time: replace dyn clock/alarm with a global Driver trait
This commit is contained in:
@ -23,6 +23,8 @@ compile_error!("No chip feature activated. You must activate exactly one of the
|
||||
pub(crate) mod fmt;
|
||||
pub(crate) mod util;
|
||||
|
||||
mod time_driver;
|
||||
|
||||
pub mod buffered_uarte;
|
||||
pub mod gpio;
|
||||
pub mod gpiote;
|
||||
@ -32,7 +34,6 @@ pub mod pwm;
|
||||
#[cfg(feature = "nrf52840")]
|
||||
pub mod qspi;
|
||||
pub mod rng;
|
||||
pub mod rtc;
|
||||
#[cfg(not(feature = "nrf52820"))]
|
||||
pub mod saadc;
|
||||
pub mod spim;
|
||||
@ -160,7 +161,10 @@ pub fn init(config: config::Config) -> Peripherals {
|
||||
while r.events_lfclkstarted.read().bits() == 0 {}
|
||||
|
||||
// Init GPIOTE
|
||||
crate::gpiote::init(config.gpiote_interrupt_priority);
|
||||
gpiote::init(config.gpiote_interrupt_priority);
|
||||
|
||||
// init RTC time driver
|
||||
time_driver::init();
|
||||
|
||||
peripherals
|
||||
}
|
||||
|
@ -1,13 +1,17 @@
|
||||
use core::cell::Cell;
|
||||
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
|
||||
use core::sync::atomic::{compiler_fence, AtomicU32, AtomicU8, Ordering};
|
||||
use core::{mem, ptr};
|
||||
use critical_section::CriticalSection;
|
||||
use embassy::interrupt::InterruptExt;
|
||||
use embassy::time::Clock;
|
||||
use embassy::util::{CriticalSectionMutex as Mutex, Unborrow};
|
||||
use embassy::interrupt::{Interrupt, InterruptExt};
|
||||
use embassy::time::driver::{AlarmHandle, Driver};
|
||||
use embassy::util::CriticalSectionMutex as Mutex;
|
||||
|
||||
use crate::interrupt::Interrupt;
|
||||
use crate::interrupt;
|
||||
use crate::pac;
|
||||
use crate::{interrupt, peripherals};
|
||||
|
||||
fn rtc() -> &'static pac::rtc0::RegisterBlock {
|
||||
unsafe { &*pac::RTC1::ptr() }
|
||||
}
|
||||
|
||||
// RTC timekeeping works with something we call "periods", which are time intervals
|
||||
// of 2^23 ticks. The RTC counter value is 24 bits, so one "overflow cycle" is 2 periods.
|
||||
@ -57,46 +61,45 @@ mod test {
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
||||
|
||||
// This is really a Option<(fn(*mut ()), *mut ())>
|
||||
// but fn pointers aren't allowed in const yet
|
||||
callback: Cell<*const ()>,
|
||||
ctx: Cell<*mut ()>,
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
impl AlarmState {
|
||||
fn new() -> Self {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(None),
|
||||
callback: Cell::new(ptr::null()),
|
||||
ctx: Cell::new(ptr::null_mut()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const ALARM_COUNT: usize = 3;
|
||||
|
||||
pub struct RTC<T: Instance> {
|
||||
rtc: T,
|
||||
irq: T::Interrupt,
|
||||
|
||||
struct State {
|
||||
/// Number of 2^23 periods elapsed since boot.
|
||||
period: AtomicU32,
|
||||
|
||||
alarm_count: AtomicU8,
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
||||
}
|
||||
|
||||
unsafe impl<T: Instance> Send for RTC<T> {}
|
||||
unsafe impl<T: Instance> Sync for RTC<T> {}
|
||||
const ALARM_STATE_NEW: AlarmState = AlarmState::new();
|
||||
static STATE: State = State {
|
||||
period: AtomicU32::new(0),
|
||||
alarm_count: AtomicU8::new(0),
|
||||
alarms: Mutex::new([ALARM_STATE_NEW; ALARM_COUNT]),
|
||||
};
|
||||
|
||||
impl<T: Instance> RTC<T> {
|
||||
pub fn new(rtc: T, irq: T::Interrupt) -> Self {
|
||||
Self {
|
||||
rtc,
|
||||
irq,
|
||||
period: AtomicU32::new(0),
|
||||
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn start(&'static self) {
|
||||
let r = self.rtc.regs();
|
||||
impl State {
|
||||
fn init(&'static self) {
|
||||
let r = rtc();
|
||||
r.cc[3].write(|w| unsafe { w.bits(0x800000) });
|
||||
|
||||
r.intenset.write(|w| {
|
||||
@ -111,17 +114,11 @@ impl<T: Instance> RTC<T> {
|
||||
// Wait for clear
|
||||
while r.counter.read().bits() != 0 {}
|
||||
|
||||
self.irq.set_handler(|ptr| unsafe {
|
||||
let this = &*(ptr as *const () as *const Self);
|
||||
this.on_interrupt();
|
||||
});
|
||||
self.irq.set_handler_context(self as *const _ as *mut _);
|
||||
self.irq.unpend();
|
||||
self.irq.enable();
|
||||
unsafe { interrupt::RTC1::steal() }.enable();
|
||||
}
|
||||
|
||||
fn on_interrupt(&self) {
|
||||
let r = self.rtc.regs();
|
||||
let r = rtc();
|
||||
if r.events_ovrflw.read().bits() == 1 {
|
||||
r.events_ovrflw.write(|w| w);
|
||||
self.next_period();
|
||||
@ -144,7 +141,7 @@ impl<T: Instance> RTC<T> {
|
||||
|
||||
fn next_period(&self) {
|
||||
critical_section::with(|cs| {
|
||||
let r = self.rtc.regs();
|
||||
let r = rtc();
|
||||
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
||||
let t = (period as u64) << 23;
|
||||
|
||||
@ -152,38 +149,77 @@ impl<T: Instance> RTC<T> {
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
let at = alarm.timestamp.get();
|
||||
|
||||
let diff = at - t;
|
||||
if diff < 0xc00000 {
|
||||
r.cc[n].write(|w| unsafe { w.bits(at as u32 & 0xFFFFFF) });
|
||||
if at < t + 0xc00000 {
|
||||
// just enable it. `set_alarm` has already set the correct CC val.
|
||||
r.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn now(&self) -> u64 {
|
||||
// `period` MUST be read before `counter`, see comment at the top for details.
|
||||
let period = self.period.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
let counter = rtc().counter.read().bits();
|
||||
calc_now(period, counter)
|
||||
}
|
||||
|
||||
fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
|
||||
// safety: we're allowed to assume the AlarmState is created by us, and
|
||||
// we never create one that's out of bounds.
|
||||
unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
||||
let r = self.rtc.regs();
|
||||
let r = rtc();
|
||||
r.intenclr.write(|w| unsafe { w.bits(compare_n(n)) });
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
if let Some((f, ctx)) = alarm.callback.get() {
|
||||
f(ctx);
|
||||
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
|
||||
f(alarm.ctx.get());
|
||||
}
|
||||
|
||||
fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self
|
||||
.alarm_count
|
||||
.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(unsafe { AlarmHandle::new(id) }),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
alarm.callback.set(Some((callback, ctx)));
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
|
||||
// safety: it's OK to transmute a fn pointer into a raw pointer
|
||||
let callback_ptr: *const () = unsafe { mem::transmute(callback) };
|
||||
|
||||
alarm.callback.set(callback_ptr);
|
||||
alarm.ctx.set(ctx);
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, n: usize, timestamp: u64) {
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
let n = alarm.id() as _;
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
@ -194,25 +230,30 @@ impl<T: Instance> RTC<T> {
|
||||
return;
|
||||
}
|
||||
|
||||
let r = self.rtc.regs();
|
||||
let r = rtc();
|
||||
|
||||
// If it hasn't triggered yet, setup it in the compare channel.
|
||||
|
||||
// Write the CC value regardless of whether we're going to enable it now or not.
|
||||
// This way, when we enable it later, the right value is already set.
|
||||
|
||||
// nrf52 docs say:
|
||||
// If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.
|
||||
// To workaround this, we never write a timestamp smaller than N+3.
|
||||
// N+2 is not safe because rtc can tick from N to N+1 between calling now() and writing cc.
|
||||
//
|
||||
// It is impossible for rtc to tick more than once because
|
||||
// - this code takes less time than 1 tick
|
||||
// - it runs with interrupts disabled so nothing else can preempt it.
|
||||
//
|
||||
// This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed
|
||||
// by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time,
|
||||
// and we don't do that here.
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
r.cc[n].write(|w| unsafe { w.bits(safe_timestamp as u32 & 0xFFFFFF) });
|
||||
|
||||
let diff = timestamp - t;
|
||||
if diff < 0xc00000 {
|
||||
// nrf52 docs say:
|
||||
// If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.
|
||||
// To workaround this, we never write a timestamp smaller than N+3.
|
||||
// N+2 is not safe because rtc can tick from N to N+1 between calling now() and writing cc.
|
||||
//
|
||||
// It is impossible for rtc to tick more than once because
|
||||
// - this code takes less time than 1 tick
|
||||
// - it runs with interrupts disabled so nothing else can preempt it.
|
||||
//
|
||||
// This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed
|
||||
// by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time,
|
||||
// and we don't do that here.
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
r.cc[n].write(|w| unsafe { w.bits(safe_timestamp as u32 & 0xFFFFFF) });
|
||||
r.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
|
||||
} else {
|
||||
// If it's too far in the future, don't setup the compare channel yet.
|
||||
@ -221,74 +262,34 @@ impl<T: Instance> RTC<T> {
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn alarm0(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 0, rtc: self }
|
||||
struct RtcDriver;
|
||||
embassy::time_driver_impl!(RtcDriver);
|
||||
|
||||
impl Driver for RtcDriver {
|
||||
fn now() -> u64 {
|
||||
STATE.now()
|
||||
}
|
||||
pub fn alarm1(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 1, rtc: self }
|
||||
|
||||
unsafe fn allocate_alarm() -> Option<AlarmHandle> {
|
||||
STATE.allocate_alarm()
|
||||
}
|
||||
pub fn alarm2(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 2, rtc: self }
|
||||
|
||||
fn set_alarm_callback(alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
STATE.set_alarm_callback(alarm, callback, ctx)
|
||||
}
|
||||
|
||||
fn set_alarm(alarm: AlarmHandle, timestamp: u64) {
|
||||
STATE.set_alarm(alarm, timestamp)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> embassy::time::Clock for RTC<T> {
|
||||
fn now(&self) -> u64 {
|
||||
// `period` MUST be read before `counter`, see comment at the top for details.
|
||||
let period = self.period.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
let counter = self.rtc.regs().counter.read().bits();
|
||||
calc_now(period, counter)
|
||||
}
|
||||
#[interrupt]
|
||||
fn RTC1() {
|
||||
STATE.on_interrupt()
|
||||
}
|
||||
|
||||
pub struct Alarm<T: Instance> {
|
||||
n: usize,
|
||||
rtc: &'static RTC<T>,
|
||||
pub(crate) fn init() {
|
||||
STATE.init()
|
||||
}
|
||||
|
||||
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
||||
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
||||
}
|
||||
|
||||
fn set(&self, timestamp: u64) {
|
||||
self.rtc.set_alarm(self.n, timestamp);
|
||||
}
|
||||
|
||||
fn clear(&self) {
|
||||
self.rtc.set_alarm(self.n, u64::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
mod sealed {
|
||||
use super::*;
|
||||
pub trait Instance {
|
||||
fn regs(&self) -> &pac::rtc0::RegisterBlock;
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_instance {
|
||||
($type:ident, $irq:ident) => {
|
||||
impl sealed::Instance for peripherals::$type {
|
||||
fn regs(&self) -> &pac::rtc0::RegisterBlock {
|
||||
unsafe { &*pac::$type::ptr() }
|
||||
}
|
||||
}
|
||||
impl Instance for peripherals::$type {
|
||||
type Interrupt = interrupt::$irq;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Implemented by all RTC instances.
|
||||
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static {
|
||||
/// The interrupt associated with this RTC instance.
|
||||
type Interrupt: Interrupt;
|
||||
}
|
||||
|
||||
impl_instance!(RTC0, RTC0);
|
||||
impl_instance!(RTC1, RTC1);
|
||||
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
|
||||
impl_instance!(RTC2, RTC2);
|
Reference in New Issue
Block a user