eth-v2: Start Ethernet peripheral implementation

This commit is contained in:
Thales Fragoso 2021-06-07 02:30:38 -03:00 committed by Dario Nieuwenhuis
parent 6386c34079
commit 46e1bae9e3
8 changed files with 737 additions and 2 deletions

View File

@ -13,7 +13,7 @@ pub use config::DhcpConfigurator;
pub use config::{Config, Configurator, Event as ConfigEvent, StaticConfigurator}; pub use config::{Config, Configurator, Event as ConfigEvent, StaticConfigurator};
pub use device::{Device, LinkState}; pub use device::{Device, LinkState};
pub use packet_pool::{Packet, PacketBox, PacketBoxExt, PacketBuf}; pub use packet_pool::{Packet, PacketBox, PacketBoxExt, PacketBuf, MTU};
pub use stack::{init, is_config_up, is_init, is_link_up, run}; pub use stack::{init, is_config_up, is_init, is_link_up, run};
#[cfg(feature = "tcp")] #[cfg(feature = "tcp")]

View File

@ -3,12 +3,13 @@ use core::ops::{Deref, DerefMut, Range};
use atomic_pool::{pool, Box}; use atomic_pool::{pool, Box};
pub const MTU: usize = 1514; pub const MTU: usize = 1516;
pub const PACKET_POOL_SIZE: usize = 4; pub const PACKET_POOL_SIZE: usize = 4;
pool!(pub PacketPool: [Packet; PACKET_POOL_SIZE]); pool!(pub PacketPool: [Packet; PACKET_POOL_SIZE]);
pub type PacketBox = Box<PacketPool>; pub type PacketBox = Box<PacketPool>;
#[repr(align(4))]
pub struct Packet(pub [u8; MTU]); pub struct Packet(pub [u8; MTU]);
impl Packet { impl Packet {

View File

@ -10,6 +10,7 @@ embassy = { version = "0.1.0", path = "../embassy" }
embassy-macros = { version = "0.1.0", path = "../embassy-macros", features = ["stm32"] } embassy-macros = { version = "0.1.0", path = "../embassy-macros", features = ["stm32"] }
embassy-extras = {version = "0.1.0", path = "../embassy-extras" } embassy-extras = {version = "0.1.0", path = "../embassy-extras" }
embassy-traits = {version = "0.1.0", path = "../embassy-traits" } embassy-traits = {version = "0.1.0", path = "../embassy-traits" }
embassy-net = { version = "0.1.0", path = "../embassy-net", features = ["tcp", "medium-ip"] }
defmt = { version = "0.2.0", optional = true } defmt = { version = "0.2.0", optional = true }
log = { version = "0.4.11", optional = true } log = { version = "0.4.11", optional = true }
@ -24,6 +25,8 @@ critical-section = "0.2.1"
bare-metal = "1.0.0" bare-metal = "1.0.0"
atomic-polyfill = "0.1.2" atomic-polyfill = "0.1.2"
stm32-metapac = { version = "0.1.0", path = "../stm32-metapac", features = ["rt"] } stm32-metapac = { version = "0.1.0", path = "../stm32-metapac", features = ["rt"] }
vcell = "0.1.3"
cfg-if = "1.0.0" cfg-if = "1.0.0"
[build-dependencies] [build-dependencies]

View File

@ -0,0 +1,7 @@
#![macro_use]
#[cfg_attr(eth_v1, path = "v1.rs")]
#[cfg_attr(eth_v2, path = "v2/mod.rs")]
mod _version;
pub use _version::*;

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,371 @@
use core::sync::atomic::{fence, Ordering};
use embassy_net::{Packet, PacketBox, PacketBoxExt, PacketBuf};
use vcell::VolatileCell;
use crate::pac::ETH;
#[non_exhaustive]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
NoBufferAvailable,
// TODO: Break down this error into several others
TransmissionError,
}
/// Transmit and Receive Descriptor fields
#[allow(dead_code)]
mod emac_consts {
pub const EMAC_DES3_OWN: u32 = 0x8000_0000;
pub const EMAC_DES3_CTXT: u32 = 0x4000_0000;
pub const EMAC_DES3_FD: u32 = 0x2000_0000;
pub const EMAC_DES3_LD: u32 = 0x1000_0000;
pub const EMAC_DES3_ES: u32 = 0x0000_8000;
pub const EMAC_DES0_BUF1AP: u32 = 0xFFFF_FFFF;
pub const EMAC_TDES2_IOC: u32 = 0x8000_0000;
pub const EMAC_TDES2_B1L: u32 = 0x0000_3FFF;
pub const EMAC_RDES3_IOC: u32 = 0x4000_0000;
pub const EMAC_RDES3_PL: u32 = 0x0000_7FFF;
pub const EMAC_RDES3_BUF1V: u32 = 0x0100_0000;
pub const EMAC_RDES3_PKTLEN: u32 = 0x0000_7FFF;
}
use emac_consts::*;
/// Transmit Descriptor representation
///
/// * tdes0: transmit buffer address
/// * tdes1:
/// * tdes2: buffer lengths
/// * tdes3: control and payload/frame length
#[repr(C)]
struct TDes {
tdes0: VolatileCell<u32>,
tdes1: VolatileCell<u32>,
tdes2: VolatileCell<u32>,
tdes3: VolatileCell<u32>,
}
impl TDes {
pub const fn new() -> Self {
Self {
tdes0: VolatileCell::new(0),
tdes1: VolatileCell::new(0),
tdes2: VolatileCell::new(0),
tdes3: VolatileCell::new(0),
}
}
/// Return true if this TDes is not currently owned by the DMA
pub fn available(&self) -> bool {
self.tdes3.get() & EMAC_DES3_OWN == 0
}
}
pub(crate) struct TDesRing<const N: usize> {
td: [TDes; N],
buffers: [Option<PacketBuf>; N],
tdidx: usize,
}
impl<const N: usize> TDesRing<N> {
pub const fn new() -> Self {
const TDES: TDes = TDes::new();
const BUFFERS: Option<PacketBuf> = None;
Self {
td: [TDES; N],
buffers: [BUFFERS; N],
tdidx: 0,
}
}
/// Initialise this TDesRing. Assume TDesRing is corrupt
///
/// The current memory address of the buffers inside this TDesRing
/// will be stored in the descriptors, so ensure the TDesRing is
/// not moved after initialisation.
pub(crate) fn init(&mut self) {
assert!(N > 0);
for td in self.td.iter_mut() {
*td = TDes::new();
}
self.tdidx = 0;
// Initialize the pointers in the DMA engine. (There will be a memory barrier later
// before the DMA engine is enabled.)
// NOTE (unsafe) Used for atomic writes
unsafe {
let dma = ETH.ethernet_dma();
dma.dmactx_dlar()
.write(|w| w.set_tdesla(&self.td as *const _ as u32));
dma.dmactx_rlr().write(|w| w.set_tdrl((N as u16) - 1));
dma.dmactx_dtpr()
.write(|w| w.set_tdt(&self.td[0] as *const _ as u32));
}
}
/// Return true if a TDes is available for use
pub(crate) fn available(&self) -> bool {
self.td[self.tdidx].available()
}
pub(crate) fn transmit(&mut self, pkt: PacketBuf) -> Result<(), Error> {
if !self.available() {
return Err(Error::NoBufferAvailable);
}
let x = self.tdidx;
let td = &mut self.td[x];
let pkt_len = pkt.len();
assert!(pkt_len as u32 <= EMAC_TDES2_B1L);
let address = pkt.as_ptr() as u32;
// Read format
td.tdes0.set(address);
td.tdes2
.set(pkt_len as u32 & EMAC_TDES2_B1L | EMAC_TDES2_IOC);
// FD: Contains first buffer of packet
// LD: Contains last buffer of packet
// Give the DMA engine ownership
td.tdes3.set(EMAC_DES3_FD | EMAC_DES3_LD | EMAC_DES3_OWN);
self.buffers[x].replace(pkt);
// Ensure changes to the descriptor are committed before DMA engine sees tail pointer store.
// This will generate an DMB instruction.
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
// Move the tail pointer (TPR) to the next descriptor
let x = (x + 1) % N;
// NOTE(unsafe) Atomic write
unsafe {
ETH.ethernet_dma()
.dmactx_dtpr()
.write(|w| w.set_tdt(&self.td[x] as *const _ as u32));
}
self.tdidx = x;
Ok(())
}
pub(crate) fn on_interrupt(&mut self) -> Result<(), Error> {
let previous = (self.tdidx + N - 1) % N;
let td = &self.td[previous];
// DMB to ensure that we are reading an updated value, probably not needed at the hardware
// level, but this is also a hint to the compiler that we're syncing on the buffer.
fence(Ordering::SeqCst);
let tdes3 = td.tdes3.get();
if tdes3 & EMAC_DES3_OWN != 0 {
// Transmission isn't done yet, probably a receive interrupt that fired this
return Ok(());
}
assert!(tdes3 & EMAC_DES3_CTXT == 0);
// Release the buffer
self.buffers[previous].take();
if tdes3 & EMAC_DES3_ES != 0 {
Err(Error::TransmissionError)
} else {
Ok(())
}
}
}
/// Receive Descriptor representation
///
/// * rdes0: recieve buffer address
/// * rdes1:
/// * rdes2:
/// * rdes3: OWN and Status
#[repr(C)]
struct RDes {
rdes0: VolatileCell<u32>,
rdes1: VolatileCell<u32>,
rdes2: VolatileCell<u32>,
rdes3: VolatileCell<u32>,
}
impl RDes {
pub const fn new() -> Self {
Self {
rdes0: VolatileCell::new(0),
rdes1: VolatileCell::new(0),
rdes2: VolatileCell::new(0),
rdes3: VolatileCell::new(0),
}
}
/// Return true if this RDes is acceptable to us
#[inline(always)]
pub fn valid(&self) -> bool {
// Write-back descriptor is valid if:
//
// Contains first buffer of packet AND contains last buf of
// packet AND no errors AND not a context descriptor
self.rdes3.get() & (EMAC_DES3_FD | EMAC_DES3_LD | EMAC_DES3_ES | EMAC_DES3_CTXT)
== (EMAC_DES3_FD | EMAC_DES3_LD)
}
/// Return true if this RDes is not currently owned by the DMA
#[inline(always)]
pub fn available(&self) -> bool {
self.rdes3.get() & EMAC_DES3_OWN == 0 // Owned by us
}
#[inline(always)]
pub fn set_ready(&mut self, buf_addr: u32) {
self.rdes0.set(buf_addr);
self.rdes3
.set(EMAC_RDES3_BUF1V | EMAC_RDES3_IOC | EMAC_DES3_OWN);
}
}
pub(crate) struct RDesRing<const N: usize> {
rd: [RDes; N],
buffers: [Option<PacketBox>; N],
read_idx: usize,
tail_idx: usize,
}
impl<const N: usize> RDesRing<N> {
pub const fn new() -> Self {
const RDES: RDes = RDes::new();
const BUFFERS: Option<PacketBox> = None;
Self {
rd: [RDES; N],
buffers: [BUFFERS; N],
read_idx: 0,
tail_idx: 0,
}
}
pub(crate) fn init(&mut self) {
assert!(N > 1);
for desc in self.rd.iter_mut() {
*desc = RDes::new();
}
let mut last_index = 0;
for (index, buf) in self.buffers.iter_mut().enumerate() {
let pkt = match PacketBox::new(Packet::new()) {
Some(p) => p,
None => {
if index == 0 {
panic!("Could not allocate at least one buffer for Ethernet receiving");
} else {
break;
}
}
};
let addr = pkt.as_ptr() as u32;
*buf = Some(pkt);
self.rd[index].set_ready(addr);
last_index = index;
}
self.tail_idx = (last_index + 1) % N;
unsafe {
let dma = ETH.ethernet_dma();
dma.dmacrx_dlar()
.write(|w| w.set_rdesla(self.rd.as_ptr() as u32));
dma.dmacrx_rlr().write(|w| w.set_rdrl((N as u16) - 1));
// We manage to allocate all buffers, set the index to the last one, that means
// that the DMA won't consider the last one as ready, because it (unfortunately)
// stops at the tail ptr and wraps at the end of the ring, which means that we
// can't tell it to stop after the last buffer.
let tail_ptr = &self.rd[last_index] as *const _ as u32;
fence(Ordering::Release);
dma.dmacrx_dtpr().write(|w| w.set_rdt(tail_ptr));
}
}
pub(crate) fn on_interrupt(&mut self) {
// TODO!
}
pub(crate) fn pop_packet(&mut self) -> Option<PacketBuf> {
// Not sure if the contents of the write buffer on the M7 can affects reads, so we are using
// a DMB here just in case, it also serves as a hint to the compiler that we're syncing the
// buffer (I think .-.)
fence(Ordering::SeqCst);
let read_available = self.rd[self.read_idx].available();
if !read_available && self.read_idx == self.tail_idx {
// Nothing to do
return None;
}
let pkt = if read_available {
let pkt = self.buffers[self.read_idx].take();
let len = (self.rd[self.read_idx].rdes3.get() & EMAC_RDES3_PKTLEN) as usize;
assert!(pkt.is_some());
let valid = self.rd[self.read_idx].valid();
self.read_idx = (self.read_idx + 1) % N;
if valid {
pkt.map(|p| p.slice(0..len))
} else {
None
}
} else {
None
};
match PacketBox::new(Packet::new()) {
Some(b) => {
let addr = b.as_ptr() as u32;
self.buffers[self.tail_idx].replace(b);
self.rd[self.tail_idx].set_ready(addr);
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
// NOTE(unsafe) atomic write
unsafe {
ETH.ethernet_dma()
.dmacrx_dtpr()
.write(|w| w.set_rdt(&self.rd[self.read_idx] as *const _ as u32));
}
self.tail_idx = (self.tail_idx + 1) % N;
}
None => {}
}
pkt
}
}
pub struct DescriptorRing<const T: usize, const R: usize> {
pub(crate) tx: TDesRing<T>,
pub(crate) rx: RDesRing<R>,
}
impl<const T: usize, const R: usize> DescriptorRing<T, R> {
pub const fn new() -> Self {
Self {
tx: TDesRing::new(),
rx: RDesRing::new(),
}
}
pub fn init(&mut self) {
self.tx.init();
self.rx.init();
}
}

View File

@ -0,0 +1,350 @@
use core::marker::PhantomData;
use core::pin::Pin;
use core::sync::atomic::{fence, Ordering};
use embassy::util::{AtomicWaker, Unborrow};
use embassy_extras::peripheral::{PeripheralMutex, PeripheralState};
use embassy_extras::unborrow;
use embassy_net::MTU;
use crate::gpio::sealed::Pin as __GpioPin;
use crate::gpio::AnyPin;
use crate::gpio::Pin as GpioPin;
use crate::interrupt::Interrupt;
use crate::pac::gpio::vals::Ospeedr;
use crate::pac::ETH;
use crate::peripherals;
mod descriptors;
use descriptors::DescriptorRing;
/// Station Management Interface (SMI) on an ethernet PHY
pub trait StationManagement {
/// Read a register over SMI.
fn smi_read(&mut self, reg: u8) -> u16;
/// Write a register over SMI.
fn smi_write(&mut self, reg: u8, val: u16);
}
/// Traits for an Ethernet PHY
pub trait PHY {
/// Reset PHY and wait for it to come out of reset.
fn phy_reset(&mut self);
/// PHY initialisation.
fn phy_init(&mut self);
}
pub struct Ethernet<'d, T: Instance, const TX: usize, const RX: usize> {
state: PeripheralMutex<Inner<'d, T, TX, RX>>,
pins: [AnyPin; 9],
}
impl<'d, T: Instance, const TX: usize, const RX: usize> Ethernet<'d, T, TX, RX> {
pub fn new(
peri: impl Unborrow<Target = T> + 'd,
interrupt: impl Unborrow<Target = T::Interrupt> + 'd,
ref_clk: impl Unborrow<Target = impl RefClkPin<T>> + 'd,
mdio: impl Unborrow<Target = impl MDIOPin<T>> + 'd,
mdc: impl Unborrow<Target = impl MDCPin<T>> + 'd,
crs: impl Unborrow<Target = impl CRSPin<T>> + 'd,
rx_d0: impl Unborrow<Target = impl RXD0Pin<T>> + 'd,
rx_d1: impl Unborrow<Target = impl RXD1Pin<T>> + 'd,
tx_d0: impl Unborrow<Target = impl TXD0Pin<T>> + 'd,
tx_d1: impl Unborrow<Target = impl TXD1Pin<T>> + 'd,
tx_en: impl Unborrow<Target = impl TXEnPin<T>> + 'd,
mac_addr: [u8; 6],
) -> Self {
unborrow!(interrupt, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
ref_clk.configure();
mdio.configure();
mdc.configure();
crs.configure();
rx_d0.configure();
rx_d1.configure();
tx_d0.configure();
tx_d1.configure();
tx_en.configure();
let inner = Inner::new(peri);
let state = PeripheralMutex::new(inner, interrupt);
// NOTE(unsafe) We have exclusive access to the registers
unsafe {
let dma = ETH.ethernet_dma();
let mac = ETH.ethernet_mac();
let mtl = ETH.ethernet_mtl();
// Reset and wait
dma.dmamr().modify(|w| w.set_swr(true));
while dma.dmamr().read().swr() {}
// 200 MHz ?
mac.mac1ustcr().modify(|w| w.set_tic_1us_cntr(200 - 1));
mac.maccr().modify(|w| {
w.set_ipg(0b000); // 96 bit times
w.set_acs(true);
w.set_fes(true);
w.set_dm(true);
// TODO: Carrier sense ? ECRSFD
});
mac.maca0lr().write(|w| {
w.set_addrlo(
u32::from(mac_addr[0])
| (u32::from(mac_addr[1]) << 8)
| (u32::from(mac_addr[2]) << 16)
| (u32::from(mac_addr[3]) << 24),
)
});
mac.maca0hr()
.modify(|w| w.set_addrhi(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8)));
// TODO: Enable filtering once we get the basics working
mac.macpfr().modify(|w| w.set_ra(true));
mac.macqtx_fcr().modify(|w| w.set_pt(0x100));
mtl.mtlrx_qomr().modify(|w| w.set_rsf(true));
mtl.mtltx_qomr().modify(|w| w.set_tsf(true));
// TODO: Address aligned beats plus fixed burst ?
dma.dmactx_cr().modify(|w| w.set_txpbl(1)); // 32 ?
dma.dmacrx_cr().modify(|w| {
w.set_rxpbl(1); // 32 ?
w.set_rbsz(MTU as u16);
});
}
let pins = [
ref_clk.degrade(),
mdio.degrade(),
mdc.degrade(),
crs.degrade(),
rx_d0.degrade(),
rx_d1.degrade(),
tx_d0.degrade(),
tx_d1.degrade(),
tx_en.degrade(),
];
Self { state, pins }
}
pub fn init(self: Pin<&mut Self>) {
// NOTE(unsafe) We won't move this
let this = unsafe { self.get_unchecked_mut() };
let mutex = unsafe { Pin::new_unchecked(&mut this.state) };
mutex.with(|s, _| {
s.desc_ring.init();
fence(Ordering::SeqCst);
unsafe {
let mac = ETH.ethernet_mac();
let mtl = ETH.ethernet_mtl();
let dma = ETH.ethernet_dma();
mac.maccr().modify(|w| {
w.set_re(true);
w.set_te(true);
});
mtl.mtltx_qomr().modify(|w| w.set_ftq(true));
dma.dmactx_cr().modify(|w| w.set_st(true));
dma.dmacrx_cr().modify(|w| w.set_sr(true));
// Enable interrupts
dma.dmacier().modify(|w| {
w.set_nie(true);
w.set_rie(true);
w.set_tie(true);
});
}
});
}
}
impl<'d, T: Instance, const TX: usize, const RX: usize> Drop for Ethernet<'d, T, TX, RX> {
fn drop(&mut self) {
for pin in self.pins.iter_mut() {
// NOTE(unsafe) Exclusive access to the regs
critical_section::with(|_| unsafe {
pin.set_as_analog();
pin.block()
.ospeedr()
.modify(|w| w.set_ospeedr(pin.pin() as usize, Ospeedr::LOWSPEED));
})
}
}
}
//----------------------------------------------------------------------
struct Inner<'d, T: Instance, const TX: usize, const RX: usize> {
_peri: PhantomData<&'d mut T>,
desc_ring: DescriptorRing<TX, RX>,
}
impl<'d, T: Instance, const TX: usize, const RX: usize> Inner<'d, T, TX, RX> {
pub fn new(_peri: impl Unborrow<Target = T> + 'd) -> Self {
Self {
_peri: PhantomData,
desc_ring: DescriptorRing::new(),
}
}
}
impl<'d, T: Instance, const TX: usize, const RX: usize> PeripheralState for Inner<'d, T, TX, RX> {
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
unwrap!(self.desc_ring.tx.on_interrupt());
self.desc_ring.rx.on_interrupt();
T::state().wake();
// TODO: Check and clear more flags
unsafe {
let dma = ETH.ethernet_dma();
dma.dmacsr().modify(|w| {
w.set_ti(false);
w.set_ri(false);
});
// Delay two peripheral's clock
dma.dmacsr().read();
dma.dmacsr().read();
}
}
}
mod sealed {
use super::*;
pub trait Instance {
type Interrupt: Interrupt;
fn state() -> &'static AtomicWaker;
}
pub trait RefClkPin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait MDIOPin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait MDCPin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait CRSPin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait RXD0Pin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait RXD1Pin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait TXD0Pin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait TXD1Pin<T: Instance>: GpioPin {
fn configure(&mut self);
}
pub trait TXEnPin<T: Instance>: GpioPin {
fn configure(&mut self);
}
}
pub trait Instance: sealed::Instance + 'static {}
pub trait RefClkPin<T: Instance>: sealed::RefClkPin<T> + 'static {}
pub trait MDIOPin<T: Instance>: sealed::MDIOPin<T> + 'static {}
pub trait MDCPin<T: Instance>: sealed::MDCPin<T> + 'static {}
pub trait CRSPin<T: Instance>: sealed::CRSPin<T> + 'static {}
pub trait RXD0Pin<T: Instance>: sealed::RXD0Pin<T> + 'static {}
pub trait RXD1Pin<T: Instance>: sealed::RXD1Pin<T> + 'static {}
pub trait TXD0Pin<T: Instance>: sealed::TXD0Pin<T> + 'static {}
pub trait TXD1Pin<T: Instance>: sealed::TXD1Pin<T> + 'static {}
pub trait TXEnPin<T: Instance>: sealed::TXEnPin<T> + 'static {}
crate::pac::peripherals!(
(eth, $inst:ident) => {
impl sealed::Instance for peripherals::$inst {
type Interrupt = crate::interrupt::$inst;
fn state() -> &'static AtomicWaker {
static WAKER: AtomicWaker = AtomicWaker::new();
&WAKER
}
}
impl Instance for peripherals::$inst {}
};
);
macro_rules! impl_pin {
($inst:ident, $pin:ident, $signal:ident, $af:expr) => {
impl sealed::$signal<peripherals::$inst> for peripherals::$pin {
fn configure(&mut self) {
// NOTE(unsafe) Exclusive access to the registers
critical_section::with(|_| unsafe {
self.set_as_af($af);
self.block()
.ospeedr()
.modify(|w| w.set_ospeedr(self.pin() as usize, Ospeedr::VERYHIGHSPEED));
})
}
}
impl $signal<peripherals::$inst> for peripherals::$pin {}
};
}
crate::pac::peripheral_pins!(
($inst:ident, eth, ETH, $pin:ident, REF_CLK, $af:expr) => {
impl_pin!($inst, $pin, RefClkPin, $af);
};
($inst:ident, eth, ETH, $pin:ident, MDIO, $af:expr) => {
impl_pin!($inst, $pin, MDIOPin, $af);
};
($inst:ident, eth, ETH, $pin:ident, MDC, $af:expr) => {
impl_pin!($inst, $pin, MDCPin, $af);
};
($inst:ident, eth, ETH, $pin:ident, CRS_DV, $af:expr) => {
impl_pin!($inst, $pin, CRSPin, $af);
};
($inst:ident, eth, ETH, $pin:ident, RXD0, $af:expr) => {
impl_pin!($inst, $pin, RXD0Pin, $af);
};
($inst:ident, eth, ETH, $pin:ident, RXD1, $af:expr) => {
impl_pin!($inst, $pin, RXD1Pin, $af);
};
($inst:ident, eth, ETH, $pin:ident, TXD0, $af:expr) => {
impl_pin!($inst, $pin, TXD0Pin, $af);
};
($inst:ident, eth, ETH, $pin:ident, TXD1, $af:expr) => {
impl_pin!($inst, $pin, TXD1Pin, $af);
};
($inst:ident, eth, ETH, $pin:ident, TX_EN, $af:expr) => {
impl_pin!($inst, $pin, TXEnPin, $af);
};
);

View File

@ -29,6 +29,8 @@ pub mod clock;
pub mod dac; pub mod dac;
#[cfg(dma)] #[cfg(dma)]
pub mod dma; pub mod dma;
#[cfg(eth)]
pub mod eth;
#[cfg(i2c)] #[cfg(i2c)]
pub mod i2c; pub mod i2c;
#[cfg(pwr)] #[cfg(pwr)]