time: replace dyn clock/alarm with a global Driver trait
This commit is contained in:
@ -1,372 +0,0 @@
|
||||
#![macro_use]
|
||||
|
||||
use core::cell::Cell;
|
||||
use core::convert::TryInto;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use atomic_polyfill::AtomicU32;
|
||||
use embassy::interrupt::InterruptExt;
|
||||
use embassy::time::{Clock as EmbassyClock, TICKS_PER_SECOND};
|
||||
|
||||
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
|
||||
use crate::pac::timer::TimGp16;
|
||||
use crate::peripherals;
|
||||
use crate::rcc::RccPeripheral;
|
||||
use crate::time::Hertz;
|
||||
|
||||
// Clock timekeeping works with something we call "periods", which are time intervals
|
||||
// of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
|
||||
//
|
||||
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
|
||||
// - `period` and `counter` start at 0
|
||||
// - `period` is incremented on overflow (at counter value 0)
|
||||
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
|
||||
//
|
||||
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
|
||||
// This allows for now() to return the correct value even if it races an overflow.
|
||||
//
|
||||
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
||||
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
||||
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
||||
// corresponds to the next period.
|
||||
//
|
||||
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
|
||||
fn calc_now(period: u32, counter: u16) -> u64 {
|
||||
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
|
||||
}
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
#[allow(clippy::type_complexity)]
|
||||
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
||||
}
|
||||
|
||||
impl AlarmState {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const ALARM_COUNT: usize = 3;
|
||||
|
||||
/// Clock timer that can be used by the executor and to set alarms.
|
||||
///
|
||||
/// It can work with Timers 2, 3, 4, 5. This timer works internally with a unit of 2^15 ticks, which
|
||||
/// means that if a call to [`embassy::time::Clock::now`] is blocked for that amount of ticks the
|
||||
/// returned value will be wrong (an old value). The current default tick rate is 32768 ticks per
|
||||
/// second.
|
||||
pub struct Clock<T: Instance> {
|
||||
_inner: T,
|
||||
irq: T::Interrupt,
|
||||
/// Number of 2^23 periods elapsed since boot.
|
||||
period: AtomicU32,
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
||||
}
|
||||
|
||||
impl<T: Instance> Clock<T> {
|
||||
pub fn new(peripheral: T, irq: T::Interrupt) -> Self {
|
||||
Self {
|
||||
_inner: peripheral,
|
||||
irq,
|
||||
period: AtomicU32::new(0),
|
||||
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn start(&'static self) {
|
||||
let inner = T::inner();
|
||||
|
||||
T::enable();
|
||||
T::reset();
|
||||
|
||||
let timer_freq = T::frequency();
|
||||
|
||||
// NOTE(unsafe) Critical section to use the unsafe methods
|
||||
critical_section::with(|_| {
|
||||
unsafe {
|
||||
inner.prepare(timer_freq);
|
||||
}
|
||||
|
||||
self.irq.set_handler_context(self as *const _ as *mut _);
|
||||
self.irq.set_handler(|ptr| unsafe {
|
||||
let this = &*(ptr as *const () as *const Self);
|
||||
this.on_interrupt();
|
||||
});
|
||||
self.irq.unpend();
|
||||
self.irq.enable();
|
||||
|
||||
unsafe {
|
||||
inner.start_counter();
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn on_interrupt(&self) {
|
||||
let inner = T::inner();
|
||||
|
||||
// NOTE(unsafe) Use critical section to access the methods
|
||||
// XXX: reduce the size of this critical section ?
|
||||
critical_section::with(|cs| unsafe {
|
||||
if inner.overflow_interrupt_status() {
|
||||
inner.overflow_clear_flag();
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
// Half overflow
|
||||
if inner.compare_interrupt_status(0) {
|
||||
inner.compare_clear_flag(0);
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
for n in 1..=ALARM_COUNT {
|
||||
if inner.compare_interrupt_status(n) {
|
||||
inner.compare_clear_flag(n);
|
||||
self.trigger_alarm(n, cs);
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn next_period(&self) {
|
||||
let inner = T::inner();
|
||||
|
||||
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
||||
let t = (period as u64) << 15;
|
||||
|
||||
critical_section::with(move |cs| {
|
||||
for n in 1..=ALARM_COUNT {
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
let at = alarm.timestamp.get();
|
||||
|
||||
let diff = at - t;
|
||||
if diff < 0xc000 {
|
||||
inner.set_compare(n, at as u16);
|
||||
// NOTE(unsafe) We're in a critical section
|
||||
unsafe {
|
||||
inner.set_compare_interrupt(n, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
||||
let inner = T::inner();
|
||||
// NOTE(unsafe) We have a critical section
|
||||
unsafe {
|
||||
inner.set_compare_interrupt(n, false);
|
||||
}
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
if let Some((f, ctx)) = alarm.callback.get() {
|
||||
f(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.callback.set(Some((callback, ctx)));
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, n: usize, timestamp: u64) {
|
||||
critical_section::with(|cs| {
|
||||
let inner = T::inner();
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
if timestamp <= t {
|
||||
self.trigger_alarm(n, cs);
|
||||
return;
|
||||
}
|
||||
|
||||
let diff = timestamp - t;
|
||||
if diff < 0xc000 {
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
inner.set_compare(n, safe_timestamp as u16);
|
||||
|
||||
// NOTE(unsafe) We're in a critical section
|
||||
unsafe {
|
||||
inner.set_compare_interrupt(n, true);
|
||||
}
|
||||
} else {
|
||||
unsafe {
|
||||
inner.set_compare_interrupt(n, false);
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn alarm1(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 1, rtc: self }
|
||||
}
|
||||
pub fn alarm2(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 2, rtc: self }
|
||||
}
|
||||
pub fn alarm3(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 3, rtc: self }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> EmbassyClock for Clock<T> {
|
||||
fn now(&self) -> u64 {
|
||||
let inner = T::inner();
|
||||
|
||||
let period = self.period.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
let counter = inner.counter();
|
||||
calc_now(period, counter)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Alarm<T: Instance> {
|
||||
n: usize,
|
||||
rtc: &'static Clock<T>,
|
||||
}
|
||||
|
||||
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
||||
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
||||
}
|
||||
|
||||
fn set(&self, timestamp: u64) {
|
||||
self.rtc.set_alarm(self.n, timestamp);
|
||||
}
|
||||
|
||||
fn clear(&self) {
|
||||
self.rtc.set_alarm(self.n, u64::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TimerInner(pub(crate) TimGp16);
|
||||
|
||||
impl TimerInner {
|
||||
unsafe fn prepare(&self, timer_freq: Hertz) {
|
||||
self.stop_and_reset();
|
||||
|
||||
let psc = timer_freq.0 / TICKS_PER_SECOND as u32 - 1;
|
||||
let psc: u16 = psc.try_into().unwrap();
|
||||
|
||||
self.set_psc_arr(psc, u16::MAX);
|
||||
// Mid-way point
|
||||
self.set_compare(0, 0x8000);
|
||||
self.set_compare_interrupt(0, true);
|
||||
}
|
||||
|
||||
unsafe fn start_counter(&self) {
|
||||
self.0.cr1().modify(|w| w.set_cen(true));
|
||||
}
|
||||
|
||||
unsafe fn stop_and_reset(&self) {
|
||||
let regs = self.0;
|
||||
|
||||
regs.cr1().modify(|w| w.set_cen(false));
|
||||
regs.cnt().write(|w| w.set_cnt(0));
|
||||
}
|
||||
|
||||
fn overflow_interrupt_status(&self) -> bool {
|
||||
// NOTE(unsafe) Atomic read with no side-effects
|
||||
unsafe { self.0.sr().read().uif() }
|
||||
}
|
||||
|
||||
unsafe fn overflow_clear_flag(&self) {
|
||||
self.0.sr().modify(|w| w.set_uif(false));
|
||||
}
|
||||
|
||||
unsafe fn set_psc_arr(&self, psc: u16, arr: u16) {
|
||||
use crate::pac::timer::vals::Urs;
|
||||
|
||||
let regs = self.0;
|
||||
|
||||
regs.psc().write(|w| w.set_psc(psc));
|
||||
regs.arr().write(|w| w.set_arr(arr));
|
||||
|
||||
// Set URS, generate update and clear URS
|
||||
regs.cr1().modify(|w| w.set_urs(Urs::COUNTERONLY));
|
||||
regs.egr().write(|w| w.set_ug(true));
|
||||
regs.cr1().modify(|w| w.set_urs(Urs::ANYEVENT));
|
||||
}
|
||||
|
||||
fn compare_interrupt_status(&self, n: usize) -> bool {
|
||||
if n > 3 {
|
||||
false
|
||||
} else {
|
||||
// NOTE(unsafe) Atomic read with no side-effects
|
||||
unsafe { self.0.sr().read().ccif(n) }
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn compare_clear_flag(&self, n: usize) {
|
||||
if n > 3 {
|
||||
return;
|
||||
}
|
||||
self.0.sr().modify(|w| w.set_ccif(n, false));
|
||||
}
|
||||
|
||||
fn set_compare(&self, n: usize, value: u16) {
|
||||
if n > 3 {
|
||||
return;
|
||||
}
|
||||
// NOTE(unsafe) Atomic write
|
||||
unsafe {
|
||||
self.0.ccr(n).write(|w| w.set_ccr(value));
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn set_compare_interrupt(&self, n: usize, enable: bool) {
|
||||
if n > 3 {
|
||||
return;
|
||||
}
|
||||
self.0.dier().modify(|w| w.set_ccie(n, enable));
|
||||
}
|
||||
|
||||
fn counter(&self) -> u16 {
|
||||
// NOTE(unsafe) Atomic read with no side-effects
|
||||
unsafe { self.0.cnt().read().cnt() }
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
|
||||
pub(crate) mod sealed {
|
||||
use super::*;
|
||||
pub trait Instance {
|
||||
type Interrupt: Interrupt;
|
||||
|
||||
fn inner() -> TimerInner;
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Instance: sealed::Instance + Sized + RccPeripheral + 'static {}
|
||||
|
||||
macro_rules! impl_timer {
|
||||
($inst:ident) => {
|
||||
impl sealed::Instance for peripherals::$inst {
|
||||
type Interrupt = crate::interrupt::$inst;
|
||||
|
||||
fn inner() -> crate::clock::TimerInner {
|
||||
const INNER: TimerInner = TimerInner(crate::pac::$inst);
|
||||
INNER
|
||||
}
|
||||
}
|
||||
|
||||
impl Instance for peripherals::$inst {}
|
||||
};
|
||||
}
|
||||
|
||||
crate::pac::peripherals!(
|
||||
(timer, TIM2) => { impl_timer!(TIM2); };
|
||||
(timer, TIM3) => { impl_timer!(TIM3); };
|
||||
(timer, TIM4) => { impl_timer!(TIM4); };
|
||||
(timer, TIM5) => { impl_timer!(TIM5); };
|
||||
);
|
@ -20,13 +20,12 @@ pub mod time;
|
||||
pub mod dma;
|
||||
pub mod gpio;
|
||||
pub mod rcc;
|
||||
mod time_driver;
|
||||
|
||||
// Sometimes-present hardware
|
||||
|
||||
#[cfg(adc)]
|
||||
pub mod adc;
|
||||
#[cfg(timer)]
|
||||
pub mod clock;
|
||||
#[cfg(dac)]
|
||||
pub mod dac;
|
||||
#[cfg(dbgmcu)]
|
||||
@ -87,6 +86,9 @@ pub fn init(config: Config) -> Peripherals {
|
||||
exti::init();
|
||||
|
||||
rcc::init(config.rcc);
|
||||
|
||||
// must be after rcc init
|
||||
time_driver::init();
|
||||
}
|
||||
|
||||
p
|
||||
|
319
embassy-stm32/src/time_driver.rs
Normal file
319
embassy-stm32/src/time_driver.rs
Normal file
@ -0,0 +1,319 @@
|
||||
use atomic_polyfill::{AtomicU32, AtomicU8};
|
||||
use core::cell::Cell;
|
||||
use core::convert::TryInto;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
use core::{mem, ptr};
|
||||
use embassy::interrupt::InterruptExt;
|
||||
use embassy::time::driver::{AlarmHandle, Driver};
|
||||
use embassy::time::TICKS_PER_SECOND;
|
||||
use stm32_metapac::timer::regs;
|
||||
|
||||
use crate::interrupt;
|
||||
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
|
||||
use crate::pac::timer::{vals, TimGp16};
|
||||
use crate::peripherals;
|
||||
use crate::rcc::sealed::RccPeripheral;
|
||||
|
||||
use self::sealed::Instance as _;
|
||||
|
||||
const ALARM_COUNT: usize = 3;
|
||||
type T = peripherals::TIM3;
|
||||
|
||||
// Clock timekeeping works with something we call "periods", which are time intervals
|
||||
// of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
|
||||
//
|
||||
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
|
||||
// - `period` and `counter` start at 0
|
||||
// - `period` is incremented on overflow (at counter value 0)
|
||||
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
|
||||
//
|
||||
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
|
||||
// This allows for now() to return the correct value even if it races an overflow.
|
||||
//
|
||||
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
||||
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
||||
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
||||
// corresponds to the next period.
|
||||
//
|
||||
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
|
||||
fn calc_now(period: u32, counter: u16) -> u64 {
|
||||
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
|
||||
}
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
|
||||
// This is really a Option<(fn(*mut ()), *mut ())>
|
||||
// but fn pointers aren't allowed in const yet
|
||||
callback: Cell<*const ()>,
|
||||
ctx: Cell<*mut ()>,
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
impl AlarmState {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(ptr::null()),
|
||||
ctx: Cell::new(ptr::null_mut()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct State {
|
||||
/// Number of 2^15 periods elapsed since boot.
|
||||
period: AtomicU32,
|
||||
alarm_count: AtomicU8,
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
||||
}
|
||||
|
||||
const ALARM_STATE_NEW: AlarmState = AlarmState::new();
|
||||
static STATE: State = State {
|
||||
period: AtomicU32::new(0),
|
||||
alarm_count: AtomicU8::new(0),
|
||||
alarms: Mutex::new([ALARM_STATE_NEW; ALARM_COUNT]),
|
||||
};
|
||||
|
||||
impl State {
|
||||
fn init(&'static self) {
|
||||
let r = T::regs();
|
||||
|
||||
T::enable();
|
||||
T::reset();
|
||||
|
||||
let timer_freq = T::frequency();
|
||||
|
||||
// NOTE(unsafe) Critical section to use the unsafe methods
|
||||
critical_section::with(|_| unsafe {
|
||||
r.cr1().modify(|w| w.set_cen(false));
|
||||
r.cnt().write(|w| w.set_cnt(0));
|
||||
|
||||
let psc = timer_freq.0 / TICKS_PER_SECOND as u32 - 1;
|
||||
let psc: u16 = psc.try_into().unwrap();
|
||||
|
||||
r.psc().write(|w| w.set_psc(psc));
|
||||
r.arr().write(|w| w.set_arr(u16::MAX));
|
||||
|
||||
// Set URS, generate update and clear URS
|
||||
r.cr1().modify(|w| w.set_urs(vals::Urs::COUNTERONLY));
|
||||
r.egr().write(|w| w.set_ug(true));
|
||||
r.cr1().modify(|w| w.set_urs(vals::Urs::ANYEVENT));
|
||||
|
||||
// Mid-way point
|
||||
r.ccr(0).write(|w| w.set_ccr(0x8000));
|
||||
|
||||
// Enable CC0, disable others
|
||||
r.dier().write(|w| w.set_ccie(0, true));
|
||||
|
||||
let irq: <T as sealed::Instance>::Interrupt = core::mem::transmute(());
|
||||
irq.unpend();
|
||||
irq.enable();
|
||||
|
||||
r.cr1().modify(|w| w.set_cen(true));
|
||||
})
|
||||
}
|
||||
|
||||
fn on_interrupt(&self) {
|
||||
let r = T::regs();
|
||||
|
||||
// NOTE(unsafe) Use critical section to access the methods
|
||||
// XXX: reduce the size of this critical section ?
|
||||
critical_section::with(|cs| unsafe {
|
||||
let sr = r.sr().read();
|
||||
let dier = r.dier().read();
|
||||
|
||||
// Clear all interrupt flags. Bits in SR are "write 0 to clear", so write the bitwise NOT.
|
||||
// Other approaches such as writing all zeros, or RMWing won't work, they can
|
||||
// miss interrupts.
|
||||
r.sr().write_value(regs::SrGp(!sr.0));
|
||||
|
||||
if sr.uif() {
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
// Half overflow
|
||||
if sr.ccif(0) {
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
for n in 0..ALARM_COUNT {
|
||||
if sr.ccif(n + 1) && dier.ccie(n + 1) {
|
||||
self.trigger_alarm(n, cs);
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn next_period(&self) {
|
||||
let r = T::regs();
|
||||
|
||||
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
||||
let t = (period as u64) << 15;
|
||||
|
||||
critical_section::with(move |cs| unsafe {
|
||||
r.dier().modify(move |w| {
|
||||
for n in 0..ALARM_COUNT {
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
let at = alarm.timestamp.get();
|
||||
|
||||
if at < t + 0xc000 {
|
||||
// just enable it. `set_alarm` has already set the correct CCR val.
|
||||
w.set_ccie(n + 1, true);
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
fn now(&self) -> u64 {
|
||||
let r = T::regs();
|
||||
|
||||
let period = self.period.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
// NOTE(unsafe) Atomic read with no side-effects
|
||||
let counter = unsafe { r.cnt().read().cnt() };
|
||||
calc_now(period, counter)
|
||||
}
|
||||
|
||||
fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
|
||||
// safety: we're allowed to assume the AlarmState is created by us, and
|
||||
// we never create one that's out of bounds.
|
||||
unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
|
||||
f(alarm.ctx.get());
|
||||
}
|
||||
|
||||
fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self
|
||||
.alarm_count
|
||||
.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(unsafe { AlarmHandle::new(id) }),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
|
||||
// safety: it's OK to transmute a fn pointer into a raw pointer
|
||||
let callback_ptr: *const () = unsafe { mem::transmute(callback) };
|
||||
|
||||
alarm.callback.set(callback_ptr);
|
||||
alarm.ctx.set(ctx);
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) {
|
||||
critical_section::with(|cs| {
|
||||
let r = T::regs();
|
||||
|
||||
let n = alarm.id() as _;
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
if timestamp <= t {
|
||||
unsafe { r.dier().modify(|w| w.set_ccie(n + 1, false)) };
|
||||
self.trigger_alarm(n, cs);
|
||||
return;
|
||||
}
|
||||
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
|
||||
// Write the CCR value regardless of whether we're going to enable it now or not.
|
||||
// This way, when we enable it later, the right value is already set.
|
||||
unsafe { r.ccr(n + 1).write(|w| w.set_ccr(safe_timestamp as u16)) };
|
||||
|
||||
// Enable it if it'll happen soon. Otherwise, `next_period` will enable it.
|
||||
let diff = timestamp - t;
|
||||
// NOTE(unsafe) We're in a critical section
|
||||
unsafe { r.dier().modify(|w| w.set_ccie(n + 1, diff < 0xc000)) };
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
struct RtcDriver;
|
||||
embassy::time_driver_impl!(RtcDriver);
|
||||
|
||||
impl Driver for RtcDriver {
|
||||
fn now() -> u64 {
|
||||
STATE.now()
|
||||
}
|
||||
|
||||
unsafe fn allocate_alarm() -> Option<AlarmHandle> {
|
||||
STATE.allocate_alarm()
|
||||
}
|
||||
|
||||
fn set_alarm_callback(alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
STATE.set_alarm_callback(alarm, callback, ctx)
|
||||
}
|
||||
|
||||
fn set_alarm(alarm: AlarmHandle, timestamp: u64) {
|
||||
STATE.set_alarm(alarm, timestamp)
|
||||
}
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
fn TIM3() {
|
||||
STATE.on_interrupt()
|
||||
}
|
||||
|
||||
pub(crate) fn init() {
|
||||
STATE.init()
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
|
||||
pub(crate) mod sealed {
|
||||
use super::*;
|
||||
pub trait Instance {
|
||||
type Interrupt: Interrupt;
|
||||
|
||||
fn regs() -> TimGp16;
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Instance: sealed::Instance + Sized + RccPeripheral + 'static {}
|
||||
|
||||
macro_rules! impl_timer {
|
||||
($inst:ident) => {
|
||||
impl sealed::Instance for peripherals::$inst {
|
||||
type Interrupt = crate::interrupt::$inst;
|
||||
|
||||
fn regs() -> TimGp16 {
|
||||
crate::pac::$inst
|
||||
}
|
||||
}
|
||||
|
||||
impl Instance for peripherals::$inst {}
|
||||
};
|
||||
}
|
||||
|
||||
crate::pac::peripherals!(
|
||||
(timer, TIM2) => { impl_timer!(TIM2); };
|
||||
(timer, TIM3) => { impl_timer!(TIM3); };
|
||||
(timer, TIM4) => { impl_timer!(TIM4); };
|
||||
(timer, TIM5) => { impl_timer!(TIM5); };
|
||||
);
|
Reference in New Issue
Block a user