Add Executor with timer queue, Timer, Instant, Duration, Alarm.

This commit is contained in:
Dario Nieuwenhuis 2020-09-25 03:25:06 +02:00
parent 05ca563e7d
commit 4333105341
11 changed files with 416 additions and 86 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
/target /target
Cargo.lock Cargo.lock
third_party

View File

@ -6,11 +6,16 @@ members = [
"examples", "examples",
] ]
exclude = [
"third_party"
]
[patch.crates-io] [patch.crates-io]
panic-probe = { git = "https://github.com/knurling-rs/probe-run", branch="main" } panic-probe = { git = "https://github.com/knurling-rs/probe-run", branch="main" }
defmt-rtt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" } defmt-rtt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" }
defmt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" } defmt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" }
static-executor = { git = "https://github.com/Dirbaio/static-executor", branch="multi"} static-executor = { git = "https://github.com/Dirbaio/static-executor", branch="multi"}
futures-intrusive = { git = "https://github.com/Dirbaio/futures-intrusive", branch="master"}
[profile.dev] [profile.dev]
codegen-units = 1 codegen-units = 1

View File

@ -1,8 +1,6 @@
use core::cell::Cell; use core::cell::Cell;
use core::ops::Deref; use core::ops::Deref;
use core::sync::atomic::{AtomicU32, Ordering}; use core::sync::atomic::{AtomicU32, Ordering};
use defmt::trace;
use embassy::clock::Monotonic;
use crate::interrupt; use crate::interrupt;
use crate::interrupt::Mutex; use crate::interrupt::Mutex;
@ -86,22 +84,25 @@ impl<T: Instance> RTC<T> {
interrupt::enable(T::INTERRUPT); interrupt::enable(T::INTERRUPT);
} }
pub fn now(&self) -> u64 {
let counter = self.rtc.counter.read().bits();
let period = self.period.load(Ordering::Relaxed);
calc_now(period, counter)
}
fn on_interrupt(&self) { fn on_interrupt(&self) {
if self.rtc.events_ovrflw.read().bits() == 1 { if self.rtc.events_ovrflw.read().bits() == 1 {
self.rtc.events_ovrflw.write(|w| w); self.rtc.events_ovrflw.write(|w| w);
trace!("rtc overflow");
self.next_period(); self.next_period();
} }
if self.rtc.events_compare[0].read().bits() == 1 { if self.rtc.events_compare[0].read().bits() == 1 {
self.rtc.events_compare[0].write(|w| w); self.rtc.events_compare[0].write(|w| w);
trace!("rtc compare0");
self.next_period(); self.next_period();
} }
if self.rtc.events_compare[1].read().bits() == 1 { if self.rtc.events_compare[1].read().bits() == 1 {
self.rtc.events_compare[1].write(|w| w); self.rtc.events_compare[1].write(|w| w);
trace!("rtc compare1");
self.trigger_alarm(); self.trigger_alarm();
} }
} }
@ -162,26 +163,28 @@ impl<T: Instance> RTC<T> {
} }
}) })
} }
pub fn alarm0(&'static self) -> Alarm<T> {
Alarm { rtc: self }
}
} }
impl<T: Instance> Monotonic for RTC<T> { pub struct Alarm<T: Instance> {
fn now(&self) -> u64 { rtc: &'static RTC<T>,
let counter = self.rtc.counter.read().bits(); }
let period = self.period.load(Ordering::Relaxed);
calc_now(period, counter) impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set(&self, timestamp: u64, callback: fn()) {
self.rtc.do_set_alarm(timestamp, Some(callback));
} }
fn set_alarm(&self, timestamp: u64, callback: fn()) { fn clear(&self) {
self.do_set_alarm(timestamp, Some(callback)); self.rtc.do_set_alarm(u64::MAX, None);
}
fn clear_alarm(&self) {
self.do_set_alarm(u64::MAX, None);
} }
} }
/// Implemented by all RTC instances. /// Implemented by all RTC instances.
pub trait Instance: Deref<Target = rtc0::RegisterBlock> + Sized { pub trait Instance: Deref<Target = rtc0::RegisterBlock> + Sized + 'static {
/// The interrupt associated with this RTC instance. /// The interrupt associated with this RTC instance.
const INTERRUPT: Interrupt; const INTERRUPT: Interrupt;

View File

@ -13,3 +13,4 @@ cortex-m = "0.6.3"
futures = { version = "0.3.5", default-features = false, features = [ "async-await" ] } futures = { version = "0.3.5", default-features = false, features = [ "async-await" ] }
pin-project = { version = "0.4.23", default-features = false } pin-project = { version = "0.4.23", default-features = false }
futures-intrusive = { version = "0.3.1", default-features = false } futures-intrusive = { version = "0.3.1", default-features = false }
static-executor = { version = "0.1.0", features=["defmt"]}

View File

@ -1,21 +0,0 @@
/// Monotonic clock with support for setting an alarm.
///
/// The clock uses a "tick" time unit, whose length is an implementation-dependent constant.
pub trait Monotonic {
/// Returns the current timestamp in ticks.
/// This is guaranteed to be monotonic, i.e. a call to now() will always return
/// a greater or equal value than earler calls.
fn now(&self) -> u64;
/// Sets an alarm at the given timestamp. When the clock reaches that
/// timestamp, the provided callback funcion will be called.
///
/// When callback is called, it is guaranteed that now() will return a value greater or equal than timestamp.
///
/// Only one alarm can be active at a time. This overwrites any previously-set alarm if any.
fn set_alarm(&self, timestamp: u64, callback: fn());
/// Clears the previously-set alarm.
/// If no alarm was set, this is a noop.
fn clear_alarm(&self);
}

72
embassy/src/executor.rs Normal file
View File

@ -0,0 +1,72 @@
use core::marker::PhantomData;
use static_executor as se;
use crate::time;
use crate::time::Alarm;
pub use se::{task, SpawnError, SpawnToken};
pub trait Model {
fn signal();
}
pub struct WfeModel;
impl Model for WfeModel {
fn signal() {
cortex_m::asm::sev()
}
}
pub struct Executor<M, A: Alarm> {
inner: se::Executor,
alarm: A,
timer: time::TimerService,
_phantom: PhantomData<M>,
}
impl<M: Model, A: Alarm> Executor<M, A> {
pub fn new(alarm: A) -> Self {
Self {
inner: se::Executor::new(M::signal),
alarm,
timer: time::TimerService::new(time::IntrusiveClock),
_phantom: PhantomData,
}
}
/// Spawn a future on this executor.
///
/// safety: can only be called from the executor thread
pub unsafe fn spawn(&'static self, token: SpawnToken) -> Result<(), SpawnError> {
self.inner.spawn(token)
}
/// Runs the executor until the queue is empty.
///
/// safety: can only be called from the executor thread
pub unsafe fn run_once(&'static self) {
time::with_timer_service(&self.timer, || {
self.timer.check_expirations();
self.inner.run();
match self.timer.next_expiration() {
// If this is in the past, set_alarm will immediately trigger the alarm,
// which will make the wfe immediately return so we do another loop iteration.
Some(at) => self.alarm.set(at, M::signal),
None => self.alarm.clear(),
}
})
}
}
impl<A: Alarm> Executor<WfeModel, A> {
/// Runs the executor forever
/// safety: can only be called from the executor thread
pub unsafe fn run(&'static self) -> ! {
loop {
self.run_once();
cortex_m::asm::wfe()
}
}
}

View File

@ -3,7 +3,8 @@
#![feature(generic_associated_types)] #![feature(generic_associated_types)]
#![feature(const_fn)] #![feature(const_fn)]
pub mod clock; pub mod executor;
pub mod flash; pub mod flash;
pub mod io; pub mod io;
pub mod time;
pub mod util; pub mod util;

287
embassy/src/time.rs Normal file
View File

@ -0,0 +1,287 @@
use core::cell::Cell;
use core::convert::TryInto;
use core::future::Future;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{AtomicPtr, Ordering};
use core::task::{Context, Poll};
use fi::LocalTimer;
use futures_intrusive::timer as fi;
static mut CLOCK: fn() -> u64 = clock_not_set;
fn clock_not_set() -> u64 {
panic!("No clock set. You must call embassy::time::set_clock() before trying to use the clock")
}
pub unsafe fn set_clock(clock: fn() -> u64) {
CLOCK = clock;
}
fn now() -> u64 {
unsafe { CLOCK() }
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Instant {
ticks: u64,
}
impl Instant {
pub fn now() -> Instant {
Instant { ticks: now() }
}
pub fn into_ticks(&self) -> u64 {
self.ticks
}
pub fn duration_since(&self, earlier: Instant) -> Duration {
Duration {
ticks: (self.ticks - earlier.ticks).try_into().unwrap(),
}
}
pub fn checked_duration_since(&self, earlier: Instant) -> Option<Duration> {
if self.ticks < earlier.ticks {
None
} else {
Some(Duration {
ticks: (self.ticks - earlier.ticks).try_into().unwrap(),
})
}
}
pub fn saturating_duration_since(&self, earlier: Instant) -> Duration {
Duration {
ticks: if self.ticks < earlier.ticks {
0
} else {
(self.ticks - earlier.ticks).try_into().unwrap()
},
}
}
pub fn elapsed(&self) -> Duration {
Instant::now() - *self
}
pub fn checked_add(&self, duration: Duration) -> Option<Instant> {
self.ticks
.checked_add(duration.ticks.into())
.map(|ticks| Instant { ticks })
}
pub fn checked_sub(&self, duration: Duration) -> Option<Instant> {
self.ticks
.checked_sub(duration.ticks.into())
.map(|ticks| Instant { ticks })
}
}
impl Add<Duration> for Instant {
type Output = Instant;
fn add(self, other: Duration) -> Instant {
self.checked_add(other)
.expect("overflow when adding duration to instant")
}
}
impl AddAssign<Duration> for Instant {
fn add_assign(&mut self, other: Duration) {
*self = *self + other;
}
}
impl Sub<Duration> for Instant {
type Output = Instant;
fn sub(self, other: Duration) -> Instant {
self.checked_sub(other)
.expect("overflow when subtracting duration from instant")
}
}
impl SubAssign<Duration> for Instant {
fn sub_assign(&mut self, other: Duration) {
*self = *self - other;
}
}
impl Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, other: Instant) -> Duration {
self.duration_since(other)
}
}
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Duration {
ticks: u32,
}
impl Duration {
pub const fn from_ticks(ticks: u32) -> Duration {
Duration { ticks }
}
pub fn checked_add(self, rhs: Duration) -> Option<Duration> {
self.ticks
.checked_add(rhs.ticks)
.map(|ticks| Duration { ticks })
}
pub fn checked_sub(self, rhs: Duration) -> Option<Duration> {
self.ticks
.checked_sub(rhs.ticks)
.map(|ticks| Duration { ticks })
}
pub fn checked_mul(self, rhs: u32) -> Option<Duration> {
self.ticks.checked_mul(rhs).map(|ticks| Duration { ticks })
}
pub fn checked_div(self, rhs: u32) -> Option<Duration> {
self.ticks.checked_div(rhs).map(|ticks| Duration { ticks })
}
}
impl Add for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Duration {
self.checked_add(rhs)
.expect("overflow when adding durations")
}
}
impl AddAssign for Duration {
fn add_assign(&mut self, rhs: Duration) {
*self = *self + rhs;
}
}
impl Sub for Duration {
type Output = Duration;
fn sub(self, rhs: Duration) -> Duration {
self.checked_sub(rhs)
.expect("overflow when subtracting durations")
}
}
impl SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) {
*self = *self - rhs;
}
}
impl Mul<u32> for Duration {
type Output = Duration;
fn mul(self, rhs: u32) -> Duration {
self.checked_mul(rhs)
.expect("overflow when multiplying duration by scalar")
}
}
impl Mul<Duration> for u32 {
type Output = Duration;
fn mul(self, rhs: Duration) -> Duration {
rhs * self
}
}
impl MulAssign<u32> for Duration {
fn mul_assign(&mut self, rhs: u32) {
*self = *self * rhs;
}
}
impl Div<u32> for Duration {
type Output = Duration;
fn div(self, rhs: u32) -> Duration {
self.checked_div(rhs)
.expect("divide by zero error when dividing duration by scalar")
}
}
impl DivAssign<u32> for Duration {
fn div_assign(&mut self, rhs: u32) {
*self = *self / rhs;
}
}
pub(crate) struct IntrusiveClock;
impl fi::Clock for IntrusiveClock {
fn now(&self) -> u64 {
now()
}
}
pub(crate) type TimerService = fi::LocalTimerService<IntrusiveClock>;
static CURRENT_TIMER_SERVICE: AtomicPtr<TimerService> = AtomicPtr::new(ptr::null_mut());
pub(crate) fn with_timer_service<R>(svc: &'static TimerService, f: impl FnOnce() -> R) -> R {
let svc = svc as *const _ as *mut _;
let prev_svc = CURRENT_TIMER_SERVICE.swap(svc, Ordering::Relaxed);
let r = f();
let svc2 = CURRENT_TIMER_SERVICE.swap(prev_svc, Ordering::Relaxed);
assert_eq!(svc, svc2);
r
}
fn current_timer_service() -> &'static TimerService {
unsafe {
CURRENT_TIMER_SERVICE
.load(Ordering::Relaxed)
.as_ref()
.unwrap()
}
}
pub struct Timer {
inner: fi::LocalTimerFuture<'static>,
}
impl Timer {
pub fn at(when: Instant) -> Self {
let svc: &TimerService = current_timer_service();
Self {
inner: svc.deadline(when.into_ticks()),
}
}
pub fn after(dur: Duration) -> Self {
Self::at(Instant::now() + dur)
}
}
impl Future for Timer {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().inner) }.poll(cx)
}
}
/// Trait to register a callback at a given timestamp.
pub trait Alarm {
/// Sets an alarm at the given timestamp. When the clock reaches that
/// timestamp, the provided callback funcion will be called.
///
/// When callback is called, it is guaranteed that now() will return a value greater or equal than timestamp.
///
/// Only one alarm can be active at a time. This overwrites any previously-set alarm if any.
fn set(&self, timestamp: u64, callback: fn());
/// Clears the previously-set alarm.
/// If no alarm was set, this is a noop.
fn clear(&self);
}

View File

@ -27,5 +27,4 @@ nrf52840-hal = { version = "0.11.0" }
embassy = { version = "0.1.0", path = "../embassy" } embassy = { version = "0.1.0", path = "../embassy" }
embassy-nrf = { version = "0.1.0", path = "../embassy-nrf", features = ["defmt-trace", "52840"] } embassy-nrf = { version = "0.1.0", path = "../embassy-nrf", features = ["defmt-trace", "52840"] }
static-executor = { version = "0.1.0", features=["defmt"]} static-executor = { version = "0.1.0", features=["defmt"]}
futures = { version = "0.3.5", default-features = false } futures = { version = "0.3.5", default-features = false }
futures-intrusive = { version = "0.3.1", default-features = false }

View File

@ -8,39 +8,30 @@ use example_common::*;
use core::mem::MaybeUninit; use core::mem::MaybeUninit;
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embassy::clock::Monotonic; use embassy::executor::{task, Executor, WfeModel};
use embassy::time::{Duration, Instant, Timer};
use embassy_nrf::pac;
use embassy_nrf::rtc; use embassy_nrf::rtc;
use futures_intrusive::timer::{Clock, LocalTimer, LocalTimerService};
use nrf52840_hal::clocks; use nrf52840_hal::clocks;
use static_executor::{task, Executor};
struct RtcClock<T>(rtc::RTC<T>); #[task]
async fn run1() {
impl<T: rtc::Instance> Clock for RtcClock<T> { loop {
fn now(&self) -> u64 { info!("BIG INFREQUENT TICK");
self.0.now() Timer::after(Duration::from_ticks(64000)).await;
} }
} }
#[task] #[task]
async fn run1(rtc: &'static rtc::RTC<embassy_nrf::pac::RTC1>, timer: &'static LocalTimerService) { async fn run2() {
loop { loop {
info!("tick 1"); info!("tick");
timer.deadline(rtc.now() + 64000).await; Timer::after(Duration::from_ticks(13000)).await;
} }
} }
#[task] static mut RTC: MaybeUninit<rtc::RTC<pac::RTC1>> = MaybeUninit::uninit();
async fn run2(rtc: &'static rtc::RTC<embassy_nrf::pac::RTC1>, timer: &'static LocalTimerService) { static mut EXECUTOR: MaybeUninit<Executor<WfeModel, rtc::Alarm<pac::RTC1>>> = MaybeUninit::uninit();
loop {
info!("tick 2");
timer.deadline(rtc.now() + 23000).await;
}
}
static EXECUTOR: Executor = Executor::new(cortex_m::asm::sev);
static mut RTC: MaybeUninit<RtcClock<embassy_nrf::pac::RTC1>> = MaybeUninit::uninit();
static mut TIMER: MaybeUninit<LocalTimerService> = MaybeUninit::uninit();
#[entry] #[entry]
fn main() -> ! { fn main() -> ! {
@ -55,35 +46,23 @@ fn main() -> ! {
let rtc: &'static _ = unsafe { let rtc: &'static _ = unsafe {
let ptr = RTC.as_mut_ptr(); let ptr = RTC.as_mut_ptr();
ptr.write(RtcClock(rtc::RTC::new(p.RTC1))); ptr.write(rtc::RTC::new(p.RTC1));
&*ptr &*ptr
}; };
rtc.0.start(); rtc.start();
unsafe { embassy::time::set_clock(|| RTC.as_ptr().as_ref().unwrap().now()) };
let timer: &'static _ = unsafe { let executor: &'static _ = unsafe {
let ptr = TIMER.as_mut_ptr(); let ptr = EXECUTOR.as_mut_ptr();
ptr.write(LocalTimerService::new(rtc)); ptr.write(Executor::new(rtc.alarm0()));
&*ptr &*ptr
}; };
unsafe { unsafe {
EXECUTOR.spawn(run1(&rtc.0, timer)).dewrap(); executor.spawn(run1()).dewrap();
EXECUTOR.spawn(run2(&rtc.0, timer)).dewrap(); executor.spawn(run2()).dewrap();
loop { executor.run()
timer.check_expirations();
EXECUTOR.run();
match timer.next_expiration() {
// If this is in the past, set_alarm will immediately trigger the alarm,
// which will make the wfe immediately return so we do another loop iteration.
Some(at) => rtc.0.set_alarm(at, cortex_m::asm::sev),
None => rtc.0.clear_alarm(),
}
cortex_m::asm::wfe();
}
} }
} }

View File

@ -8,7 +8,7 @@ use example_common::*;
use core::mem::MaybeUninit; use core::mem::MaybeUninit;
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embassy::clock::Monotonic; use embassy::time::Alarm;
use embassy_nrf::rtc; use embassy_nrf::rtc;
use nrf52840_hal::clocks; use nrf52840_hal::clocks;
@ -31,8 +31,11 @@ fn main() -> ! {
&*ptr &*ptr
}; };
let alarm = rtc.alarm0();
rtc.start(); rtc.start();
rtc.set_alarm(53719, || info!("ALARM TRIGGERED"));
alarm.set(53719, || info!("ALARM TRIGGERED"));
info!("initialized!"); info!("initialized!");