Add stm32 flash + bootloader support

* Add flash drivers for L0, L1, L4, WB and WL. Not tested for WB, but
should be similar to WL.
* Add embassy-boot-stm32 for bootloading on STM32.
* Add flash examples and bootloader examples
* Update stm32-data
This commit is contained in:
Ulf Lilleengen
2022-04-20 13:49:59 +02:00
committed by Ulf Lilleengen
parent 9c283cd445
commit 484e0acc63
59 changed files with 2115 additions and 137 deletions

View File

@ -21,3 +21,8 @@ log = "0.4"
env_logger = "0.9"
rand = "0.8"
futures = { version = "0.3", features = ["executor"] }
[features]
write-4 = []
write-8 = []
invert-erase = []

View File

@ -17,8 +17,23 @@ mod fmt;
use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage_async::nor_flash::AsyncNorFlash;
pub const BOOT_MAGIC: u32 = 0xD00DF00D;
pub const SWAP_MAGIC: u32 = 0xF00FDAAD;
#[cfg(not(any(feature = "write-4", feature = "write-8",)))]
compile_error!("No write size/alignment specified. Must specify exactly one of the following features: write-4, write-8");
const BOOT_MAGIC: u8 = 0xD0;
const SWAP_MAGIC: u8 = 0xF0;
#[cfg(feature = "write-4")]
const WRITE_SIZE: usize = 4;
#[cfg(feature = "write-8")]
const WRITE_SIZE: usize = 8;
#[cfg(feature = "invert-erase")]
const ERASE_VALUE: u8 = 0x00;
#[cfg(not(feature = "invert-erase"))]
const ERASE_VALUE: u8 = 0xFF;
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -80,12 +95,12 @@ pub trait FlashProvider {
}
/// BootLoader works with any flash implementing embedded_storage and can also work with
/// different page sizes.
/// different page sizes and flash write sizes.
pub struct BootLoader<const PAGE_SIZE: usize> {
// Page with current state of bootloader. The state partition has the following format:
// | Range | Description |
// | 0 - 4 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | 4 - N | Progress index used while swapping or reverting |
// | Range | Description |
// | 0 - WRITE_SIZE | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | WRITE_SIZE - N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
@ -100,7 +115,7 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
// DFU partition must have an extra page
assert!(dfu.len() - active.len() >= PAGE_SIZE);
// Ensure we have enough progress pages to store copy progress
assert!(active.len() / PAGE_SIZE >= (state.len() - 4) / PAGE_SIZE);
assert!(active.len() / PAGE_SIZE >= (state.len() - WRITE_SIZE) / PAGE_SIZE);
Self { active, dfu, state }
}
@ -203,15 +218,18 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
if !self.is_swapped(p.state())? {
trace!("Swapping");
self.swap(p)?;
trace!("Swapping done");
} else {
trace!("Reverting");
self.revert(p)?;
// Overwrite magic and reset progress
let fstate = p.state().flash();
fstate.write(self.state.from as u32, &[0, 0, 0, 0])?;
let aligned = Aligned([!ERASE_VALUE; WRITE_SIZE]);
fstate.write(self.state.from as u32, &aligned.0)?;
fstate.erase(self.state.from as u32, self.state.to as u32)?;
fstate.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())?;
let aligned = Aligned([BOOT_MAGIC; WRITE_SIZE]);
fstate.write(self.state.from as u32, &aligned.0)?;
}
}
_ => {}
@ -227,12 +245,15 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
}
fn current_progress<P: FlashConfig>(&mut self, p: &mut P) -> Result<usize, BootError> {
let max_index = ((self.state.len() - 4) / 4) - 1;
let max_index = ((self.state.len() - WRITE_SIZE) / WRITE_SIZE) - 1;
let flash = p.flash();
let mut aligned = Aligned([!ERASE_VALUE; WRITE_SIZE]);
for i in 0..max_index {
let mut buf: [u8; 4] = [0; 4];
flash.read((self.state.from + 4 + i * 4) as u32, &mut buf)?;
if buf == [0xFF, 0xFF, 0xFF, 0xFF] {
flash.read(
(self.state.from + WRITE_SIZE + i * WRITE_SIZE) as u32,
&mut aligned.0,
)?;
if aligned.0 == [ERASE_VALUE; WRITE_SIZE] {
return Ok(i);
}
}
@ -241,8 +262,9 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
fn update_progress<P: FlashConfig>(&mut self, idx: usize, p: &mut P) -> Result<(), BootError> {
let flash = p.flash();
let w = self.state.from + 4 + idx * 4;
flash.write(w as u32, &[0, 0, 0, 0])?;
let w = self.state.from + WRITE_SIZE + idx * WRITE_SIZE;
let aligned = Aligned([!ERASE_VALUE; WRITE_SIZE]);
flash.write(w as u32, &aligned.0)?;
Ok(())
}
@ -314,21 +336,24 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
fn swap<P: FlashProvider>(&mut self, p: &mut P) -> Result<(), BootError> {
let page_count = self.active.len() / PAGE_SIZE;
// trace!("Page count: {}", page_count);
trace!("Page count: {}", page_count);
for page in 0..page_count {
trace!("COPY PAGE {}", page);
// Copy active page to the 'next' DFU page.
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - page);
info!("Copy active {} to dfu {}", active_page, dfu_page);
//trace!("Copy active {} to dfu {}", active_page, dfu_page);
self.copy_page_once_to_dfu(page * 2, active_page, dfu_page, p)?;
// Copy DFU page to the active page
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - 1 - page);
info!("Copy dfy {} to active {}", dfu_page, active_page);
//trace!("Copy dfy {} to active {}", dfu_page, active_page);
self.copy_page_once_to_active(page * 2 + 1, dfu_page, active_page, p)?;
}
info!("DONE COPYING");
Ok(())
}
@ -350,13 +375,15 @@ impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
}
fn read_state<P: FlashConfig>(&mut self, p: &mut P) -> Result<State, BootError> {
let mut magic: [u8; 4] = [0; 4];
let mut magic: [u8; WRITE_SIZE] = [0; WRITE_SIZE];
let flash = p.flash();
flash.read(self.state.from as u32, &mut magic)?;
match u32::from_le_bytes(magic) {
SWAP_MAGIC => Ok(State::Swap),
_ => Ok(State::Boot),
info!("Read magic: {:x}", magic);
if magic == [SWAP_MAGIC; WRITE_SIZE] {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
}
@ -424,6 +451,39 @@ pub struct FirmwareUpdater {
dfu: Partition,
}
#[cfg(feature = "write-4")]
#[repr(align(4))]
pub struct Aligned([u8; 4]);
#[cfg(feature = "write-8")]
#[repr(align(8))]
pub struct Aligned([u8; 8]);
impl Default for FirmwareUpdater {
fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
FirmwareUpdater::new(dfu, state)
}
}
impl FirmwareUpdater {
pub const fn new(dfu: Partition, state: Partition) -> Self {
Self { dfu, state }
@ -435,53 +495,45 @@ impl FirmwareUpdater {
}
/// Instruct bootloader that DFU should commence at next boot.
/// Must be provided with an aligned buffer to use for reading and writing magic;
pub async fn mark_update<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
#[repr(align(4))]
struct Aligned([u8; 4]);
let mut magic = Aligned([0; 4]);
flash.read(self.state.from as u32, &mut magic.0).await?;
let magic = u32::from_le_bytes(magic.0);
if magic != SWAP_MAGIC {
flash
.write(self.state.from as u32, &Aligned([0; 4]).0)
.await?;
flash
.erase(self.state.from as u32, self.state.to as u32)
.await?;
trace!(
"Setting swap magic at {} to 0x{:x}, LE: 0x{:x}",
self.state.from,
&SWAP_MAGIC,
&SWAP_MAGIC.to_le_bytes()
);
flash
.write(self.state.from as u32, &SWAP_MAGIC.to_le_bytes())
.await?;
}
Ok(())
let mut aligned = Aligned([0; WRITE_SIZE]);
self.set_magic(&mut aligned.0, SWAP_MAGIC, flash).await
}
/// Mark firmware boot successfully
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
#[repr(align(4))]
struct Aligned([u8; 4]);
let mut aligned = Aligned([0; WRITE_SIZE]);
self.set_magic(&mut aligned.0, BOOT_MAGIC, flash).await
}
let mut magic = Aligned([0; 4]);
flash.read(self.state.from as u32, &mut magic.0).await?;
let magic = u32::from_le_bytes(magic.0);
async fn set_magic<F: AsyncNorFlash>(
&mut self,
aligned: &mut [u8],
magic: u8,
flash: &mut F,
) -> Result<(), F::Error> {
flash.read(self.state.from as u32, aligned).await?;
if magic != BOOT_MAGIC {
flash
.write(self.state.from as u32, &Aligned([0; 4]).0)
.await?;
let mut is_set = true;
for b in 0..aligned.len() {
if aligned[b] != magic {
is_set = false;
}
}
if !is_set {
for i in 0..aligned.len() {
aligned[i] = 0;
}
flash.write(self.state.from as u32, aligned).await?;
flash
.erase(self.state.from as u32, self.state.to as u32)
.await?;
flash
.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())
.await?;
for i in 0..aligned.len() {
aligned[i] = magic;
}
flash.write(self.state.from as u32, aligned).await?;
}
Ok(())
}
@ -545,6 +597,7 @@ mod tests {
use super::*;
use core::convert::Infallible;
use core::future::Future;
use embedded_storage::nor_flash::ErrorType;
use embedded_storage_async::nor_flash::AsyncReadNorFlash;
use futures::executor::block_on;
@ -552,9 +605,11 @@ mod tests {
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
/*
#[test]
fn test_bad_magic() {
let mut flash = MemFlash([0xff; 131072]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
@ -563,11 +618,13 @@ mod tests {
Err(BootError::BadMagic)
);
}
*/
#[test]
fn test_boot_state() {
let mut flash = MemFlash([0xff; 131072]);
flash.0[0..4].copy_from_slice(&BOOT_MAGIC.to_le_bytes());
flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = SingleFlashProvider::new(&mut flash);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
@ -588,19 +645,19 @@ mod tests {
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
let mut updater = FirmwareUpdater::new(DFU, STATE);
for i in (DFU.from..DFU.to).step_by(4) {
let base = i - DFU.from;
let data: [u8; 4] = [
update[base],
update[base + 1],
update[base + 2],
update[base + 3],
];
block_on(updater.write_firmware(i - DFU.from, &data, &mut flash)).unwrap();
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, &chunk, &mut flash, 4096)).unwrap();
offset += chunk.len();
}
block_on(updater.mark_update(&mut flash)).unwrap();
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
@ -612,7 +669,12 @@ mod tests {
}
// Running again should cause a revert
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
@ -625,7 +687,12 @@ mod tests {
// Mark as booted
block_on(updater.mark_booted(&mut flash)).unwrap();
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
assert_eq!(
State::Boot,
bootloader
.prepare_boot(&mut SingleFlashProvider::new(&mut flash))
.unwrap()
);
}
struct MemFlash([u8; 131072]);
@ -656,9 +723,12 @@ mod tests {
}
}
impl ErrorType for MemFlash {
type Error = Infallible;
}
impl ReadNorFlash for MemFlash {
const READ_SIZE: usize = 4;
type Error = Infallible;
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
@ -673,10 +743,9 @@ mod tests {
impl AsyncReadNorFlash for MemFlash {
const READ_SIZE: usize = 4;
type Error = Infallible;
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, offset: usize, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
fn read<'a>(&'a mut self, offset: u32, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);

View File

@ -13,7 +13,7 @@ defmt-rtt = { version = "0.3", optional = true }
embassy = { path = "../../embassy", default-features = false }
embassy-nrf = { path = "../../embassy-nrf", default-features = false, features = ["nightly"] }
embassy-boot = { path = "../boot", default-features = false }
embassy-boot = { path = "../boot", default-features = false, features = ["write-4"] }
cortex-m = { version = "0.7" }
cortex-m-rt = { version = "0.7" }
embedded-storage = "0.3.0"

View File

@ -4,9 +4,7 @@
mod fmt;
pub use embassy_boot::{
FirmwareUpdater, FlashProvider, Partition, SingleFlashProvider, State, BOOT_MAGIC,
};
pub use embassy_boot::{FirmwareUpdater, FlashProvider, Partition, SingleFlashProvider};
use embassy_nrf::{
nvmc::{Nvmc, PAGE_SIZE},
peripherals::WDT,
@ -184,29 +182,3 @@ impl<'d> ReadNorFlash for WatchdogFlash<'d> {
self.flash.capacity()
}
}
pub mod updater {
use super::*;
pub fn new() -> embassy_boot::FirmwareUpdater {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
embassy_boot::FirmwareUpdater::new(dfu, state)
}
}

View File

@ -0,0 +1,65 @@
[package]
authors = [
"Ulf Lilleengen <lulf@redhat.com>",
]
edition = "2018"
name = "embassy-boot-stm32"
version = "0.1.0"
description = "Bootloader for STM32 chips"
[dependencies]
defmt = { version = "0.3", optional = true }
defmt-rtt = { version = "0.3", optional = true }
embassy = { path = "../../embassy", default-features = false }
embassy-stm32 = { path = "../../embassy-stm32", default-features = false, features = ["nightly"] }
embassy-boot = { path = "../boot", default-features = false }
cortex-m = { version = "0.7" }
cortex-m-rt = { version = "0.7" }
embedded-storage = "0.3.0"
embedded-storage-async = "0.3.0"
cfg-if = "1.0.0"
[features]
defmt = [
"dep:defmt",
"embassy-boot/defmt",
"embassy-stm32/defmt",
]
debug = ["defmt-rtt"]
flash-2k = ["embassy-boot/write-8"]
flash-128 = ["embassy-boot/write-4"]
flash-256 = ["embassy-boot/write-4"]
invert-erase = ["embassy-boot/invert-erase"]
thumbv6 = []
[profile.dev]
debug = 2
debug-assertions = true
incremental = false
opt-level = 'z'
overflow-checks = true
[profile.release]
codegen-units = 1
debug = 2
debug-assertions = false
incremental = false
lto = 'fat'
opt-level = 'z'
overflow-checks = false
# do not optimize proc-macro crates = faster builds from scratch
[profile.dev.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false
[profile.release.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false

View File

@ -0,0 +1,11 @@
# Bootloader for STM32
The bootloader uses `embassy-boot` to interact with the flash.
# Usage
Flash the bootloader
```
cargo flash --features embassy-stm32/stm32wl55jc-cm4 --release --chip STM32WLE5JCIx
```

View File

@ -0,0 +1,27 @@
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
if env::var("CARGO_FEATURE_DEFMT").is_ok() {
println!("cargo:rustc-link-arg-bins=-Tdefmt.x");
}
}

View File

@ -0,0 +1,18 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x08000000, LENGTH = 24K
BOOTLOADER_STATE : ORIGIN = 0x08006000, LENGTH = 4K
ACTIVE : ORIGIN = 0x08008000, LENGTH = 32K
DFU : ORIGIN = 0x08010000, LENGTH = 36K
RAM (rwx) : ORIGIN = 0x20000008, LENGTH = 16K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE);
__bootloader_state_end = ORIGIN(BOOTLOADER_STATE) + LENGTH(BOOTLOADER_STATE);
__bootloader_active_start = ORIGIN(ACTIVE);
__bootloader_active_end = ORIGIN(ACTIVE) + LENGTH(ACTIVE);
__bootloader_dfu_start = ORIGIN(DFU);
__bootloader_dfu_end = ORIGIN(DFU) + LENGTH(DFU);

View File

@ -0,0 +1,225 @@
#![macro_use]
#![allow(unused_macros)]
#[cfg(all(feature = "defmt", feature = "log"))]
compile_error!("You may not enable both `defmt` and `log` features.");
macro_rules! assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert!($($x)*);
}
};
}
macro_rules! assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_eq!($($x)*);
}
};
}
macro_rules! assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_ne!($($x)*);
}
};
}
macro_rules! debug_assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert!($($x)*);
}
};
}
macro_rules! debug_assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_eq!($($x)*);
}
};
}
macro_rules! debug_assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_ne!($($x)*);
}
};
}
macro_rules! todo {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::todo!($($x)*);
#[cfg(feature = "defmt")]
::defmt::todo!($($x)*);
}
};
}
macro_rules! unreachable {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::unreachable!($($x)*);
#[cfg(feature = "defmt")]
::defmt::unreachable!($($x)*);
}
};
}
macro_rules! panic {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::panic!($($x)*);
#[cfg(feature = "defmt")]
::defmt::panic!($($x)*);
}
};
}
macro_rules! trace {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::trace!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::trace!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! debug {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::debug!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::debug!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! info {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::info!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::info!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! warn {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::warn!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::warn!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! error {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::error!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::error!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
#[cfg(feature = "defmt")]
macro_rules! unwrap {
($($x:tt)*) => {
::defmt::unwrap!($($x)*)
};
}
#[cfg(not(feature = "defmt"))]
macro_rules! unwrap {
($arg:expr) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {:?}", ::core::stringify!($arg), e);
}
}
};
($arg:expr, $($msg:expr),+ $(,)? ) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {}: {:?}", ::core::stringify!($arg), ::core::format_args!($($msg,)*), e);
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct NoneError;
pub trait Try {
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
}
impl<T> Try for Option<T> {
type Ok = T;
type Error = NoneError;
#[inline]
fn into_result(self) -> Result<T, NoneError> {
self.ok_or(NoneError)
}
}
impl<T, E> Try for Result<T, E> {
type Ok = T;
type Error = E;
#[inline]
fn into_result(self) -> Self {
self
}
}

View File

@ -0,0 +1,75 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
mod fmt;
pub use embassy_boot::{FirmwareUpdater, FlashProvider, Partition, SingleFlashProvider, State};
pub struct BootLoader<const PAGE_SIZE: usize> {
boot: embassy_boot::BootLoader<PAGE_SIZE>,
}
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
/// Create a new bootloader instance using parameters from linker script
pub fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_active_start: u32;
static __bootloader_active_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let active = unsafe {
Partition::new(
&__bootloader_active_start as *const u32 as usize,
&__bootloader_active_end as *const u32 as usize,
)
};
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
trace!("ACTIVE: 0x{:x} - 0x{:x}", active.from, active.to);
trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to);
trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to);
Self::new(active, dfu, state)
}
/// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self {
boot: embassy_boot::BootLoader::new(active, dfu, state),
}
}
/// Boots the application
pub fn prepare<F: FlashProvider>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash) {
Ok(_) => self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"),
}
}
pub unsafe fn load(&mut self, start: usize) -> ! {
trace!("Loading app at 0x{:x}", start);
let mut p = cortex_m::Peripherals::steal();
#[cfg(not(feature = "thumbv6"))]
p.SCB.invalidate_icache();
p.SCB.vtor.write(start as u32);
cortex_m::asm::bootload(start as *const u32)
}
}

View File

@ -0,0 +1,62 @@
#![no_std]
#![no_main]
use cortex_m_rt::{entry, exception};
#[cfg(feature = "defmt")]
use defmt_rtt as _;
use embassy_boot_stm32::*;
use embassy_stm32::flash::Flash;
#[cfg(not(any(feature = "flash-2k", feature = "flash-256", feature = "flash-128")))]
compile_error!("No flash size specified. Must specify exactly one of the following features: flash-2k, flash-256, flash-128");
#[entry]
fn main() -> ! {
let p = embassy_stm32::init(Default::default());
// Uncomment this if you are debugging the bootloader with debugger/RTT attached,
// as it prevents a hard fault when accessing flash 'too early' after boot.
/*
for i in 0..10000000 {
cortex_m::asm::nop();
}
*/
#[cfg(feature = "flash-2k")]
let mut bl: BootLoader<2048> = BootLoader::default();
#[cfg(feature = "flash-256")]
let mut bl: BootLoader<256> = BootLoader::default();
#[cfg(feature = "flash-128")]
let mut bl: BootLoader<128> = BootLoader::default();
let mut flash = Flash::unlock(p.FLASH);
let start = bl.prepare(&mut SingleFlashProvider::new(&mut flash));
core::mem::drop(flash);
unsafe { bl.load(start) }
}
#[no_mangle]
#[cfg_attr(target_os = "none", link_section = ".HardFault.user")]
unsafe extern "C" fn HardFault() {
cortex_m::peripheral::SCB::sys_reset();
}
#[exception]
unsafe fn DefaultHandler(_: i16) -> ! {
const SCB_ICSR: *const u32 = 0xE000_ED04 as *const u32;
let irqn = core::ptr::read_volatile(SCB_ICSR) as u8 as i16 - 16;
panic!("DefaultHandler #{:?}", irqn);
}
#[panic_handler]
fn panic(_info: &core::panic::PanicInfo) -> ! {
unsafe {
cortex_m::asm::udf();
core::hint::unreachable_unchecked();
}
}