Remove generic const expressions from embassy-boot

* Remove the need for generic const expressions and use buffers provided in the flash config.
* Extend embedded-storage traits to simplify generics.
* Document all public APIs
* Add toplevel README
* Expose AlignedBuffer type for convenience.
* Update examples
This commit is contained in:
Ulf Lilleengen 2022-08-30 13:07:35 +02:00
parent 7542505cf9
commit 3ca7314476
16 changed files with 431 additions and 293 deletions

30
embassy-boot/README.md Normal file
View File

@ -0,0 +1,30 @@
# embassy-boot
An [Embassy](https://embassy.dev) project.
A lightweight bootloader supporting firmware updates in a power-fail-safe way, with trial boots and rollbacks.
The bootloader can be used either as a library or be flashed directly with the default configuration derived from linker scripts.
By design, the bootloader does not provide any network capabilities. Networking capabilities for fetching new firmware can be provided by the user application, using the bootloader as a library for updating the firmware, or by using the bootloader as a library and adding this capability yourself.
## Hardware support
The bootloader supports different hardware in separate crates:
* `embassy-boot-nrf` - for the nRF microcontrollers.
* `embassy-boot-stm32` - for the STM32 microcontrollers.
## Minimum supported Rust version (MSRV)
`embassy-boot` requires Rust nightly to compile as it relies on async traits for interacting with the flash peripherals.
## License
This work is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
<http://www.apache.org/licenses/LICENSE-2.0>)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or <http://opensource.org/licenses/MIT>)
at your option.

View File

@ -1,53 +1,54 @@
#![feature(type_alias_impl_trait)]
#![feature(generic_associated_types)]
#![feature(generic_const_exprs)]
#![allow(incomplete_features)]
#![no_std]
///! embassy-boot is a bootloader and firmware updater for embedded devices with flash
///! storage implemented using embedded-storage
///!
///! The bootloader works in conjunction with the firmware application, and only has the
///! ability to manage two flash banks with an active and a updatable part. It implements
///! a swap algorithm that is power-failure safe, and allows reverting to the previous
///! version of the firmware, should the application crash and fail to mark itself as booted.
///!
///! This library is intended to be used by platform-specific bootloaders, such as embassy-boot-nrf,
///! which defines the limits and flash type for that particular platform.
///!
#![warn(missing_docs)]
#![doc = include_str!("../../README.md")]
mod fmt;
use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage_async::nor_flash::AsyncNorFlash;
const BOOT_MAGIC: u8 = 0xD0;
const SWAP_MAGIC: u8 = 0xF0;
/// A region in flash used by the bootloader.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Partition {
/// Start of the flash region.
pub from: usize,
/// End of the flash region.
pub to: usize,
}
impl Partition {
/// Create a new partition with the provided range
pub const fn new(from: usize, to: usize) -> Self {
Self { from, to }
}
/// Return the length of the partition
pub const fn len(&self) -> usize {
self.to - self.from
}
}
#[derive(PartialEq, Debug)]
/// The state of the bootloader after running prepare.
#[derive(PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum State {
/// Bootloader is ready to boot the active partition.
Boot,
/// Bootloader has swapped the active partition with the dfu partition and will attempt boot.
Swap,
}
#[derive(PartialEq, Debug)]
/// Errors returned by bootloader
#[derive(PartialEq, Eq, Debug)]
pub enum BootError {
/// Error from flash.
Flash(NorFlashErrorKind),
/// Invalid bootloader magic
BadMagic,
}
@ -60,19 +61,39 @@ where
}
}
pub trait FlashConfig {
const BLOCK_SIZE: usize;
const ERASE_VALUE: u8;
type FLASH: NorFlash + ReadNorFlash;
/// Buffer aligned to 32 byte boundary, largest known alignment requirement for embassy-boot.
#[repr(align(32))]
pub struct AlignedBuffer<const N: usize>(pub [u8; N]);
fn flash(&mut self) -> &mut Self::FLASH;
impl<const N: usize> AsRef<[u8]> for AlignedBuffer<N> {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl<const N: usize> AsMut<[u8]> for AlignedBuffer<N> {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
/// Extension of the embedded-storage flash type information with block size and erase value.
pub trait Flash: NorFlash + ReadNorFlash {
/// The block size that should be used when writing to flash. For most builtin flashes, this is the same as the erase
/// size of the flash, but for external QSPI flash modules, this can be lower.
const BLOCK_SIZE: usize;
/// The erase value of the flash. Typically the default of 0xFF is used, but some flashes use a different value.
const ERASE_VALUE: u8 = 0xFF;
}
/// Trait defining the flash handles used for active and DFU partition
pub trait FlashProvider {
type STATE: FlashConfig;
type ACTIVE: FlashConfig;
type DFU: FlashConfig;
pub trait FlashConfig {
/// Flash type used for the state partition.
type STATE: Flash;
/// Flash type used for the active partition.
type ACTIVE: Flash;
/// Flash type used for the dfu partition.
type DFU: Flash;
/// Return flash instance used to write/read to/from active partition.
fn active(&mut self) -> &mut Self::ACTIVE;
@ -84,9 +105,7 @@ pub trait FlashProvider {
/// BootLoader works with any flash implementing embedded_storage and can also work with
/// different page sizes and flash write sizes.
///
/// The PAGE_SIZE const parameter must be a multiple of the ACTIVE and DFU page sizes.
pub struct BootLoader<const PAGE_SIZE: usize> {
pub struct BootLoader {
// Page with current state of bootloader. The state partition has the following format:
// | Range | Description |
// | 0 - WRITE_SIZE | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
@ -98,15 +117,16 @@ pub struct BootLoader<const PAGE_SIZE: usize> {
dfu: Partition,
}
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
impl BootLoader {
/// Create a new instance of a bootloader with the given partitions.
///
/// - All partitions must be aligned with the PAGE_SIZE const generic parameter.
/// - The dfu partition must be at least PAGE_SIZE bigger than the active partition.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
assert_eq!(active.len() % PAGE_SIZE, 0);
assert_eq!(dfu.len() % PAGE_SIZE, 0);
// DFU partition must have an extra page
assert!(dfu.len() - active.len() >= PAGE_SIZE);
Self { active, dfu, state }
}
/// Return the boot address for the active partition.
pub fn boot_address(&self) -> usize {
self.active.from
}
@ -194,44 +214,43 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
/// | DFU | 3 | 3 | 2 | 1 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
pub fn prepare_boot<P: FlashProvider>(&mut self, p: &mut P) -> Result<State, BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
[(); <<P as FlashProvider>::ACTIVE as FlashConfig>::FLASH::ERASE_SIZE]:,
{
pub fn prepare_boot<P: FlashConfig>(
&mut self,
p: &mut P,
magic: &mut [u8],
page: &mut [u8],
) -> Result<State, BootError> {
// Ensure we have enough progress pages to store copy progress
assert!(
self.active.len() / PAGE_SIZE
<= (self.state.len() - <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE)
/ <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE
);
assert_eq!(self.active.len() % page.len(), 0);
assert_eq!(self.dfu.len() % page.len(), 0);
assert!(self.dfu.len() - self.active.len() >= page.len());
assert!(self.active.len() / page.len() <= (self.state.len() - P::STATE::WRITE_SIZE) / P::STATE::WRITE_SIZE);
assert_eq!(magic.len(), P::STATE::WRITE_SIZE);
// Copy contents from partition N to active
let state = self.read_state(p.state())?;
let state = self.read_state(p, magic)?;
match state {
State::Swap => {
//
// Check if we already swapped. If we're in the swap state, this means we should revert
// since the app has failed to mark boot as successful
//
if !self.is_swapped(p.state())? {
if !self.is_swapped(p, magic, page)? {
trace!("Swapping");
self.swap(p)?;
self.swap(p, magic, page)?;
trace!("Swapping done");
} else {
trace!("Reverting");
self.revert(p)?;
self.revert(p, magic, page)?;
// Overwrite magic and reset progress
let fstate = p.state().flash();
let aligned = Aligned(
[!P::STATE::ERASE_VALUE; <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE],
);
fstate.write(self.state.from as u32, &aligned.0)?;
let fstate = p.state();
magic.fill(!P::STATE::ERASE_VALUE);
fstate.write(self.state.from as u32, magic)?;
fstate.erase(self.state.from as u32, self.state.to as u32)?;
let aligned =
Aligned([BOOT_MAGIC; <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]);
fstate.write(self.state.from as u32, &aligned.0)?;
magic.fill(BOOT_MAGIC);
fstate.write(self.state.from as u32, magic)?;
}
}
_ => {}
@ -239,166 +258,152 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
Ok(state)
}
fn is_swapped<P: FlashConfig>(&mut self, p: &mut P) -> Result<bool, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / P::FLASH::ERASE_SIZE;
let progress = self.current_progress(p)?;
fn is_swapped<P: FlashConfig>(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result<bool, BootError> {
let page_size = page.len();
let page_count = self.active.len() / page_size;
let progress = self.current_progress(p, magic)?;
Ok(progress >= page_count * 2)
}
fn current_progress<P: FlashConfig>(&mut self, p: &mut P) -> Result<usize, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let write_size = P::FLASH::WRITE_SIZE;
fn current_progress<P: FlashConfig>(&mut self, config: &mut P, aligned: &mut [u8]) -> Result<usize, BootError> {
let write_size = aligned.len();
let max_index = ((self.state.len() - write_size) / write_size) - 1;
let flash = p.flash();
let mut aligned = Aligned([!P::ERASE_VALUE; P::FLASH::WRITE_SIZE]);
aligned.fill(!P::STATE::ERASE_VALUE);
let flash = config.state();
for i in 0..max_index {
flash.read((self.state.from + write_size + i * write_size) as u32, &mut aligned.0)?;
if aligned.0 == [P::ERASE_VALUE; P::FLASH::WRITE_SIZE] {
flash.read((self.state.from + write_size + i * write_size) as u32, aligned)?;
if aligned.iter().any(|&b| b == P::STATE::ERASE_VALUE) {
return Ok(i);
}
}
Ok(max_index)
}
fn update_progress<P: FlashConfig>(&mut self, idx: usize, p: &mut P) -> Result<(), BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let flash = p.flash();
let write_size = P::FLASH::WRITE_SIZE;
fn update_progress<P: FlashConfig>(&mut self, idx: usize, p: &mut P, magic: &mut [u8]) -> Result<(), BootError> {
let flash = p.state();
let write_size = magic.len();
let w = self.state.from + write_size + idx * write_size;
let aligned = Aligned([!P::ERASE_VALUE; P::FLASH::WRITE_SIZE]);
flash.write(w as u32, &aligned.0)?;
let aligned = magic;
aligned.fill(!P::STATE::ERASE_VALUE);
flash.write(w as u32, aligned)?;
Ok(())
}
fn active_addr(&self, n: usize) -> usize {
self.active.from + n * PAGE_SIZE
fn active_addr(&self, n: usize, page_size: usize) -> usize {
self.active.from + n * page_size
}
fn dfu_addr(&self, n: usize) -> usize {
self.dfu.from + n * PAGE_SIZE
fn dfu_addr(&self, n: usize, page_size: usize) -> usize {
self.dfu.from + n * page_size
}
fn copy_page_once_to_active<P: FlashProvider>(
fn copy_page_once_to_active<P: FlashConfig>(
&mut self,
idx: usize,
from_page: usize,
to_page: usize,
p: &mut P,
) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
if self.current_progress(p.state())? <= idx {
magic: &mut [u8],
page: &mut [u8],
) -> Result<(), BootError> {
let buf = page;
if self.current_progress(p, magic)? <= idx {
let mut offset = from_page;
for chunk in buf.chunks_mut(P::DFU::BLOCK_SIZE) {
p.dfu().flash().read(offset as u32, chunk)?;
p.dfu().read(offset as u32, chunk)?;
offset += chunk.len();
}
p.active().flash().erase(to_page as u32, (to_page + PAGE_SIZE) as u32)?;
p.active().erase(to_page as u32, (to_page + buf.len()) as u32)?;
let mut offset = to_page;
for chunk in buf.chunks(P::ACTIVE::BLOCK_SIZE) {
p.active().flash().write(offset as u32, &chunk)?;
p.active().write(offset as u32, chunk)?;
offset += chunk.len();
}
self.update_progress(idx, p.state())?;
self.update_progress(idx, p, magic)?;
}
Ok(())
}
fn copy_page_once_to_dfu<P: FlashProvider>(
fn copy_page_once_to_dfu<P: FlashConfig>(
&mut self,
idx: usize,
from_page: usize,
to_page: usize,
p: &mut P,
) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
if self.current_progress(p.state())? <= idx {
magic: &mut [u8],
page: &mut [u8],
) -> Result<(), BootError> {
let buf = page;
if self.current_progress(p, magic)? <= idx {
let mut offset = from_page;
for chunk in buf.chunks_mut(P::ACTIVE::BLOCK_SIZE) {
p.active().flash().read(offset as u32, chunk)?;
p.active().read(offset as u32, chunk)?;
offset += chunk.len();
}
p.dfu().flash().erase(to_page as u32, (to_page + PAGE_SIZE) as u32)?;
p.dfu().erase(to_page as u32, (to_page + buf.len()) as u32)?;
let mut offset = to_page;
for chunk in buf.chunks(P::DFU::BLOCK_SIZE) {
p.dfu().flash().write(offset as u32, chunk)?;
p.dfu().write(offset as u32, chunk)?;
offset += chunk.len();
}
self.update_progress(idx, p.state())?;
self.update_progress(idx, p, magic)?;
}
Ok(())
}
fn swap<P: FlashProvider>(&mut self, p: &mut P) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / PAGE_SIZE;
fn swap<P: FlashConfig>(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result<(), BootError> {
let page_size = page.len();
let page_count = self.active.len() / page_size;
trace!("Page count: {}", page_count);
for page in 0..page_count {
trace!("COPY PAGE {}", page);
for page_num in 0..page_count {
trace!("COPY PAGE {}", page_num);
// Copy active page to the 'next' DFU page.
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - page);
let active_page = self.active_addr(page_count - 1 - page_num, page_size);
let dfu_page = self.dfu_addr(page_count - page_num, page_size);
//trace!("Copy active {} to dfu {}", active_page, dfu_page);
self.copy_page_once_to_dfu(page * 2, active_page, dfu_page, p)?;
self.copy_page_once_to_dfu(page_num * 2, active_page, dfu_page, p, magic, page)?;
// Copy DFU page to the active page
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - 1 - page);
let active_page = self.active_addr(page_count - 1 - page_num, page_size);
let dfu_page = self.dfu_addr(page_count - 1 - page_num, page_size);
//trace!("Copy dfy {} to active {}", dfu_page, active_page);
self.copy_page_once_to_active(page * 2 + 1, dfu_page, active_page, p)?;
self.copy_page_once_to_active(page_num * 2 + 1, dfu_page, active_page, p, magic, page)?;
}
Ok(())
}
fn revert<P: FlashProvider>(&mut self, p: &mut P) -> Result<(), BootError>
where
[(); <<P as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
{
let page_count = self.active.len() / PAGE_SIZE;
for page in 0..page_count {
fn revert<P: FlashConfig>(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result<(), BootError> {
let page_size = page.len();
let page_count = self.active.len() / page_size;
for page_num in 0..page_count {
// Copy the bad active page to the DFU page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page);
self.copy_page_once_to_dfu(page_count * 2 + page * 2, active_page, dfu_page, p)?;
let active_page = self.active_addr(page_num, page_size);
let dfu_page = self.dfu_addr(page_num, page_size);
self.copy_page_once_to_dfu(page_count * 2 + page_num * 2, active_page, dfu_page, p, magic, page)?;
// Copy the DFU page back to the active page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page + 1);
self.copy_page_once_to_active(page_count * 2 + page * 2 + 1, dfu_page, active_page, p)?;
let active_page = self.active_addr(page_num, page_size);
let dfu_page = self.dfu_addr(page_num + 1, page_size);
self.copy_page_once_to_active(page_count * 2 + page_num * 2 + 1, dfu_page, active_page, p, magic, page)?;
}
Ok(())
}
fn read_state<P: FlashConfig>(&mut self, p: &mut P) -> Result<State, BootError>
where
[(); P::FLASH::WRITE_SIZE]:,
{
let mut magic: [u8; P::FLASH::WRITE_SIZE] = [0; P::FLASH::WRITE_SIZE];
let flash = p.flash();
flash.read(self.state.from as u32, &mut magic)?;
fn read_state<P: FlashConfig>(&mut self, config: &mut P, magic: &mut [u8]) -> Result<State, BootError> {
let flash = config.state();
flash.read(self.state.from as u32, magic)?;
if magic == [SWAP_MAGIC; P::FLASH::WRITE_SIZE] {
if !magic.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
@ -406,108 +411,149 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
}
}
/// Convenience provider that uses a single flash for everything
pub struct SingleFlashProvider<'a, F, const ERASE_VALUE: u8 = 0xFF>
/// Convenience provider that uses a single flash for all partitions.
pub struct SingleFlashConfig<'a, F>
where
F: NorFlash + ReadNorFlash,
F: Flash,
{
config: SingleFlashConfig<'a, F, ERASE_VALUE>,
flash: &'a mut F,
}
impl<'a, F, const ERASE_VALUE: u8> SingleFlashProvider<'a, F, ERASE_VALUE>
impl<'a, F> SingleFlashConfig<'a, F>
where
F: NorFlash + ReadNorFlash,
F: Flash,
{
/// Create a provider for a single flash.
pub fn new(flash: &'a mut F) -> Self {
Self {
config: SingleFlashConfig { flash },
}
Self { flash }
}
}
pub struct SingleFlashConfig<'a, F, const ERASE_VALUE: u8 = 0xFF>
impl<'a, F> FlashConfig for SingleFlashConfig<'a, F>
where
F: Flash,
{
type STATE = F;
type ACTIVE = F;
type DFU = F;
fn active(&mut self) -> &mut Self::STATE {
self.flash
}
fn dfu(&mut self) -> &mut Self::ACTIVE {
self.flash
}
fn state(&mut self) -> &mut Self::DFU {
self.flash
}
}
/// A flash wrapper implementing the Flash and embedded_storage traits.
pub struct BootFlash<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8 = 0xFF>
where
F: NorFlash + ReadNorFlash,
{
flash: &'a mut F,
}
impl<'a, F> FlashProvider for SingleFlashProvider<'a, F>
impl<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8> BootFlash<'a, F, BLOCK_SIZE, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
type STATE = SingleFlashConfig<'a, F>;
type ACTIVE = SingleFlashConfig<'a, F>;
type DFU = SingleFlashConfig<'a, F>;
fn active(&mut self) -> &mut Self::STATE {
&mut self.config
}
fn dfu(&mut self) -> &mut Self::ACTIVE {
&mut self.config
}
fn state(&mut self) -> &mut Self::DFU {
&mut self.config
/// Create a new instance of a bootable flash
pub fn new(flash: &'a mut F) -> Self {
Self { flash }
}
}
impl<'a, F, const ERASE_VALUE: u8> FlashConfig for SingleFlashConfig<'a, F, ERASE_VALUE>
impl<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8> Flash for BootFlash<'a, F, BLOCK_SIZE, ERASE_VALUE>
where
F: NorFlash + ReadNorFlash,
{
const BLOCK_SIZE: usize = F::ERASE_SIZE;
const BLOCK_SIZE: usize = BLOCK_SIZE;
const ERASE_VALUE: u8 = ERASE_VALUE;
type FLASH = F;
fn flash(&mut self) -> &mut F {
self.flash
}
impl<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8> ErrorType for BootFlash<'a, F, BLOCK_SIZE, ERASE_VALUE>
where
F: ReadNorFlash + NorFlash,
{
type Error = F::Error;
}
impl<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8> NorFlash for BootFlash<'a, F, BLOCK_SIZE, ERASE_VALUE>
where
F: ReadNorFlash + NorFlash,
{
const WRITE_SIZE: usize = F::WRITE_SIZE;
const ERASE_SIZE: usize = F::ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
F::erase(self.flash, from, to)
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
F::write(self.flash, offset, bytes)
}
}
/// Convenience provider that uses a single flash for everything
pub struct MultiFlashProvider<'a, ACTIVE, STATE, DFU>
impl<'a, F, const BLOCK_SIZE: usize, const ERASE_VALUE: u8> ReadNorFlash for BootFlash<'a, F, BLOCK_SIZE, ERASE_VALUE>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
F: ReadNorFlash + NorFlash,
{
active: SingleFlashConfig<'a, ACTIVE>,
state: SingleFlashConfig<'a, STATE>,
dfu: SingleFlashConfig<'a, DFU>,
const READ_SIZE: usize = F::READ_SIZE;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
F::read(self.flash, offset, bytes)
}
fn capacity(&self) -> usize {
F::capacity(self.flash)
}
}
impl<'a, ACTIVE, STATE, DFU> MultiFlashProvider<'a, ACTIVE, STATE, DFU>
/// Convenience flash provider that uses separate flash instances for each partition.
pub struct MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
active: &'a mut ACTIVE,
state: &'a mut STATE,
dfu: &'a mut DFU,
}
impl<'a, ACTIVE, STATE, DFU> MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
/// Create a new flash provider with separate configuration for all three partitions.
pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self {
Self {
active: SingleFlashConfig { flash: active },
state: SingleFlashConfig { flash: state },
dfu: SingleFlashConfig { flash: dfu },
}
Self { active, state, dfu }
}
}
impl<'a, ACTIVE, STATE, DFU> FlashProvider for MultiFlashProvider<'a, ACTIVE, STATE, DFU>
impl<'a, ACTIVE, STATE, DFU> FlashConfig for MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash + ReadNorFlash,
STATE: NorFlash + ReadNorFlash,
DFU: NorFlash + ReadNorFlash,
ACTIVE: Flash,
STATE: Flash,
DFU: Flash,
{
type STATE = SingleFlashConfig<'a, STATE>;
type ACTIVE = SingleFlashConfig<'a, ACTIVE>;
type DFU = SingleFlashConfig<'a, DFU>;
type STATE = STATE;
type ACTIVE = ACTIVE;
type DFU = DFU;
fn active(&mut self) -> &mut Self::ACTIVE {
&mut self.active
self.active
}
fn dfu(&mut self) -> &mut Self::DFU {
&mut self.dfu
self.dfu
}
fn state(&mut self) -> &mut Self::STATE {
&mut self.state
self.state
}
}
@ -518,10 +564,6 @@ pub struct FirmwareUpdater {
dfu: Partition,
}
// NOTE: Aligned to the largest write size supported by flash
#[repr(align(32))]
pub struct Aligned<const N: usize>([u8; N]);
impl Default for FirmwareUpdater {
fn default() -> Self {
extern "C" {
@ -551,6 +593,7 @@ impl Default for FirmwareUpdater {
}
impl FirmwareUpdater {
/// Create a firmware updater instance with partition ranges for the update and state partitions.
pub const fn new(dfu: Partition, state: Partition) -> Self {
Self { dfu, state }
}
@ -560,23 +603,24 @@ impl FirmwareUpdater {
self.dfu.len()
}
/// Instruct bootloader that DFU should commence at next boot.
/// Must be provided with an aligned buffer to use for reading and writing magic;
pub async fn update<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error>
where
[(); F::WRITE_SIZE]:,
{
let mut aligned = Aligned([0; { F::WRITE_SIZE }]);
self.set_magic(&mut aligned.0, SWAP_MAGIC, flash).await
/// Mark to trigger firmware swap on next boot.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub async fn mark_updated<F: AsyncNorFlash>(&mut self, flash: &mut F, aligned: &mut [u8]) -> Result<(), F::Error> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic(aligned, SWAP_MAGIC, flash).await
}
/// Mark firmware boot successfully
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error>
where
[(); F::WRITE_SIZE]:,
{
let mut aligned = Aligned([0; { F::WRITE_SIZE }]);
self.set_magic(&mut aligned.0, BOOT_MAGIC, flash).await
/// Mark firmware boot successful and stop rollback on reset.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F, aligned: &mut [u8]) -> Result<(), F::Error> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic(aligned, BOOT_MAGIC, flash).await
}
async fn set_magic<F: AsyncNorFlash>(
@ -587,7 +631,7 @@ impl FirmwareUpdater {
) -> Result<(), F::Error> {
flash.read(self.state.from as u32, aligned).await?;
if aligned.iter().find(|&&b| b != magic).is_some() {
if aligned.iter().any(|&b| b != magic) {
aligned.fill(0);
flash.write(self.state.from as u32, aligned).await?;
@ -599,7 +643,13 @@ impl FirmwareUpdater {
Ok(())
}
// Write to a region of the DFU page
/// Write data to a flash page.
///
/// The buffer must follow alignment requirements of the target flash and a multiple of page size big.
///
/// # Safety
///
/// Failing to meet alignment and size requirements may result in a panic.
pub async fn write_firmware<F: AsyncNorFlash>(
&mut self,
offset: usize,
@ -668,7 +718,7 @@ mod tests {
#[test]
fn test_bad_magic() {
let mut flash = MemFlash([0xff; 131072]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut flash = SingleFlashConfig::new(&mut flash);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
@ -687,11 +737,16 @@ mod tests {
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut flash = SingleFlashConfig::new(&mut flash);
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Boot,
bootloader.prepare_boot(&mut flash, &mut magic, &mut page).unwrap()
);
}
#[test]
@ -703,24 +758,27 @@ mod tests {
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
let mut aligned = [0; 4];
for i in ACTIVE.from..ACTIVE.to {
flash.0[i] = original[i - ACTIVE.from];
}
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, &chunk, &mut flash, 4096)).unwrap();
block_on(updater.write_firmware(offset, chunk, &mut flash, 4096)).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut flash)).unwrap();
block_on(updater.mark_updated(&mut flash, &mut aligned)).unwrap();
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
@ -737,7 +795,7 @@ mod tests {
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
@ -751,11 +809,11 @@ mod tests {
}
// Mark as booted
block_on(updater.mark_booted(&mut flash)).unwrap();
block_on(updater.mark_booted(&mut flash, &mut aligned)).unwrap();
assert_eq!(
State::Boot,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
}
@ -769,6 +827,7 @@ mod tests {
let mut active = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 2048, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let mut aligned = [0; 4];
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
@ -781,16 +840,23 @@ mod tests {
let mut offset = 0;
for chunk in update.chunks(2048) {
block_on(updater.write_firmware(offset, &chunk, &mut dfu, chunk.len())).unwrap();
block_on(updater.write_firmware(offset, chunk, &mut dfu, chunk.len())).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut state)).unwrap();
block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap();
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut magic = [0; 4];
let mut page = [0; 4096];
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut MultiFlashProvider::new(&mut active, &mut state, &mut dfu,))
.prepare_boot(
&mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu),
&mut magic,
&mut page
)
.unwrap()
);
@ -810,6 +876,7 @@ mod tests {
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut aligned = [0; 4];
let mut active = MemFlash::<16384, 2048, 4>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
@ -825,16 +892,22 @@ mod tests {
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, &chunk, &mut dfu, chunk.len())).unwrap();
block_on(updater.write_firmware(offset, chunk, &mut dfu, chunk.len())).unwrap();
offset += chunk.len();
}
block_on(updater.update(&mut state)).unwrap();
block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap();
let mut bootloader: BootLoader<4096> = BootLoader::new(ACTIVE, DFU, STATE);
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut MultiFlashProvider::new(&mut active, &mut state, &mut dfu,))
.prepare_boot(
&mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu,),
&mut magic,
&mut page
)
.unwrap()
);
@ -899,6 +972,13 @@ mod tests {
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> super::Flash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const BLOCK_SIZE: usize = ERASE_SIZE;
const ERASE_VALUE: u8 = 0xFF;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{

View File

@ -1,19 +1,21 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
#![allow(incomplete_features)]
#![feature(generic_const_exprs)]
#![warn(missing_docs)]
#![doc = include_str!("../../README.md")]
mod fmt;
pub use embassy_boot::{FirmwareUpdater, FlashConfig, FlashProvider, Partition, SingleFlashProvider};
pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig};
use embassy_nrf::nvmc::{Nvmc, PAGE_SIZE};
use embassy_nrf::peripherals::WDT;
use embassy_nrf::wdt;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
/// A bootloader for nRF devices.
pub struct BootLoader {
boot: embassy_boot::BootLoader<PAGE_SIZE>,
boot: embassy_boot::BootLoader,
magic: AlignedBuffer<4>,
page: AlignedBuffer<PAGE_SIZE>,
}
impl BootLoader {
@ -58,21 +60,25 @@ impl BootLoader {
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self {
boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; 4]),
page: AlignedBuffer([0; PAGE_SIZE]),
}
}
/// Boots the application without softdevice mechanisms
pub fn prepare<F: FlashProvider>(&mut self, flash: &mut F) -> usize
where
[(); <<F as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
[(); <<F as FlashProvider>::ACTIVE as FlashConfig>::FLASH::ERASE_SIZE]:,
{
match self.boot.prepare_boot(flash) {
/// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, &mut self.magic.0, &mut self.page.0) {
Ok(_) => self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"),
}
}
/// Boots the application without softdevice mechanisms.
///
/// # Safety
///
/// This modifies the stack pointer and reset vector and will run code placed in the active partition.
#[cfg(not(feature = "softdevice"))]
pub unsafe fn load(&mut self, start: usize) -> ! {
let mut p = cortex_m::Peripherals::steal();
@ -81,6 +87,11 @@ impl BootLoader {
cortex_m::asm::bootload(start as *const u32)
}
/// Boots the application assuming softdevice is present.
///
/// # Safety
///
/// This modifies the stack pointer and reset vector and will run code placed in the active partition.
#[cfg(feature = "softdevice")]
pub unsafe fn load(&mut self, _app: usize) -> ! {
use nrf_softdevice_mbr as mbr;

View File

@ -1,19 +1,20 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
#![allow(incomplete_features)]
#![feature(generic_const_exprs)]
#![warn(missing_docs)]
#![doc = include_str!("../../README.md")]
mod fmt;
pub use embassy_boot::{FirmwareUpdater, FlashConfig, FlashProvider, Partition, SingleFlashProvider, State};
use embedded_storage::nor_flash::NorFlash;
pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig, State};
pub struct BootLoader<const PAGE_SIZE: usize> {
boot: embassy_boot::BootLoader<PAGE_SIZE>,
/// A bootloader for STM32 devices.
pub struct BootLoader<const PAGE_SIZE: usize, const WRITE_SIZE: usize> {
boot: embassy_boot::BootLoader,
magic: AlignedBuffer<WRITE_SIZE>,
page: AlignedBuffer<PAGE_SIZE>,
}
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
impl<const PAGE_SIZE: usize, const WRITE_SIZE: usize> BootLoader<PAGE_SIZE, WRITE_SIZE> {
/// Create a new bootloader instance using parameters from linker script
pub fn default() -> Self {
extern "C" {
@ -55,21 +56,25 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self {
boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; WRITE_SIZE]),
page: AlignedBuffer([0; PAGE_SIZE]),
}
}
/// Boots the application
pub fn prepare<F: FlashProvider>(&mut self, flash: &mut F) -> usize
where
[(); <<F as FlashProvider>::STATE as FlashConfig>::FLASH::WRITE_SIZE]:,
[(); <<F as FlashProvider>::ACTIVE as FlashConfig>::FLASH::ERASE_SIZE]:,
{
match self.boot.prepare_boot(flash) {
/// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, self.magic.as_mut(), self.page.as_mut()) {
Ok(_) => embassy_stm32::flash::FLASH_BASE + self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"),
}
}
/// Boots the application.
///
/// # Safety
///
/// This modifies the stack pointer and reset vector and will run code placed in the active partition.
pub unsafe fn load(&mut self, start: usize) -> ! {
trace!("Loading app at 0x{:x}", start);
#[allow(unused_mut)]

View File

@ -36,7 +36,8 @@ async fn main(_spawner: Spawner) {
updater.write_firmware(offset, &buf, &mut nvmc, 4096).await.unwrap();
offset += chunk.len();
}
updater.update(&mut nvmc).await.unwrap();
let mut magic = [0; 4];
updater.mark_updated(&mut nvmc, &mut magic).await.unwrap();
led.set_high();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use panic_reset as _;
@ -35,7 +35,8 @@ async fn main(_spawner: Spawner) {
updater.write_firmware(offset, &buf, &mut flash, 2048).await.unwrap();
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use panic_reset as _;
@ -35,7 +35,8 @@ async fn main(_spawner: Spawner) {
updater.write_firmware(offset, &buf, &mut flash, 2048).await.unwrap();
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -4,7 +4,7 @@ name = "embassy-boot-stm32h7-examples"
version = "0.1.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-32768hz"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32h743zi", "time-driver-any", "exti"] }

View File

@ -1,8 +1,9 @@
#!/bin/bash
probe-rs-cli erase --chip STM32H743ZITx
mv ../../bootloader/stm32/memory.x ../../bootloader/stm32/memory-old.x
cp memory-bl.x ../../bootloader/stm32/memory.x
cargo flash --manifest-path ../../bootloader/stm32/Cargo.toml --release --features embassy-stm32/stm32f767zi --chip STM32F767ZITx --target thumbv7em-none-eabihf
cargo flash --manifest-path ../../bootloader/stm32/Cargo.toml --release --features embassy-stm32/stm32h743zi --chip STM32H743ZITx --target thumbv7em-none-eabihf
rm ../../bootloader/stm32/memory.x
mv ../../bootloader/stm32/memory-old.x ../../bootloader/stm32/memory.x

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use panic_reset as _;
@ -29,13 +29,17 @@ async fn main(_spawner: Spawner) {
let mut updater = FirmwareUpdater::default();
button.wait_for_rising_edge().await;
let mut offset = 0;
let mut buf: [u8; 128 * 1024] = [0; 128 * 1024];
let mut buf = AlignedBuffer([0; 128 * 1024]);
for chunk in APP_B.chunks(128 * 1024) {
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(offset, &buf, &mut flash, 2048).await.unwrap();
buf.as_mut()[..chunk.len()].copy_from_slice(chunk);
updater
.write_firmware(offset, buf.as_ref(), &mut flash, 2048)
.await
.unwrap();
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use embassy_time::{Duration, Timer};
use panic_reset as _;
@ -38,7 +38,8 @@ async fn main(_spawner: Spawner) {
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
Timer::after(Duration::from_secs(1)).await;
cortex_m::peripheral::SCB::sys_reset();

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use embassy_time::{Duration, Timer};
use panic_reset as _;
@ -38,7 +38,8 @@ async fn main(_spawner: Spawner) {
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
Timer::after(Duration::from_secs(1)).await;
cortex_m::peripheral::SCB::sys_reset();

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use panic_reset as _;
@ -35,7 +35,8 @@ async fn main(_spawner: Spawner) {
updater.write_firmware(offset, &buf, &mut flash, 2048).await.unwrap();
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -4,11 +4,11 @@
#[cfg(feature = "defmt-rtt")]
use defmt_rtt::*;
use embassy_boot_stm32::FirmwareUpdater;
use embassy_boot_stm32::{AlignedBuffer, FirmwareUpdater};
use embassy_embedded_hal::adapter::BlockingAsync;
use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_stm32::flash::Flash;
use embassy_stm32::flash::{Flash, WRITE_SIZE};
use embassy_stm32::gpio::{Input, Level, Output, Pull, Speed};
use panic_reset as _;
@ -37,7 +37,8 @@ async fn main(_spawner: Spawner) {
updater.write_firmware(offset, &buf, &mut flash, 2048).await.unwrap();
offset += chunk.len();
}
updater.update(&mut flash).await.unwrap();
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
updater.mark_updated(&mut flash, magic.as_mut()).await.unwrap();
//defmt::info!("Marked as updated");
led.set_low();
cortex_m::peripheral::SCB::sys_reset();

View File

@ -20,10 +20,8 @@ fn main() -> ! {
*/
let mut bl = BootLoader::default();
let start = bl.prepare(&mut SingleFlashProvider::new(&mut WatchdogFlash::start(
Nvmc::new(p.NVMC),
p.WDT,
5,
let start = bl.prepare(&mut SingleFlashConfig::new(&mut BootFlash::<_, 4096>::new(
&mut WatchdogFlash::start(Nvmc::new(p.NVMC), p.WDT, 5),
)));
unsafe { bl.load(start) }
}

View File

@ -5,7 +5,7 @@ use cortex_m_rt::{entry, exception};
#[cfg(feature = "defmt")]
use defmt_rtt as _;
use embassy_boot_stm32::*;
use embassy_stm32::flash::{Flash, ERASE_SIZE};
use embassy_stm32::flash::{Flash, ERASE_SIZE, ERASE_VALUE, WRITE_SIZE};
#[entry]
fn main() -> ! {
@ -19,9 +19,11 @@ fn main() -> ! {
}
*/
let mut bl: BootLoader<ERASE_SIZE> = BootLoader::default();
let mut bl: BootLoader<ERASE_SIZE, WRITE_SIZE> = BootLoader::default();
let mut flash = Flash::unlock(p.FLASH);
let start = bl.prepare(&mut SingleFlashProvider::new(&mut flash));
let start = bl.prepare(&mut SingleFlashConfig::new(
&mut BootFlash::<_, ERASE_SIZE, ERASE_VALUE>::new(&mut flash),
));
core::mem::drop(flash);
unsafe { bl.load(start) }
}