Buffer management in line with other peripherals. Constructor and config redesign

This commit is contained in:
Christian Perez Llamas 2022-11-19 19:18:20 +01:00
parent f5391efe22
commit 15a93246d6
2 changed files with 395 additions and 429 deletions

View File

@ -4,6 +4,8 @@
use core::future::poll_fn;
use core::marker::PhantomData;
use core::mem::size_of;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
@ -14,14 +16,9 @@ use embassy_hal_common::{into_ref, PeripheralRef};
use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::interrupt::Interrupt;
use crate::pac::i2s::RegisterBlock;
use crate::util::{slice_in_ram_or, slice_ptr_parts};
use crate::{Peripheral, EASY_DMA_SIZE};
// TODO: Define those in lib.rs somewhere else
/// Limits for Easy DMA - it can only read from data ram
pub const SRAM_LOWER: usize = 0x2000_0000;
pub const SRAM_UPPER: usize = 0x3000_0000;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
@ -33,159 +30,42 @@ pub enum Error {
BufferLengthMisaligned,
}
/// Approximate sample rates.
///
/// Those are common sample rates that can not be configured without an small error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ApproxSampleRate {
_11025,
_16000,
_22050,
_32000,
_44100,
_48000,
}
impl From<ApproxSampleRate> for Mode {
fn from(value: ApproxSampleRate) -> Self {
match value {
// error = 86
ApproxSampleRate::_11025 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_192x,
},
// error = 127
ApproxSampleRate::_16000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_96x,
},
// error = 172
ApproxSampleRate::_22050 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_96x,
},
// error = 254
ApproxSampleRate::_32000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_48x,
},
// error = 344
ApproxSampleRate::_44100 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_48x,
},
// error = 381
ApproxSampleRate::_48000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_32x,
},
}
}
}
impl ApproxSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
/// Exact sample rates.
///
/// Those are non standard sample rates that can be configured without error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ExactSampleRate {
_8000,
_10582,
_12500,
_15625,
_15873,
_25000,
_31250,
_50000,
_62500,
_100000,
_125000,
}
impl ExactSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
impl From<ExactSampleRate> for Mode {
fn from(value: ExactSampleRate) -> Self {
match value {
ExactSampleRate::_8000 => Mode::Master {
freq: MckFreq::_32MDiv125,
ratio: Ratio::_32x,
},
ExactSampleRate::_10582 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_48x,
},
ExactSampleRate::_12500 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_256x,
},
ExactSampleRate::_15625 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_64x,
},
ExactSampleRate::_15873 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_32x,
},
ExactSampleRate::_25000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_128x,
},
ExactSampleRate::_31250 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_32x,
},
ExactSampleRate::_50000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_64x,
},
ExactSampleRate::_62500 => Mode::Master {
freq: MckFreq::_32MDiv16,
ratio: Ratio::_32x,
},
ExactSampleRate::_100000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_32x,
},
ExactSampleRate::_125000 => Mode::Master {
freq: MckFreq::_32MDiv8,
ratio: Ratio::_32x,
},
}
}
}
/// I2S configuration.
#[derive(Clone)]
#[non_exhaustive]
pub struct Config {
pub mode: Mode,
pub swidth: SampleWidth,
pub sample_width: SampleWidth,
pub align: Align,
pub format: Format,
pub channels: Channels,
}
impl Config {
pub fn sample_width(mut self, sample_width: SampleWidth) -> Self {
self.sample_width = sample_width;
self
}
pub fn align(mut self, align: Align) -> Self {
self.align = align;
self
}
pub fn format(mut self, format: Format) -> Self {
self.format = format;
self
}
pub fn channels(mut self, channels: Channels) -> Self {
self.channels = channels;
self
}
}
impl Default for Config {
fn default() -> Self {
Self {
mode: ExactSampleRate::_31250.into(),
swidth: SampleWidth::_16bit,
sample_width: SampleWidth::_16bit,
align: Align::Left,
format: Format::I2S,
channels: Channels::Stereo,
@ -195,18 +75,21 @@ impl Default for Config {
/// I2S Mode
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Mode {
Master { freq: MckFreq, ratio: Ratio },
Slave,
pub struct MasterClock {
freq: MckFreq,
ratio: Ratio,
}
impl Mode {
pub fn sample_rate(&self) -> Option<u32> {
match self {
Mode::Master { freq, ratio } => Some(freq.to_frequency() / ratio.to_divisor()),
Mode::Slave => None,
impl MasterClock {
pub fn new(freq: MckFreq, ratio: Ratio) -> Self {
Self { freq, ratio }
}
}
impl MasterClock {
pub fn sample_rate(&self) -> u32 {
self.freq.to_frequency() / self.ratio.to_divisor()
}
}
/// Master clock generator frequency.
@ -275,17 +158,106 @@ pub enum Ratio {
impl Ratio {
const RATIOS: &'static [u32] = &[32, 48, 64, 96, 128, 192, 256, 384, 512];
/// Return the value that needs to be written to the register.
pub fn to_register_value(&self) -> u8 {
usize::from(*self) as u8
}
pub fn to_divisor(&self) -> u32 {
Self::RATIOS[u8::from(*self) as usize]
Self::RATIOS[usize::from(*self)]
}
}
impl From<Ratio> for u8 {
impl From<Ratio> for usize {
fn from(variant: Ratio) -> Self {
variant as _
}
}
/// Approximate sample rates.
///
/// Those are common sample rates that can not be configured without an small error.
///
/// For custom master clock configuration, please refer to [MasterClock].
#[derive(Clone, Copy)]
pub enum ApproxSampleRate {
_11025,
_16000,
_22050,
_32000,
_44100,
_48000,
}
impl From<ApproxSampleRate> for MasterClock {
fn from(value: ApproxSampleRate) -> Self {
match value {
// error = 86
ApproxSampleRate::_11025 => MasterClock::new(MckFreq::_32MDiv15, Ratio::_192x),
// error = 127
ApproxSampleRate::_16000 => MasterClock::new(MckFreq::_32MDiv21, Ratio::_96x),
// error = 172
ApproxSampleRate::_22050 => MasterClock::new(MckFreq::_32MDiv15, Ratio::_96x),
// error = 254
ApproxSampleRate::_32000 => MasterClock::new(MckFreq::_32MDiv21, Ratio::_48x),
// error = 344
ApproxSampleRate::_44100 => MasterClock::new(MckFreq::_32MDiv15, Ratio::_48x),
// error = 381
ApproxSampleRate::_48000 => MasterClock::new(MckFreq::_32MDiv21, Ratio::_32x),
}
}
}
impl ApproxSampleRate {
pub fn sample_rate(&self) -> u32 {
MasterClock::from(*self).sample_rate()
}
}
/// Exact sample rates.
///
/// Those are non standard sample rates that can be configured without error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ExactSampleRate {
_8000,
_10582,
_12500,
_15625,
_15873,
_25000,
_31250,
_50000,
_62500,
_100000,
_125000,
}
impl ExactSampleRate {
pub fn sample_rate(&self) -> u32 {
MasterClock::from(*self).sample_rate()
}
}
impl From<ExactSampleRate> for MasterClock {
fn from(value: ExactSampleRate) -> Self {
match value {
ExactSampleRate::_8000 => MasterClock::new(MckFreq::_32MDiv125, Ratio::_32x),
ExactSampleRate::_10582 => MasterClock::new(MckFreq::_32MDiv63, Ratio::_48x),
ExactSampleRate::_12500 => MasterClock::new(MckFreq::_32MDiv10, Ratio::_256x),
ExactSampleRate::_15625 => MasterClock::new(MckFreq::_32MDiv32, Ratio::_64x),
ExactSampleRate::_15873 => MasterClock::new(MckFreq::_32MDiv63, Ratio::_32x),
ExactSampleRate::_25000 => MasterClock::new(MckFreq::_32MDiv10, Ratio::_128x),
ExactSampleRate::_31250 => MasterClock::new(MckFreq::_32MDiv32, Ratio::_32x),
ExactSampleRate::_50000 => MasterClock::new(MckFreq::_32MDiv10, Ratio::_64x),
ExactSampleRate::_62500 => MasterClock::new(MckFreq::_32MDiv16, Ratio::_32x),
ExactSampleRate::_100000 => MasterClock::new(MckFreq::_32MDiv10, Ratio::_32x),
ExactSampleRate::_125000 => MasterClock::new(MckFreq::_32MDiv8, Ratio::_32x),
}
}
}
/// Sample width.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum SampleWidth {
@ -336,10 +308,8 @@ impl From<Format> for bool {
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Channels {
Stereo,
/// Mono left
Left,
/// Mono right
Right,
MonoLeft,
MonoRight,
}
impl From<Channels> for u8 {
@ -350,131 +320,160 @@ impl From<Channels> for u8 {
/// Interface to the I2S peripheral using EasyDMA to offload the transmission and reception workload.
pub struct I2S<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
i2s: PeripheralRef<'d, T>,
irq: PeripheralRef<'d, T::Interrupt>,
mck: Option<PeripheralRef<'d, AnyPin>>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: Option<PeripheralRef<'d, AnyPin>>,
sdout: Option<PeripheralRef<'d, AnyPin>>,
master_clock: Option<MasterClock>,
config: Config,
}
impl<'d, T: Instance> I2S<'d, T> {
/// Create a new I2S
pub fn new(
/// Create a new I2S in master mode
pub fn master(
i2s: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: impl Peripheral<P = impl GpioPin> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
lrck: impl Peripheral<P = impl GpioPin> + 'd,
sdin: impl Peripheral<P = impl GpioPin> + 'd,
sdout: impl Peripheral<P = impl GpioPin> + 'd,
master_clock: MasterClock,
config: Config,
) -> Self {
into_ref!(mck, sck, lrck, sdin, sdout);
Self::new_inner(
into_ref!(i2s, irq, mck, sck, lrck);
Self {
i2s,
irq,
mck.map_into(),
sck.map_into(),
lrck.map_into(),
sdin.map_into(),
sdout.map_into(),
mck: Some(mck.map_into()),
sck: sck.map_into(),
lrck: lrck.map_into(),
sdin: None,
sdout: None,
master_clock: Some(master_clock),
config,
)
}
}
fn new_inner(
/// Create a new I2S in slave mode
pub fn slave(
i2s: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
sck: impl Peripheral<P = impl GpioPin> + 'd,
lrck: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(i2s, irq, mck, sck, lrck, sdin, sdout);
Self::apply_config(&config);
Self::select_pins(mck, sck, lrck, sdin, sdout);
Self::setup_interrupt(irq);
T::regs().enable.write(|w| w.enable().enabled());
Self { _p: i2s }
into_ref!(i2s, irq, sck, lrck);
Self {
i2s,
irq,
mck: None,
sck: sck.map_into(),
lrck: lrck.map_into(),
sdin: None,
sdout: None,
master_clock: None,
config,
}
}
/// I2S output only
pub fn output(self) -> Output<'d, T> {
Output { _p: self._p }
pub fn output(mut self, sdout: impl Peripheral<P = impl GpioPin> + 'd) -> OutputStream<'d, T> {
self.sdout = Some(sdout.into_ref().map_into());
OutputStream { _p: self.build() }
}
/// I2S input only
pub fn input(self) -> Input<'d, T> {
Input { _p: self._p }
pub fn input(mut self, sdin: impl Peripheral<P = impl GpioPin> + 'd) -> InputStream<'d, T> {
self.sdin = Some(sdin.into_ref().map_into());
InputStream { _p: self.build() }
}
/// I2S full duplex (input and output)
pub fn full_duplex(self) -> FullDuplex<'d, T> {
FullDuplex { _p: self._p }
pub fn full_duplex(
mut self,
sdin: impl Peripheral<P = impl GpioPin> + 'd,
sdout: impl Peripheral<P = impl GpioPin> + 'd,
) -> FullDuplexStream<'d, T> {
self.sdout = Some(sdout.into_ref().map_into());
self.sdin = Some(sdin.into_ref().map_into());
FullDuplexStream { _p: self.build() }
}
fn apply_config(config: &Config) {
fn build(self) -> PeripheralRef<'d, T> {
self.apply_config();
self.select_pins();
self.setup_interrupt();
let device = Device::<T>::new();
device.enable();
self.i2s
}
fn apply_config(&self) {
let c = &T::regs().config;
match config.mode {
Mode::Master { freq, ratio } => {
match &self.master_clock {
Some(MasterClock { freq, ratio }) => {
c.mode.write(|w| w.mode().master());
c.mcken.write(|w| w.mcken().enabled());
c.mckfreq
.write(|w| unsafe { w.mckfreq().bits(freq.to_register_value()) });
c.ratio.write(|w| unsafe { w.ratio().bits(ratio.into()) });
c.ratio.write(|w| unsafe { w.ratio().bits(ratio.to_register_value()) });
}
Mode::Slave => {
None => {
c.mode.write(|w| w.mode().slave());
}
};
c.swidth.write(|w| unsafe { w.swidth().bits(config.swidth.into()) });
c.align.write(|w| w.align().bit(config.align.into()));
c.format.write(|w| w.format().bit(config.format.into()));
c.swidth
.write(|w| unsafe { w.swidth().bits(self.config.sample_width.into()) });
c.align.write(|w| w.align().bit(self.config.align.into()));
c.format.write(|w| w.format().bit(self.config.format.into()));
c.channels
.write(|w| unsafe { w.channels().bits(config.channels.into()) });
.write(|w| unsafe { w.channels().bits(self.config.channels.into()) });
}
fn select_pins(
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
) {
fn select_pins(&self) {
let psel = &T::regs().psel;
if let Some(mck) = &self.mck {
psel.mck.write(|w| {
unsafe { w.bits(mck.psel_bits()) };
w.connect().connected()
});
}
psel.sck.write(|w| {
unsafe { w.bits(sck.psel_bits()) };
unsafe { w.bits(self.sck.psel_bits()) };
w.connect().connected()
});
psel.lrck.write(|w| {
unsafe { w.bits(lrck.psel_bits()) };
unsafe { w.bits(self.lrck.psel_bits()) };
w.connect().connected()
});
if let Some(sdin) = &self.sdin {
psel.sdin.write(|w| {
unsafe { w.bits(sdin.psel_bits()) };
w.connect().connected()
});
}
if let Some(sdout) = &self.sdout {
psel.sdout.write(|w| {
unsafe { w.bits(sdout.psel_bits()) };
w.connect().connected()
});
}
}
fn setup_interrupt(irq: PeripheralRef<'d, T::Interrupt>) {
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
fn setup_interrupt(&self) {
self.irq.set_handler(Self::on_interrupt);
self.irq.unpend();
self.irq.enable();
let device = Device::<T>::new();
device.disable_tx_ptr_interrupt();
@ -538,17 +537,32 @@ impl<'d, T: Instance> I2S<'d, T> {
device.disable();
}
async fn send<B>(buffer: B) -> Result<(), Error>
async fn send_from_ram<S>(buffer_ptr: *const [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
trace!("SEND: {}", buffer.bytes_ptr() as u32);
trace!("SEND: {}", buffer_ptr as *const S as u32);
let device = Device::<T>::new();
let drop = device.on_tx_drop();
slice_in_ram_or(buffer_ptr, Error::BufferNotInDataMemory)?;
compiler_fence(Ordering::SeqCst);
let device = Device::<T>::new();
let drop = OnDrop::new(move || {
trace!("TX DROP: Stopping");
let device = Device::<T>::new();
device.disable_tx_ptr_interrupt();
device.reset_tx_ptr_event();
device.disable_tx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_tx_ptr_updated() {}
trace!("TX DROP: Stopped");
});
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
@ -564,7 +578,7 @@ impl<'d, T: Instance> I2S<'d, T> {
})
.await;
device.set_tx_buffer(buffer)?;
device.update_tx(buffer_ptr)?;
compiler_fence(Ordering::SeqCst);
drop.defuse();
@ -572,17 +586,33 @@ impl<'d, T: Instance> I2S<'d, T> {
Ok(())
}
async fn receive<B>(buffer: B) -> Result<(), Error>
async fn receive_from_ram<S>(buffer_ptr: *mut [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
trace!("RECEIVE: {}", buffer.bytes_ptr() as u32);
trace!("RECEIVE: {}", buffer_ptr as *const S as u32);
let device = Device::<T>::new();
let drop = device.on_rx_drop();
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
compiler_fence(Ordering::SeqCst);
let device = Device::<T>::new();
let drop = OnDrop::new(move || {
trace!("RX DROP: Stopping");
let device = Device::<T>::new();
device.disable_rx_ptr_interrupt();
device.reset_rx_ptr_event();
device.disable_rx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_rx_ptr_updated() {}
trace!("RX DROP: Stopped");
});
poll_fn(|cx| {
T::state().rx_waker.register(cx.waker());
@ -598,9 +628,10 @@ impl<'d, T: Instance> I2S<'d, T> {
})
.await;
device.set_rx_buffer(buffer)?;
device.update_rx(buffer_ptr)?;
compiler_fence(Ordering::SeqCst);
drop.defuse();
Ok(())
@ -608,15 +639,15 @@ impl<'d, T: Instance> I2S<'d, T> {
}
/// I2S output
pub struct Output<'d, T: Instance> {
pub struct OutputStream<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Output<'d, T> {
impl<'d, T: Instance> OutputStream<'d, T> {
/// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
pub async fn start<S>(&self, buffer: &[S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
let device = Device::<T>::new();
@ -627,7 +658,8 @@ impl<'d, T: Instance> Output<'d, T> {
device.enable();
device.enable_tx();
device.set_tx_buffer(buffer)?;
device.update_tx(buffer as *const [S])?;
s.started.store(true, Ordering::Relaxed);
@ -647,24 +679,24 @@ impl<'d, T: Instance> Output<'d, T> {
/// The buffer must not be written while being used by the DMA,
/// which takes two other `send`s being awaited.
#[allow(unused_mut)]
pub async fn send<B>(&mut self, buffer: B) -> Result<(), Error>
pub async fn send_from_ram<S>(&mut self, buffer: &[S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
I2S::<T>::send(buffer).await
I2S::<T>::send_from_ram(buffer as *const [S]).await
}
}
/// I2S input
pub struct Input<'d, T: Instance> {
pub struct InputStream<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Input<'d, T> {
impl<'d, T: Instance> InputStream<'d, T> {
/// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
pub async fn start<S>(&self, buffer: &mut [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
let device = Device::<T>::new();
@ -675,7 +707,8 @@ impl<'d, T: Instance> Input<'d, T> {
device.enable();
device.enable_rx();
device.set_rx_buffer(buffer)?;
device.update_rx(buffer as *mut [S])?;
s.started.store(true, Ordering::Relaxed);
@ -695,24 +728,24 @@ impl<'d, T: Instance> Input<'d, T> {
/// The buffer must not be read while being used by the DMA,
/// which takes two other `receive`s being awaited.
#[allow(unused_mut)]
pub async fn receive<B>(&mut self, buffer: B) -> Result<(), Error>
pub async fn receive_from_ram<S>(&mut self, buffer: &mut [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
I2S::<T>::receive(buffer).await
I2S::<T>::receive_from_ram(buffer as *mut [S]).await
}
}
/// I2S ful duplex (input & output)
pub struct FullDuplex<'d, T: Instance> {
/// I2S full duplex stream (input & output)
pub struct FullDuplexStream<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> FullDuplex<'d, T> {
impl<'d, T: Instance> FullDuplexStream<'d, T> {
/// Prepare the initial buffers and start the I2S transfer.
pub async fn start<B>(&self, buffer_out: B, buffer_in: B) -> Result<(), Error>
pub async fn start<S>(&self, buffer_out: &[S], buffer_in: &mut [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
let device = Device::<T>::new();
@ -724,8 +757,9 @@ impl<'d, T: Instance> FullDuplex<'d, T> {
device.enable();
device.enable_tx();
device.enable_rx();
device.set_tx_buffer(buffer_out)?;
device.set_rx_buffer(buffer_in)?;
device.update_tx(buffer_out as *const [S])?;
device.update_rx(buffer_in as *mut [S])?;
s.started.store(true, Ordering::Relaxed);
@ -745,12 +779,12 @@ impl<'d, T: Instance> FullDuplex<'d, T> {
/// The buffers must not be written/read while being used by the DMA,
/// which takes two other `send_and_receive` operations being awaited.
#[allow(unused_mut)]
pub async fn send_and_receive<B>(&mut self, buffer_out: B, buffer_in: B) -> Result<(), Error>
pub async fn send_and_receive_from_ram<S>(&mut self, buffer_out: &[S], buffer_in: &mut [S]) -> Result<(), Error>
where
B: Buffer,
S: Sample,
{
I2S::<T>::send(buffer_out).await?;
I2S::<T>::receive(buffer_in).await?;
I2S::<T>::send_from_ram(buffer_out as *const [S]).await?;
I2S::<T>::receive_from_ram(buffer_in as *mut [S]).await?;
Ok(())
}
}
@ -833,38 +867,6 @@ impl<T: Instance> Device<T> {
self.0.intenset.write(|w| w.stopped().set());
}
#[inline]
fn set_tx_buffer<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let (ptr, maxcnt) = Self::validate_buffer(buffer)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
#[inline]
fn set_rx_buffer<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let (ptr, maxcnt) = Self::validate_buffer(buffer)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
#[inline(always)]
fn is_tx_ptr_updated(&self) -> bool {
self.0.events_txptrupd.read().bits() != 0
}
#[inline(always)]
fn is_rx_ptr_updated(&self) -> bool {
self.0.events_rxptrupd.read().bits() != 0
}
#[inline(always)]
fn reset_tx_ptr_event(&self) {
trace!("TX PTR EVENT: Reset");
@ -901,58 +903,44 @@ impl<T: Instance> Device<T> {
self.0.intenclr.write(|w| w.rxptrupd().clear());
}
#[inline]
fn on_tx_drop(&self) -> OnDrop<fn()> {
OnDrop::new(move || {
trace!("TX DROP: Stopping");
#[inline(always)]
fn is_tx_ptr_updated(&self) -> bool {
self.0.events_txptrupd.read().bits() != 0
}
let device = Device::<T>::new();
device.disable_tx_ptr_interrupt();
device.reset_tx_ptr_event();
device.disable_tx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_tx_ptr_updated() {}
trace!("TX DROP: Stopped");
})
#[inline(always)]
fn is_rx_ptr_updated(&self) -> bool {
self.0.events_rxptrupd.read().bits() != 0
}
#[inline]
fn on_rx_drop(&self) -> OnDrop<fn()> {
OnDrop::new(move || {
trace!("RX DROP: Stopping");
let device = Device::<T>::new();
device.disable_rx_ptr_interrupt();
device.reset_rx_ptr_event();
device.disable_rx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_rx_ptr_updated() {}
trace!("RX DROP: Stopped");
})
fn update_tx<S>(&self, buffer_ptr: *const [S]) -> Result<(), Error> {
let (ptr, maxcnt) = Self::validated_dma_parts(buffer_ptr)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
fn validate_buffer<B>(buffer: B) -> Result<(u32, u32), Error>
where
B: Buffer,
{
let ptr = buffer.bytes_ptr() as u32;
let len = buffer.bytes_len();
let maxcnt = ((len + core::mem::size_of::<u32>() - 1) / core::mem::size_of::<u32>()) as u32;
#[inline]
fn update_rx<S>(&self, buffer_ptr: *const [S]) -> Result<(), Error> {
let (ptr, maxcnt) = Self::validated_dma_parts(buffer_ptr)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
fn validated_dma_parts<S>(buffer_ptr: *const [S]) -> Result<(u32, u32), Error> {
let (ptr, len) = slice_ptr_parts(buffer_ptr);
let ptr = ptr as u32;
let bytes_len = len * size_of::<S>();
let maxcnt = (bytes_len / size_of::<u32>()) as u32;
trace!("PTR={}, MAXCNT={}", ptr, maxcnt);
// TODO can we avoid repeating all those runtime checks for the same buffer again and again?
if ptr % 4 != 0 {
Err(Error::BufferMisaligned)
} else if len % 4 != 0 {
} else if bytes_len % 4 != 0 {
Err(Error::BufferLengthMisaligned)
} else if (ptr as usize) < SRAM_LOWER || (ptr as usize) > SRAM_UPPER {
Err(Error::BufferNotInDataMemory)
} else if maxcnt as usize > EASY_DMA_SIZE {
Err(Error::BufferTooLong)
} else {
@ -998,60 +986,19 @@ impl<T: Sample, const N: usize> Default for AlignedBuffer<T, N> {
}
}
impl<T: Sample, const N: usize> AsRef<[T]> for AlignedBuffer<T, N> {
fn as_ref(&self) -> &[T] {
impl<T: Sample, const N: usize> Deref for AlignedBuffer<T, N> {
type Target = [T];
fn deref(&self) -> &Self::Target {
self.0.as_slice()
}
}
impl<T: Sample, const N: usize> AsMut<[T]> for AlignedBuffer<T, N> {
fn as_mut(&mut self) -> &mut [T] {
impl<T: Sample, const N: usize> DerefMut for AlignedBuffer<T, N> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.0.as_mut_slice()
}
}
/// Common operations required for a buffer to be used by the DMA
pub trait Buffer: Sized {
fn bytes_ptr(&self) -> *const u8;
fn bytes_len(&self) -> usize;
}
impl Buffer for &[i8] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len()
}
}
impl Buffer for &[i16] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len() * core::mem::size_of::<i16>()
}
}
impl Buffer for &[i32] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len() * core::mem::size_of::<i32>()
}
}
pub(crate) mod sealed {
use core::sync::atomic::AtomicBool;

View File

@ -6,33 +6,29 @@ use core::f32::consts::PI;
use defmt::{error, info};
use embassy_executor::Spawner;
use embassy_nrf::i2s::{self, Sample as _};
use embassy_nrf::i2s::{self, Channels, Config, MasterClock, Sample as _, SampleWidth, I2S};
use embassy_nrf::interrupt;
use {defmt_rtt as _, panic_probe as _};
type Sample = i16;
const NUM_SAMPLES: usize = 6000;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_nrf::init(Default::default());
let mut config = i2s::Config::default();
config.mode = i2s::ExactSampleRate::_50000.into();
config.channels = i2s::Channels::Left;
config.swidth = i2s::SampleWidth::_16bit;
let sample_rate = config.mode.sample_rate().expect("I2S Master");
let inv_sample_rate = 1.0 / sample_rate as f32;
let master_clock: MasterClock = i2s::ExactSampleRate::_50000.into();
let sample_rate = master_clock.sample_rate();
info!("Sample rate: {}", sample_rate);
// Wait for a button press
// use embassy_nrf::gpio::{Input, Pin, Pull};
// let mut btn1 = Input::new(p.P1_00.degrade(), Pull::Up);
// btn1.wait_for_low().await;
let config = Config::default()
.sample_width(SampleWidth::_16bit)
.channels(Channels::MonoLeft);
let irq = interrupt::take!(I2S);
let mut i2s = i2s::I2S::new(p.I2S, irq, p.P0_28, p.P0_29, p.P0_31, p.P0_27, p.P0_30, config).output();
type Sample = i16;
const NUM_SAMPLES: usize = 6000;
let mut output_stream = I2S::master(p.I2S, irq, p.P0_25, p.P0_26, p.P0_27, master_clock, config).output(p.P0_28);
let mut buffers: [i2s::AlignedBuffer<Sample, NUM_SAMPLES>; 3] = [
i2s::AlignedBuffer::default(),
@ -40,7 +36,38 @@ async fn main(_spawner: Spawner) {
i2s::AlignedBuffer::default(),
];
let mut carrier = SineOsc::new();
let mut waveform = Waveform::new(1.0 / sample_rate as f32);
waveform.process(&mut buffers[0]);
waveform.process(&mut buffers[1]);
output_stream.start(&buffers[0]).await.expect("I2S Start");
let mut index = 1;
loop {
if let Err(err) = output_stream.send_from_ram(&buffers[index]).await {
error!("{}", err);
}
index += 1;
if index >= 3 {
index = 0;
}
waveform.process(&mut buffers[index]);
}
}
struct Waveform {
inv_sample_rate: f32,
carrier: SineOsc,
freq_mod: SineOsc,
amp_mod: SineOsc,
}
impl Waveform {
fn new(inv_sample_rate: f32) -> Self {
let carrier = SineOsc::new();
let mut freq_mod = SineOsc::new();
freq_mod.set_frequency(8.0, inv_sample_rate);
@ -50,38 +77,30 @@ async fn main(_spawner: Spawner) {
amp_mod.set_frequency(16.0, inv_sample_rate);
amp_mod.set_amplitude(0.5);
let mut generate = |buf: &mut [Sample]| {
for sample in &mut buf.chunks_mut(1) {
let freq_modulation = bipolar_to_unipolar(freq_mod.generate());
carrier.set_frequency(220.0 + 440.0 * freq_modulation, inv_sample_rate);
let amp_modulation = bipolar_to_unipolar(amp_mod.generate());
carrier.set_amplitude(amp_modulation);
let signal = carrier.generate();
let value = (Sample::SCALE as f32 * signal) as Sample;
sample[0] = value;
}
};
generate(buffers[0].as_mut());
generate(buffers[1].as_mut());
i2s.start(buffers[0].as_ref()).await.expect("I2S Start");
let mut index = 1;
loop {
if let Err(err) = i2s.send(buffers[index].as_ref()).await {
error!("{}", err);
}
index += 1;
if index >= 3 {
index = 0;
}
generate(buffers[index].as_mut());
Self {
inv_sample_rate,
carrier,
freq_mod,
amp_mod,
}
}
fn process(&mut self, buf: &mut [Sample]) {
for sample in buf.chunks_mut(1) {
let freq_modulation = bipolar_to_unipolar(self.freq_mod.generate());
self.carrier
.set_frequency(110.0 + 440.0 * freq_modulation, self.inv_sample_rate);
let amp_modulation = bipolar_to_unipolar(self.amp_mod.generate());
self.carrier.set_amplitude(amp_modulation);
let signal = self.carrier.generate();
sample[0] = (Sample::SCALE as f32 * signal) as Sample;
}
}
}
#[derive(Clone)]
struct SineOsc {
amplitude: f32,
modulo: f32,