stm32/i2c: implement async i2c v1.

This commit is contained in:
Barnaby Walters 2023-11-20 01:29:02 +01:00 committed by Dario Nieuwenhuis
parent bc65b8f7ec
commit 3efc3eee57
3 changed files with 578 additions and 23 deletions

View File

@ -1,10 +1,14 @@
use core::future::poll_fn;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig; use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_hal_internal::{into_ref, PeripheralRef};
use super::*; use super::*;
use crate::dma::NoDma; use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType; use crate::gpio::sealed::AFType;
use crate::gpio::Pull; use crate::gpio::Pull;
use crate::interrupt::typelevel::Interrupt; use crate::interrupt::typelevel::Interrupt;
@ -13,7 +17,17 @@ use crate::time::Hertz;
use crate::{interrupt, Peripheral}; use crate::{interrupt, Peripheral};
pub unsafe fn on_interrupt<T: Instance>() { pub unsafe fn on_interrupt<T: Instance>() {
// todo let regs = T::regs();
// i2c v2 only woke the task on transfer complete interrupts. v1 uses interrupts for a bunch of
// other stuff, so we wake the task on every interrupt.
T::state().waker.wake();
critical_section::with(|_| {
// Clear event interrupt flag.
regs.cr2().modify(|w| {
w.set_itevten(false);
w.set_iterren(false);
});
});
} }
#[non_exhaustive] #[non_exhaustive]
@ -98,40 +112,58 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> { fn check_and_clear_error_flags() -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are // Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed. // cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read(); let sr1 = T::regs().sr1().read();
if sr1.timeout() { if sr1.timeout() {
T::regs().sr1().modify(|reg| reg.set_timeout(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_timeout(false);
});
return Err(Error::Timeout); return Err(Error::Timeout);
} }
if sr1.pecerr() { if sr1.pecerr() {
T::regs().sr1().modify(|reg| reg.set_pecerr(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_pecerr(false);
});
return Err(Error::Crc); return Err(Error::Crc);
} }
if sr1.ovr() { if sr1.ovr() {
T::regs().sr1().modify(|reg| reg.set_ovr(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_ovr(false);
});
return Err(Error::Overrun); return Err(Error::Overrun);
} }
if sr1.af() { if sr1.af() {
T::regs().sr1().modify(|reg| reg.set_af(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_af(false);
});
return Err(Error::Nack); return Err(Error::Nack);
} }
if sr1.arlo() { if sr1.arlo() {
T::regs().sr1().modify(|reg| reg.set_arlo(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_arlo(false);
});
return Err(Error::Arbitration); return Err(Error::Arbitration);
} }
// The errata indicates that BERR may be incorrectly detected. It recommends ignoring and // The errata indicates that BERR may be incorrectly detected. It recommends ignoring and
// clearing the BERR bit instead. // clearing the BERR bit instead.
if sr1.berr() { if sr1.berr() {
T::regs().sr1().modify(|reg| reg.set_berr(false)); T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_berr(false);
});
} }
Ok(sr1) Ok(sr1)
@ -150,13 +182,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}); });
// Wait until START condition was generated // Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() { while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?; check_timeout()?;
} }
// Also wait until signalled we're master and everything is waiting for us // Also wait until signalled we're master and everything is waiting for us
while { while {
self.check_and_clear_error_flags()?; Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read(); let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy() !sr2.msl() && !sr2.busy()
@ -170,7 +202,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent // Wait until address was sent
// Wait for the address to be acknowledged // Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set. // Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !self.check_and_clear_error_flags()?.addr() { while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?; check_timeout()?;
} }
@ -190,7 +222,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we're ready for sending // Wait until we're ready for sending
while { while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set. // Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
!self.check_and_clear_error_flags()?.txe() !Self::check_and_clear_error_flags()?.txe()
} { } {
check_timeout()?; check_timeout()?;
} }
@ -201,7 +233,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until byte is transferred // Wait until byte is transferred
while { while {
// Check for any potential error conditions. // Check for any potential error conditions.
!self.check_and_clear_error_flags()?.btf() !Self::check_and_clear_error_flags()?.btf()
} { } {
check_timeout()?; check_timeout()?;
} }
@ -212,7 +244,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> { fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while { while {
// Check for any potential error conditions. // Check for any potential error conditions.
self.check_and_clear_error_flags()?; Self::check_and_clear_error_flags()?;
!T::regs().sr1().read().rxne() !T::regs().sr1().read().rxne()
} { } {
@ -237,7 +269,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}); });
// Wait until START condition was generated // Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() { while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?; check_timeout()?;
} }
@ -254,7 +286,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent // Wait until address was sent
// Wait for the address to be acknowledged // Wait for the address to be acknowledged
while !self.check_and_clear_error_flags()?.addr() { while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?; check_timeout()?;
} }
@ -332,26 +364,352 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Async // Async
pub async fn write(&mut self, _address: u8, _write: &[u8]) -> Result<(), Error> #[inline] // pretty sure this should always be inlined
fn enable_interrupts() -> () {
T::regs().cr2().modify(|w| {
w.set_iterren(true);
w.set_itevten(true);
});
}
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
todo!() let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state();
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr(address << 1));
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
}
});
// Wait for either the DMA transfer to successfully finish, or an I2C error to occur.
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
if send_stop {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} }
pub async fn read(&mut self, _address: u8, _buffer: &mut [u8]) -> Result<(), Error> Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, true).await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where where
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
{ {
todo!() let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Clear ADDR condition by reading SR2
T::regs().sr2().read();
// 18.3.8: When a single byte must be received: [snip] Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} else {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
})
} }
pub async fn write_read(&mut self, _address: u8, _write: &[u8], _read: &mut [u8]) -> Result<(), Error> // Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
}
});
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// Wait for the STOP to be sent (STOP bit cleared).
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where where
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
todo!() self.write_with_stop(address, write, false).await?;
self.read(address, read).await
} }
} }

View File

@ -0,0 +1,62 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 reading an A1454 hall effect sensor on I2C1
// DMA peripherals changed to compile for stm32f429zi, for the CI.
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
});
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello world!");
let p = embassy_stm32::init(Default::default());
let mut i2c = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
loop {
let a1454_read_sensor_command = [0x1F];
let mut sensor_data_buffer: [u8; 4] = [0, 0, 0, 0];
match i2c
.write_read(ADDRESS, &a1454_read_sensor_command, &mut sensor_data_buffer)
.await
{
Ok(()) => {
// Convert 12-bit signed integer into 16-bit signed integer.
// Is the 12 bit number negative?
if (sensor_data_buffer[2] & 0b00001000) == 0b0001000 {
sensor_data_buffer[2] = sensor_data_buffer[2] | 0b11110000;
}
let mut sensor_value_raw: u16 = sensor_data_buffer[3].into();
sensor_value_raw |= (sensor_data_buffer[2] as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
info!("Data: {}", sensor_value);
}
Err(e) => error!("I2C Error during read: {:?}", e),
}
}
}

View File

@ -0,0 +1,135 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 with three A1454 hall effect sensors, connected to I2C1, 2 and 3
// on the pins referenced in the peripheral definitions.
// Pins and DMA peripherals changed to compile for stm32f429zi, to work with the CI.
// MUST be compiled in release mode to see actual performance, otherwise the async transactions take 2x
// as long to complete as the blocking ones!
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use embassy_time::Instant;
use futures::future::try_join3;
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
});
/// Convert 12-bit signed integer within a 4 byte long buffer into 16-bit signed integer.
fn a1454_buf_to_i16(buffer: &[u8; 4]) -> i16 {
let lower = buffer[3];
let mut upper = buffer[2];
// Fill in additional 1s if the 12 bit number is negative.
if (upper & 0b00001000) == 0b0001000 {
upper = upper | 0b11110000;
}
let mut sensor_value_raw: u16 = lower.into();
sensor_value_raw |= (upper as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
sensor_value
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Setting up peripherals.");
let p = embassy_stm32::init(Default::default());
let mut i2c1 = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
let mut i2c2 = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
Irqs,
p.DMA1_CH7,
p.DMA1_CH3,
Hertz(100_000),
Default::default(),
);
let mut i2c3 = I2c::new(
p.I2C3,
p.PA8,
p.PC9,
Irqs,
p.DMA1_CH4,
p.DMA1_CH2,
Hertz(100_000),
Default::default(),
);
let a1454_read_sensor_command = [0x1F];
let mut i2c1_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c2_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c3_buffer: [u8; 4] = [0, 0, 0, 0];
loop {
// Blocking reads one after the other. Completes in about 2000us.
let blocking_read_start_us = Instant::now().as_micros();
match i2c1.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c2.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c3.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
let blocking_read_total_us = Instant::now().as_micros() - blocking_read_start_us;
info!(
"Blocking reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
blocking_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
// Async reads overlapping. Completes in about 1000us.
let async_read_start_us = Instant::now().as_micros();
let i2c1_result = i2c1.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer);
let i2c2_result = i2c2.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer);
let i2c3_result = i2c3.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer);
// Wait for all three transactions to finish, or any one of them to fail.
match try_join3(i2c1_result, i2c2_result, i2c3_result).await {
Ok(_) => {
let async_read_total_us = Instant::now().as_micros() - async_read_start_us;
info!(
"Async reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
async_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
}
Err(e) => error!("I2C Error during async write-read: {}", e),
};
}
}