.waker().clone());
|
||||
Poll::Pending
|
||||
}
|
||||
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
|
||||
unsafe { UARTE1_STATE = state } // Safe because of CriticalSection
|
||||
}
|
||||
}
|
||||
|
||||
/// Future for the [`receive()`] method.
|
||||
impl<'a, B> ReceiveFuture<'a, B> {
|
||||
/// Stops the ongoing reception and returns the number of bytes received.
|
||||
pub async fn stop(mut self) -> (B, usize) {
|
||||
let buf = self.buf.take().unwrap();
|
||||
drop(self);
|
||||
let len = STATE.rx_done.wait().await;
|
||||
(buf, len as _)
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user