Refactor after review

This commit is contained in:
kalkyl 2022-12-13 13:49:51 +01:00
parent aea28c8aa0
commit 13d9d8fde1
4 changed files with 159 additions and 146 deletions

View File

@ -106,6 +106,8 @@ embassy_hal_common::peripherals! {
FLASH, FLASH,
ADC, ADC,
CORE1,
} }
#[link_section = ".boot2"] #[link_section = ".boot2"]

View File

@ -36,20 +36,13 @@ use core::sync::atomic::{compiler_fence, Ordering};
use atomic_polyfill::AtomicBool; use atomic_polyfill::AtomicBool;
use crate::interrupt::{Interrupt, InterruptExt}; use crate::interrupt::{Interrupt, InterruptExt};
use crate::peripherals::CORE1;
use crate::{interrupt, pac}; use crate::{interrupt, pac};
const PAUSE_TOKEN: u32 = 0xDEADBEEF; const PAUSE_TOKEN: u32 = 0xDEADBEEF;
const RESUME_TOKEN: u32 = !0xDEADBEEF; const RESUME_TOKEN: u32 = !0xDEADBEEF;
static IS_CORE1_INIT: AtomicBool = AtomicBool::new(false); static IS_CORE1_INIT: AtomicBool = AtomicBool::new(false);
/// Errors for multicore operations.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Core was unresponsive to commands.
Unresponsive,
}
#[inline(always)] #[inline(always)]
fn install_stack_guard(stack_bottom: *mut usize) { fn install_stack_guard(stack_bottom: *mut usize) {
let core = unsafe { cortex_m::Peripherals::steal() }; let core = unsafe { cortex_m::Peripherals::steal() };
@ -81,44 +74,20 @@ fn core1_setup(stack_bottom: *mut usize) {
install_stack_guard(stack_bottom); install_stack_guard(stack_bottom);
} }
/// MultiCore execution management. /// Data type for a properly aligned stack of N bytes
pub struct MultiCore {
pub cores: (Core0, Core1),
}
/// Data type for a properly aligned stack of N 32-bit (usize) words
#[repr(C, align(32))] #[repr(C, align(32))]
pub struct Stack<const SIZE: usize> { pub struct Stack<const SIZE: usize> {
/// Memory to be used for the stack /// Memory to be used for the stack
pub mem: [usize; SIZE], pub mem: [u8; SIZE],
} }
impl<const SIZE: usize> Stack<SIZE> { impl<const SIZE: usize> Stack<SIZE> {
/// Construct a stack of length SIZE, initialized to 0 /// Construct a stack of length SIZE, initialized to 0
pub const fn new() -> Stack<SIZE> { pub const fn new() -> Stack<SIZE> {
Stack { mem: [0; SIZE] } Stack { mem: [0_u8; SIZE] }
} }
} }
impl MultiCore {
/// Create a new |MultiCore| instance.
pub fn new() -> Self {
Self {
cores: (Core0 {}, Core1 {}),
}
}
/// Get the available |Core| instances.
pub fn cores(&mut self) -> &mut (Core0, Core1) {
&mut self.cores
}
}
/// A handle for controlling a logical core.
pub struct Core0 {}
/// A handle for controlling a logical core.
pub struct Core1 {}
#[interrupt] #[interrupt]
#[link_section = ".data.ram_func"] #[link_section = ".data.ram_func"]
unsafe fn SIO_IRQ_PROC1() { unsafe fn SIO_IRQ_PROC1() {
@ -143,117 +112,113 @@ unsafe fn SIO_IRQ_PROC1() {
} }
} }
impl Core1 { /// Spawn a function on this core
/// Spawn a function on this core pub fn spawn_core1<F, const SIZE: usize>(_core1: CORE1, stack: &'static mut Stack<SIZE>, entry: F)
pub fn spawn<F>(&mut self, stack: &'static mut [usize], entry: F) -> Result<(), Error> where
where F: FnOnce() -> bad::Never + Send + 'static,
F: FnOnce() -> bad::Never + Send + 'static, {
{ // The first two ignored `u64` parameters are there to take up all of the registers,
// The first two ignored `u64` parameters are there to take up all of the registers, // which means that the rest of the arguments are taken from the stack,
// which means that the rest of the arguments are taken from the stack, // where we're able to put them from core 0.
// where we're able to put them from core 0. extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>( _: u64,
_: u64, _: u64,
_: u64, entry: &mut ManuallyDrop<F>,
entry: &mut ManuallyDrop<F>, stack_bottom: *mut usize,
stack_bottom: *mut usize, ) -> ! {
) -> ! { core1_setup(stack_bottom);
core1_setup(stack_bottom); let entry = unsafe { ManuallyDrop::take(entry) };
let entry = unsafe { ManuallyDrop::take(entry) }; // Signal that it's safe for core 0 to get rid of the original value now.
// Signal that it's safe for core 0 to get rid of the original value now. fifo_write(1);
fifo_write(1);
IS_CORE1_INIT.store(true, Ordering::Release); IS_CORE1_INIT.store(true, Ordering::Release);
// Enable fifo interrupt on CORE1 for `pause` functionality. // Enable fifo interrupt on CORE1 for `pause` functionality.
let irq = unsafe { interrupt::SIO_IRQ_PROC1::steal() }; let irq = unsafe { interrupt::SIO_IRQ_PROC1::steal() };
irq.enable(); irq.enable();
entry() entry()
}
// Reset the core
unsafe {
let psm = pac::PSM;
psm.frce_off().modify(|w| w.set_proc1(true));
while !psm.frce_off().read().proc1() {
cortex_m::asm::nop();
}
psm.frce_off().modify(|w| w.set_proc1(false));
}
// Set up the stack
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
// We don't want to drop this, since it's getting moved to the other core.
let mut entry = ManuallyDrop::new(entry);
// Push the arguments to `core1_startup` onto the stack.
unsafe {
// Push `stack_bottom`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
// Push `entry`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
}
// Make sure the compiler does not reorder the stack writes after to after the
// below FIFO writes, which would result in them not being seen by the second
// core.
//
// From the compiler perspective, this doesn't guarantee that the second core
// actually sees those writes. However, we know that the RP2040 doesn't have
// memory caches, and writes happen in-order.
compiler_fence(Ordering::Release);
let p = unsafe { cortex_m::Peripherals::steal() };
let vector_table = p.SCB.vtor.read();
// After reset, core 1 is waiting to receive commands over FIFO.
// This is the sequence to have it jump to some code.
let cmd_seq = [
0,
0,
1,
vector_table as usize,
stack_ptr as usize,
core1_startup::<F> as usize,
];
let mut seq = 0;
let mut fails = 0;
loop {
let cmd = cmd_seq[seq] as u32;
if cmd == 0 {
fifo_drain();
cortex_m::asm::sev();
}
fifo_write(cmd);
let response = fifo_read();
if cmd == response {
seq += 1;
} else {
seq = 0;
fails += 1;
if fails > 16 {
// The second core isn't responding, and isn't going to take the entrypoint,
// so we have to drop it ourselves.
drop(ManuallyDrop::into_inner(entry));
return Err(Error::Unresponsive);
}
}
if seq >= cmd_seq.len() {
break;
}
}
// Wait until the other core has copied `entry` before returning.
fifo_read();
Ok(())
} }
// Reset the core
unsafe {
let psm = pac::PSM;
psm.frce_off().modify(|w| w.set_proc1(true));
while !psm.frce_off().read().proc1() {
cortex_m::asm::nop();
}
psm.frce_off().modify(|w| w.set_proc1(false));
}
let mem = unsafe { core::slice::from_raw_parts_mut(stack.mem.as_mut_ptr() as *mut usize, stack.mem.len() / 4) };
// Set up the stack
let mut stack_ptr = unsafe { mem.as_mut_ptr().add(mem.len()) };
// We don't want to drop this, since it's getting moved to the other core.
let mut entry = ManuallyDrop::new(entry);
// Push the arguments to `core1_startup` onto the stack.
unsafe {
// Push `stack_bottom`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<*mut usize>().write(mem.as_mut_ptr());
// Push `entry`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
}
// Make sure the compiler does not reorder the stack writes after to after the
// below FIFO writes, which would result in them not being seen by the second
// core.
//
// From the compiler perspective, this doesn't guarantee that the second core
// actually sees those writes. However, we know that the RP2040 doesn't have
// memory caches, and writes happen in-order.
compiler_fence(Ordering::Release);
let p = unsafe { cortex_m::Peripherals::steal() };
let vector_table = p.SCB.vtor.read();
// After reset, core 1 is waiting to receive commands over FIFO.
// This is the sequence to have it jump to some code.
let cmd_seq = [
0,
0,
1,
vector_table as usize,
stack_ptr as usize,
core1_startup::<F> as usize,
];
let mut seq = 0;
let mut fails = 0;
loop {
let cmd = cmd_seq[seq] as u32;
if cmd == 0 {
fifo_drain();
cortex_m::asm::sev();
}
fifo_write(cmd);
let response = fifo_read();
if cmd == response {
seq += 1;
} else {
seq = 0;
fails += 1;
if fails > 16 {
// The second core isn't responding, and isn't going to take the entrypoint
panic!("CORE1 not responding");
}
}
if seq >= cmd_seq.len() {
break;
}
}
// Wait until the other core has copied `entry` before returning.
fifo_read();
} }
/// Pause execution on CORE1. /// Pause execution on CORE1.

View File

@ -6,7 +6,7 @@ use defmt::*;
use embassy_executor::Executor; use embassy_executor::Executor;
use embassy_executor::_export::StaticCell; use embassy_executor::_export::StaticCell;
use embassy_rp::gpio::{Level, Output}; use embassy_rp::gpio::{Level, Output};
use embassy_rp::multicore::{MultiCore, Stack}; use embassy_rp::multicore::{spawn_core1, Stack};
use embassy_rp::peripherals::PIN_25; use embassy_rp::peripherals::PIN_25;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex; use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::Channel; use embassy_sync::channel::Channel;
@ -28,8 +28,7 @@ fn main() -> ! {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
let led = Output::new(p.PIN_25, Level::Low); let led = Output::new(p.PIN_25, Level::Low);
let mut mc = MultiCore::new(); spawn_core1(p.CORE1, unsafe { &mut CORE1_STACK }, move || {
let _ = mc.cores.1.spawn(unsafe { &mut CORE1_STACK.mem }, move || {
let executor1 = EXECUTOR1.init(Executor::new()); let executor1 = EXECUTOR1.init(Executor::new());
executor1.run(|spawner| unwrap!(spawner.spawn(core1_task(led)))); executor1.run(|spawner| unwrap!(spawner.spawn(core1_task(led))));
}); });

View File

@ -0,0 +1,47 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{info, unwrap};
use embassy_executor::Executor;
use embassy_executor::_export::StaticCell;
use embassy_rp::multicore::{spawn_core1, Stack};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::Channel;
use {defmt_rtt as _, panic_probe as _};
static mut CORE1_STACK: Stack<1024> = Stack::new();
static EXECUTOR0: StaticCell<Executor> = StaticCell::new();
static EXECUTOR1: StaticCell<Executor> = StaticCell::new();
static CHANNEL0: Channel<CriticalSectionRawMutex, bool, 1> = Channel::new();
static CHANNEL1: Channel<CriticalSectionRawMutex, bool, 1> = Channel::new();
#[cortex_m_rt::entry]
fn main() -> ! {
let p = embassy_rp::init(Default::default());
spawn_core1(p.CORE1, unsafe { &mut CORE1_STACK }, move || {
let executor1 = EXECUTOR1.init(Executor::new());
executor1.run(|spawner| unwrap!(spawner.spawn(core1_task())));
});
let executor0 = EXECUTOR0.init(Executor::new());
executor0.run(|spawner| unwrap!(spawner.spawn(core0_task())));
}
#[embassy_executor::task]
async fn core0_task() {
info!("CORE0 is running");
let ping = true;
CHANNEL0.send(ping).await;
let pong = CHANNEL1.recv().await;
assert_eq!(ping, pong);
info!("Test OK");
cortex_m::asm::bkpt();
}
#[embassy_executor::task]
async fn core1_task() {
info!("CORE1 is running");
let ping = CHANNEL0.recv().await;
CHANNEL1.send(ping).await;
}