i2cv2 timeouts
This commit is contained in:
parent
d99841fea9
commit
1bed02296c
@ -147,14 +147,23 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn master_read(address: u8, length: usize, stop: Stop, reload: bool, restart: bool) {
|
||||
unsafe fn master_read(
|
||||
address: u8,
|
||||
length: usize,
|
||||
stop: Stop,
|
||||
reload: bool,
|
||||
restart: bool,
|
||||
check_timeout: impl Fn() -> Result<(), Error>,
|
||||
) -> Result<(), Error> {
|
||||
assert!(length < 256);
|
||||
|
||||
if !restart {
|
||||
// Wait for any previous address sequence to end
|
||||
// automatically. This could be up to 50% of a bus
|
||||
// cycle (ie. up to 0.5/freq)
|
||||
while T::regs().cr2().read().start() {}
|
||||
while T::regs().cr2().read().start() {
|
||||
check_timeout()?;
|
||||
}
|
||||
}
|
||||
|
||||
// Set START and prepare to receive bytes into
|
||||
@ -176,15 +185,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
w.set_autoend(stop.autoend());
|
||||
w.set_reload(reload);
|
||||
});
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool) {
|
||||
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
assert!(length < 256);
|
||||
|
||||
// Wait for any previous address sequence to end
|
||||
// automatically. This could be up to 50% of a bus
|
||||
// cycle (ie. up to 0.5/freq)
|
||||
while T::regs().cr2().read().start() {}
|
||||
while T::regs().cr2().read().start() {
|
||||
check_timeout()?;
|
||||
}
|
||||
|
||||
let reload = if reload {
|
||||
i2c::vals::Reload::NOTCOMPLETED
|
||||
@ -204,12 +217,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
w.set_autoend(stop.autoend());
|
||||
w.set_reload(reload);
|
||||
});
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
unsafe fn master_continue(length: usize, reload: bool) {
|
||||
unsafe fn master_continue(length: usize, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
assert!(length < 256 && length > 0);
|
||||
|
||||
while !T::regs().isr().read().tcr() {}
|
||||
while !T::regs().isr().read().tcr() {
|
||||
check_timeout()?;
|
||||
}
|
||||
|
||||
let reload = if reload {
|
||||
i2c::vals::Reload::NOTCOMPLETED
|
||||
@ -221,6 +238,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
w.set_nbytes(length as u8);
|
||||
w.set_reload(reload);
|
||||
});
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush_txdr(&self) {
|
||||
@ -243,7 +262,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
//}
|
||||
}
|
||||
|
||||
fn wait_txe(&self) -> Result<(), Error> {
|
||||
fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
loop {
|
||||
unsafe {
|
||||
let isr = T::regs().isr().read();
|
||||
@ -261,10 +280,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
return Err(Error::Nack);
|
||||
}
|
||||
}
|
||||
|
||||
check_timeout()?;
|
||||
}
|
||||
}
|
||||
|
||||
fn wait_rxne(&self) -> Result<(), Error> {
|
||||
fn wait_rxne(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
loop {
|
||||
unsafe {
|
||||
let isr = T::regs().isr().read();
|
||||
@ -282,10 +303,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
return Err(Error::Nack);
|
||||
}
|
||||
}
|
||||
|
||||
check_timeout()?;
|
||||
}
|
||||
}
|
||||
|
||||
fn wait_tc(&self) -> Result<(), Error> {
|
||||
fn wait_tc(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
loop {
|
||||
unsafe {
|
||||
let isr = T::regs().isr().read();
|
||||
@ -303,10 +326,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
return Err(Error::Nack);
|
||||
}
|
||||
}
|
||||
|
||||
check_timeout()?;
|
||||
}
|
||||
}
|
||||
|
||||
fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error> {
|
||||
fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
let completed_chunks = buffer.len() / 255;
|
||||
let total_chunks = if completed_chunks * 255 == buffer.len() {
|
||||
completed_chunks
|
||||
@ -322,20 +347,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Stop::Automatic,
|
||||
last_chunk_idx != 0,
|
||||
restart,
|
||||
);
|
||||
&check_timeout
|
||||
)?;
|
||||
}
|
||||
|
||||
for (number, chunk) in buffer.chunks_mut(255).enumerate() {
|
||||
if number != 0 {
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
Self::master_continue(chunk.len(), number != last_chunk_idx);
|
||||
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
|
||||
}
|
||||
}
|
||||
|
||||
for byte in chunk {
|
||||
// Wait until we have received something
|
||||
self.wait_rxne()?;
|
||||
self.wait_rxne(&check_timeout)?;
|
||||
|
||||
unsafe {
|
||||
*byte = T::regs().rxdr().read().rxdata();
|
||||
@ -345,7 +371,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
|
||||
fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
let completed_chunks = bytes.len() / 255;
|
||||
let total_chunks = if completed_chunks * 255 == bytes.len() {
|
||||
completed_chunks
|
||||
@ -359,14 +385,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
// ST SAD+W
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0);
|
||||
Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0, &check_timeout)?;
|
||||
}
|
||||
|
||||
for (number, chunk) in bytes.chunks(255).enumerate() {
|
||||
if number != 0 {
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
Self::master_continue(chunk.len(), number != last_chunk_idx);
|
||||
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
|
||||
}
|
||||
}
|
||||
|
||||
@ -374,7 +400,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
// Wait until we are allowed to send data
|
||||
// (START has been ACKed or last byte when
|
||||
// through)
|
||||
self.wait_txe()?;
|
||||
self.wait_txe(&check_timeout)?;
|
||||
|
||||
unsafe {
|
||||
T::regs().txdr().write(|w| w.set_txdata(*byte));
|
||||
@ -382,7 +408,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
}
|
||||
}
|
||||
// Wait until the write finishes
|
||||
self.wait_tc()?;
|
||||
self.wait_tc(&check_timeout)?;
|
||||
|
||||
if send_stop {
|
||||
self.master_stop();
|
||||
@ -396,6 +422,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
bytes: &[u8],
|
||||
first_slice: bool,
|
||||
last_slice: bool,
|
||||
check_timeout: impl Fn() -> Result<(), Error>
|
||||
) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
@ -447,11 +474,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
total_len.min(255),
|
||||
Stop::Software,
|
||||
(total_chunks != 1) || !last_slice,
|
||||
);
|
||||
&check_timeout
|
||||
)?;
|
||||
}
|
||||
} else {
|
||||
unsafe {
|
||||
Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice);
|
||||
Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice, &check_timeout)?;
|
||||
T::regs().cr1().modify(|w| w.set_tcie(true));
|
||||
}
|
||||
}
|
||||
@ -461,32 +489,34 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
|
||||
|
||||
if chunks_transferred == total_chunks {
|
||||
return Poll::Ready(());
|
||||
return Poll::Ready(Ok(()));
|
||||
} else if chunks_transferred != 0 {
|
||||
remaining_len = remaining_len.saturating_sub(255);
|
||||
let last_piece = (chunks_transferred + 1 == total_chunks) && last_slice;
|
||||
|
||||
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
|
||||
unsafe {
|
||||
Self::master_continue(remaining_len.min(255), !last_piece);
|
||||
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
|
||||
return Poll::Ready(Err(e));
|
||||
}
|
||||
T::regs().cr1().modify(|w| w.set_tcie(true));
|
||||
}
|
||||
}
|
||||
Poll::Pending
|
||||
})
|
||||
.await;
|
||||
.await?;
|
||||
|
||||
dma_transfer.await;
|
||||
|
||||
if last_slice {
|
||||
// This should be done already
|
||||
self.wait_tc()?;
|
||||
self.wait_tc(&check_timeout)?;
|
||||
self.master_stop();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error>
|
||||
async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
{
|
||||
@ -527,7 +557,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
|
||||
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
|
||||
unsafe {
|
||||
Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart);
|
||||
Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart, &check_timeout)?;
|
||||
}
|
||||
|
||||
poll_fn(|cx| {
|
||||
@ -535,25 +565,27 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
|
||||
|
||||
if chunks_transferred == total_chunks {
|
||||
return Poll::Ready(());
|
||||
return Poll::Ready(Ok(()));
|
||||
} else if chunks_transferred != 0 {
|
||||
remaining_len = remaining_len.saturating_sub(255);
|
||||
let last_piece = chunks_transferred + 1 == total_chunks;
|
||||
|
||||
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
|
||||
unsafe {
|
||||
Self::master_continue(remaining_len.min(255), !last_piece);
|
||||
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
|
||||
return Poll::Ready(Err(e))
|
||||
}
|
||||
T::regs().cr1().modify(|w| w.set_tcie(true));
|
||||
}
|
||||
}
|
||||
Poll::Pending
|
||||
})
|
||||
.await;
|
||||
.await?;
|
||||
|
||||
dma_transfer.await;
|
||||
|
||||
// This should be done already
|
||||
self.wait_tc()?;
|
||||
self.wait_tc(&check_timeout)?;
|
||||
self.master_stop();
|
||||
Ok(())
|
||||
}
|
||||
@ -561,18 +593,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
// =========================
|
||||
// Async public API
|
||||
|
||||
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
|
||||
pub async fn write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
if bytes.is_empty() {
|
||||
self.write_internal(address, bytes, true)
|
||||
self.write_internal(address, bytes, true, &check_timeout)
|
||||
} else {
|
||||
self.write_dma_internal(address, bytes, true, true).await
|
||||
self.write_dma_internal(address, bytes, true, true, &check_timeout).await
|
||||
}
|
||||
}
|
||||
|
||||
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error>
|
||||
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
self.write_timeout(address, bytes, || Ok(())).await
|
||||
}
|
||||
|
||||
pub async fn write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
@ -587,63 +626,97 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
let next = iter.next();
|
||||
let is_last = next.is_none();
|
||||
|
||||
self.write_dma_internal(address, c, first, is_last).await?;
|
||||
self.write_dma_internal(address, c, first, is_last, &check_timeout).await?;
|
||||
first = false;
|
||||
current = next;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
|
||||
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
self.write_vectored_timeout(address, bytes, || Ok(())).await
|
||||
}
|
||||
|
||||
pub async fn read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
{
|
||||
if buffer.is_empty() {
|
||||
self.read_internal(address, buffer, false)
|
||||
self.read_internal(address, buffer, false, &check_timeout)
|
||||
} else {
|
||||
self.read_dma_internal(address, buffer, false).await
|
||||
self.read_dma_internal(address, buffer, false, &check_timeout).await
|
||||
}
|
||||
}
|
||||
|
||||
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
{
|
||||
self.read_timeout(address, buffer, || Ok(())).await
|
||||
}
|
||||
|
||||
pub async fn write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: super::TxDma<T>,
|
||||
RXDMA: super::RxDma<T>,
|
||||
{
|
||||
if bytes.is_empty() {
|
||||
self.write_internal(address, bytes, false, &check_timeout)?;
|
||||
} else {
|
||||
self.write_dma_internal(address, bytes, true, true, &check_timeout).await?;
|
||||
}
|
||||
|
||||
if buffer.is_empty() {
|
||||
self.read_internal(address, buffer, true, &check_timeout)?;
|
||||
} else {
|
||||
self.read_dma_internal(address, buffer, true, &check_timeout).await?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: super::TxDma<T>,
|
||||
RXDMA: super::RxDma<T>,
|
||||
{
|
||||
if bytes.is_empty() {
|
||||
self.write_internal(address, bytes, false)?;
|
||||
} else {
|
||||
self.write_dma_internal(address, bytes, true, true).await?;
|
||||
}
|
||||
|
||||
if buffer.is_empty() {
|
||||
self.read_internal(address, buffer, true)?;
|
||||
} else {
|
||||
self.read_dma_internal(address, buffer, true).await?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
self.write_read_timeout(address, bytes, buffer, || Ok(())).await
|
||||
}
|
||||
|
||||
// =========================
|
||||
// Blocking public API
|
||||
|
||||
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
||||
self.read_internal(address, buffer, false)
|
||||
pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
self.read_internal(address, buffer, false, &check_timeout)
|
||||
// Automatic Stop
|
||||
}
|
||||
|
||||
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
||||
self.blocking_read_timeout(address, buffer, || Ok(()))
|
||||
}
|
||||
|
||||
pub fn blocking_write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
self.write_internal(address, bytes, true, &check_timeout)
|
||||
}
|
||||
|
||||
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
|
||||
self.write_internal(address, bytes, true)
|
||||
self.blocking_write_timeout(address, bytes, || Ok(()))
|
||||
}
|
||||
|
||||
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
|
||||
self.write_internal(address, bytes, false)?;
|
||||
self.read_internal(address, buffer, true)
|
||||
pub fn blocking_write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
self.write_internal(address, bytes, false, &check_timeout)?;
|
||||
self.read_internal(address, buffer, true, &check_timeout)
|
||||
// Automatic Stop
|
||||
}
|
||||
|
||||
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
|
||||
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
|
||||
self.blocking_write_read_timeout(address, bytes, buffer, || Ok(()))
|
||||
}
|
||||
|
||||
pub fn blocking_write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
||||
if bytes.is_empty() {
|
||||
return Err(Error::ZeroLengthTransfer);
|
||||
}
|
||||
@ -657,7 +730,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
first_length.min(255),
|
||||
Stop::Software,
|
||||
(first_length > 255) || (last_slice_index != 0),
|
||||
);
|
||||
&check_timeout
|
||||
)?;
|
||||
}
|
||||
|
||||
for (idx, slice) in bytes.iter().enumerate() {
|
||||
@ -673,7 +747,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
if idx != 0 {
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255));
|
||||
Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255), &check_timeout)?;
|
||||
}
|
||||
}
|
||||
|
||||
@ -681,7 +755,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
if number != 0 {
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index));
|
||||
Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index), &check_timeout)?;
|
||||
}
|
||||
}
|
||||
|
||||
@ -689,7 +763,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
// Wait until we are allowed to send data
|
||||
// (START has been ACKed or last byte when
|
||||
// through)
|
||||
self.wait_txe()?;
|
||||
self.wait_txe(&check_timeout)?;
|
||||
|
||||
// Put byte on the wire
|
||||
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
|
||||
@ -700,11 +774,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
}
|
||||
}
|
||||
// Wait until the write finishes
|
||||
self.wait_tc()?;
|
||||
self.wait_tc(&check_timeout)?;
|
||||
self.master_stop();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
|
||||
self.blocking_write_vectored_timeout(address, bytes, || Ok(()))
|
||||
}
|
||||
}
|
||||
|
||||
mod eh02 {
|
||||
|
41
examples/stm32h7/src/bin/i2c.rs
Normal file
41
examples/stm32h7/src/bin/i2c.rs
Normal file
@ -0,0 +1,41 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::*;
|
||||
use embassy_executor::Spawner;
|
||||
use embassy_stm32::i2c::{Error, I2c, TimeoutI2c};
|
||||
use embassy_stm32::interrupt;
|
||||
use embassy_stm32::time::Hertz;
|
||||
use embassy_time::Duration;
|
||||
use {defmt_rtt as _, panic_probe as _};
|
||||
|
||||
const ADDRESS: u8 = 0x5F;
|
||||
const WHOAMI: u8 = 0x0F;
|
||||
|
||||
#[embassy_executor::main]
|
||||
async fn main(_spawner: Spawner) -> ! {
|
||||
info!("Hello world!");
|
||||
let p = embassy_stm32::init(Default::default());
|
||||
|
||||
let irq = interrupt::take!(I2C2_EV);
|
||||
let mut i2c = I2c::new(
|
||||
p.I2C2,
|
||||
p.PB10,
|
||||
p.PB11,
|
||||
irq,
|
||||
p.DMA1_CH4,
|
||||
p.DMA1_CH5,
|
||||
Hertz(100_000),
|
||||
Default::default(),
|
||||
);
|
||||
let mut timeout_i2c = TimeoutI2c::new(&mut i2c, Duration::from_millis(1000));
|
||||
|
||||
let mut data = [0u8; 1];
|
||||
|
||||
match timeout_i2c.blocking_write_read(ADDRESS, &[WHOAMI], &mut data) {
|
||||
Ok(()) => info!("Whoami: {}", data[0]),
|
||||
Err(Error::Timeout) => error!("Operation timed out"),
|
||||
Err(e) => error!("I2c Error: {:?}", e),
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user