Merge remote-tracking branch 'upstream/master' into incremental-hash

This commit is contained in:
Rasmus Melchior Jacobsen 2023-04-04 19:06:14 +02:00
commit 54b82d9966
65 changed files with 1772 additions and 1027 deletions

View File

@ -6,7 +6,7 @@ version = "0.1.0"
license = "MIT OR Apache-2.0"
[dependencies]
embassy-executor = { version = "0.1.0", path = "../../../../../embassy-executor", features = ["defmt", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../../embassy-executor", features = ["defmt", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../../embassy-time", features = ["defmt", "nightly"] }
embassy-nrf = { version = "0.1.0", path = "../../../../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "nightly"] }

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
cortex-m = "0.7"
cortex-m-rt = "0.7"
embassy-stm32 = { version = "0.1.0", features = ["stm32l475vg", "memory-x", "exti"], default-features = false }
embassy-executor = { version = "0.1.0", default-features = false, features = ["nightly"] }
embassy-executor = { version = "0.1.0", default-features = false, features = ["nightly", "arch-cortex-m", "executor-thread"] }
defmt = "0.3.0"
defmt-rtt = "0.3.0"

View File

@ -31,7 +31,7 @@ where
}
/// Extension of the embedded-storage flash type information with block size and erase value.
pub trait Flash: NorFlash + ReadNorFlash {
pub trait Flash: NorFlash {
/// The block size that should be used when writing to flash. For most builtin flashes, this is the same as the erase
/// size of the flash, but for external QSPI flash modules, this can be lower.
const BLOCK_SIZE: usize;
@ -60,9 +60,11 @@ pub trait FlashConfig {
/// different page sizes and flash write sizes.
pub struct BootLoader {
// Page with current state of bootloader. The state partition has the following format:
// | Range | Description |
// | 0 - WRITE_SIZE | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | WRITE_SIZE - N | Progress index used while swapping or reverting |
// All ranges are in multiples of WRITE_SIZE bytes.
// | Range | Description |
// | 0..1 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | 1..2 | Progress validity. ERASE_VALUE means valid, !ERASE_VALUE means invalid. |
// | 2..2 + N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
@ -192,12 +194,17 @@ impl BootLoader {
trace!("Reverting");
self.revert(p, magic, page)?;
// Overwrite magic and reset progress
let state_flash = p.state();
// Invalidate progress
magic.fill(!P::STATE::ERASE_VALUE);
self.state.write_blocking(state_flash, 0, magic)?;
self.state
.write_blocking(state_flash, P::STATE::WRITE_SIZE as u32, magic)?;
// Clear magic and progress
self.state.wipe_blocking(state_flash)?;
// Set magic
magic.fill(BOOT_MAGIC);
self.state.write_blocking(state_flash, 0, magic)?;
}
@ -215,28 +222,34 @@ impl BootLoader {
fn current_progress<P: FlashConfig>(&mut self, config: &mut P, aligned: &mut [u8]) -> Result<usize, BootError> {
let write_size = aligned.len();
let max_index = ((self.state.len() - write_size) / write_size) - 1;
let max_index = ((self.state.len() - write_size) / write_size) - 2;
aligned.fill(!P::STATE::ERASE_VALUE);
let state_flash = config.state();
for i in 0..max_index {
self.state
.read_blocking(state_flash, P::STATE::WRITE_SIZE as u32, aligned)?;
if aligned.iter().any(|&b| b != P::STATE::ERASE_VALUE) {
// Progress is invalid
return Ok(max_index);
}
for index in 0..max_index {
self.state
.read_blocking(state_flash, (write_size + i * write_size) as u32, aligned)?;
.read_blocking(state_flash, (2 + index) as u32 * P::STATE::WRITE_SIZE as u32, aligned)?;
if aligned.iter().any(|&b| b == P::STATE::ERASE_VALUE) {
return Ok(i);
return Ok(index);
}
}
Ok(max_index)
}
fn update_progress<P: FlashConfig>(&mut self, idx: usize, p: &mut P, magic: &mut [u8]) -> Result<(), BootError> {
let write_size = magic.len();
fn update_progress<P: FlashConfig>(&mut self, index: usize, p: &mut P, magic: &mut [u8]) -> Result<(), BootError> {
let aligned = magic;
aligned.fill(!P::STATE::ERASE_VALUE);
self.state
.write_blocking(p.state(), (write_size + idx * write_size) as u32, aligned)?;
.write_blocking(p.state(), (2 + index) as u32 * P::STATE::WRITE_SIZE as u32, aligned)?;
Ok(())
}
@ -360,7 +373,7 @@ fn assert_partitions(active: Partition, dfu: Partition, state: Partition, page_s
assert_eq!(active.len() % page_size, 0);
assert_eq!(dfu.len() % page_size, 0);
assert!(dfu.len() - active.len() >= page_size);
assert!(2 * (active.len() / page_size) <= (state.len() - write_size) / write_size);
assert!(2 + 2 * (active.len() / page_size) <= state.len() / write_size);
}
/// A flash wrapper implementing the Flash and embedded_storage traits.

View File

@ -234,11 +234,24 @@ impl FirmwareUpdater {
self.state.read(state_flash, 0, aligned).await?;
if aligned.iter().any(|&b| b != magic) {
aligned.fill(0);
// Read progress validity
self.state.read(state_flash, F::WRITE_SIZE as u32, aligned).await?;
self.state.write(state_flash, 0, aligned).await?;
// FIXME: Do not make this assumption.
const STATE_ERASE_VALUE: u8 = 0xFF;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write(state_flash, F::WRITE_SIZE as u32, aligned).await?;
}
// Clear magic and progress
self.state.wipe(state_flash).await?;
// Set magic
aligned.fill(magic);
self.state.write(state_flash, 0, aligned).await?;
}
@ -441,11 +454,24 @@ impl FirmwareUpdater {
self.state.read_blocking(state_flash, 0, aligned)?;
if aligned.iter().any(|&b| b != magic) {
aligned.fill(0);
// Read progress validity
self.state.read_blocking(state_flash, F::WRITE_SIZE as u32, aligned)?;
self.state.write_blocking(state_flash, 0, aligned)?;
// FIXME: Do not make this assumption.
const STATE_ERASE_VALUE: u8 = 0xFF;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write_blocking(state_flash, F::WRITE_SIZE as u32, aligned)?;
}
// Clear magic and progress
self.state.wipe_blocking(state_flash)?;
// Set magic
aligned.fill(magic);
self.state.write_blocking(state_flash, 0, aligned)?;
}

View File

@ -8,6 +8,7 @@ mod fmt;
mod boot_loader;
mod digest_adapters;
mod firmware_updater;
mod mem_flash;
mod partition;
pub use boot_loader::{BootError, BootFlash, BootLoader, Flash, FlashConfig, MultiFlashConfig, SingleFlashConfig};
@ -45,13 +46,10 @@ impl<const N: usize> AsMut<[u8]> for AlignedBuffer<N> {
#[cfg(test)]
mod tests {
use core::convert::Infallible;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
use futures::executor::block_on;
use super::*;
use crate::mem_flash::MemFlash;
/*
#[test]
@ -74,8 +72,8 @@ mod tests {
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = MemFlash::<131072, 4096, 4>::default();
flash.mem[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = SingleFlashConfig::new(&mut flash);
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
@ -94,14 +92,14 @@ mod tests {
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
let mut flash = MemFlash::<131072, 4096, 4>::random();
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
let mut aligned = [0; 4];
for i in ACTIVE.from..ACTIVE.to {
flash.0[i] = original[i - ACTIVE.from];
flash.mem[i] = original[i - ACTIVE.from];
}
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
@ -123,12 +121,12 @@ mod tests {
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
assert_eq!(flash.mem[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i);
assert_eq!(flash.mem[i], original[i - DFU.from - 4096], "Index {}", i);
}
// Running again should cause a revert
@ -140,12 +138,12 @@ mod tests {
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
assert_eq!(flash.mem[i], original[i - ACTIVE.from], "Index {}", i);
}
// Last page is untouched
for i in DFU.from..DFU.to - 4096 {
assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i);
assert_eq!(flash.mem[i], update[i - DFU.from], "Index {}", i);
}
// Mark as booted
@ -165,16 +163,16 @@ mod tests {
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut active = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 2048, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let mut active = MemFlash::<16384, 4096, 8>::random();
let mut dfu = MemFlash::<16384, 2048, 8>::random();
let mut state = MemFlash::<4096, 128, 4>::random();
let mut aligned = [0; 4];
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
active.mem[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
@ -202,12 +200,12 @@ mod tests {
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
assert_eq!(active.mem[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
assert_eq!(dfu.mem[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
@ -219,15 +217,15 @@ mod tests {
const DFU: Partition = Partition::new(0, 16384);
let mut aligned = [0; 4];
let mut active = MemFlash::<16384, 2048, 4>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let mut active = MemFlash::<16384, 2048, 4>::random();
let mut dfu = MemFlash::<16384, 4096, 8>::random();
let mut state = MemFlash::<4096, 128, 4>::random();
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
active.mem[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
@ -254,12 +252,12 @@ mod tests {
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
assert_eq!(active.mem[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
assert_eq!(dfu.mem[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
@ -289,13 +287,13 @@ mod tests {
const STATE: Partition = Partition::new(0, 4096);
const DFU: Partition = Partition::new(4096, 8192);
let mut flash = MemFlash::<8192, 4096, 4>([0xff; 8192]);
let mut flash = MemFlash::<8192, 4096, 4>::default();
let firmware_len = firmware.len();
let mut write_buf = [0; 4096];
write_buf[0..firmware_len].copy_from_slice(firmware);
NorFlash::write(&mut flash, DFU.from as u32, &write_buf).unwrap();
DFU.write_blocking(&mut flash, 0, &write_buf).unwrap();
// On with the test
@ -312,113 +310,4 @@ mod tests {
))
.is_ok());
}
pub struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize>(pub [u8; SIZE]);
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE);
for i in from..to {
self.0[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(offset as usize + data.len() <= SIZE);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = Infallible;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> super::Flash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const BLOCK_SIZE: usize = ERASE_SIZE;
const ERASE_VALUE: u8 = 0xFF;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
async fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0);
for i in from..to {
self.0[i] = 0xFF;
}
Ok(())
}
async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
info!("Writing {} bytes to 0x{:x}", data.len(), offset);
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(
offset as usize + data.len() <= SIZE,
"OFFSET: {}, LEN: {}, FLASH SIZE: {}",
offset,
data.len(),
SIZE
);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
}

View File

@ -0,0 +1,156 @@
#![allow(unused)]
use core::ops::{Bound, Range, RangeBounds};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
use crate::Flash;
pub struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> {
pub mem: [u8; SIZE],
pub pending_write_successes: Option<usize>,
}
#[derive(Debug)]
pub struct MemFlashError;
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE> {
pub const fn new(fill: u8) -> Self {
Self {
mem: [fill; SIZE],
pending_write_successes: None,
}
}
#[cfg(test)]
pub fn random() -> Self {
let mut mem = [0; SIZE];
for byte in mem.iter_mut() {
*byte = rand::random::<u8>();
}
Self {
mem,
pending_write_successes: None,
}
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> Default
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
fn default() -> Self {
Self::new(0xFF)
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> Flash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const BLOCK_SIZE: usize = ERASE_SIZE;
const ERASE_VALUE: u8 = 0xFF;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = MemFlashError;
}
impl NorFlashError for MemFlashError {
fn kind(&self) -> NorFlashErrorKind {
NorFlashErrorKind::Other
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
let len = bytes.len();
bytes.copy_from_slice(&self.mem[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE);
for i in from..to {
self.mem[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
let offset = offset as usize;
assert!(bytes.len() % WRITE_SIZE == 0);
assert!(offset % WRITE_SIZE == 0);
assert!(offset + bytes.len() <= SIZE);
if let Some(pending_successes) = self.pending_write_successes {
if pending_successes > 0 {
self.pending_write_successes = Some(pending_successes - 1);
} else {
return Err(MemFlashError);
}
}
for ((offset, mem_byte), new_byte) in self
.mem
.iter_mut()
.enumerate()
.skip(offset)
.take(bytes.len())
.zip(bytes)
{
assert_eq!(0xFF, *mem_byte, "Offset {} is not erased", offset);
*mem_byte = *new_byte;
}
Ok(())
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
<Self as ReadNorFlash>::read(self, offset, bytes)
}
fn capacity(&self) -> usize {
<Self as ReadNorFlash>::capacity(self)
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
<Self as NorFlash>::erase(self, from, to)
}
async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
<Self as NorFlash>::write(self, offset, bytes)
}
}

View File

@ -24,7 +24,7 @@ impl Partition {
}
/// Read from the partition on the provided flash
pub(crate) async fn read<F: AsyncReadNorFlash>(
pub async fn read<F: AsyncReadNorFlash>(
&self,
flash: &mut F,
offset: u32,
@ -35,12 +35,7 @@ impl Partition {
}
/// Write to the partition on the provided flash
pub(crate) async fn write<F: AsyncNorFlash>(
&self,
flash: &mut F,
offset: u32,
bytes: &[u8],
) -> Result<(), F::Error> {
pub async fn write<F: AsyncNorFlash>(&self, flash: &mut F, offset: u32, bytes: &[u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.write(offset, bytes).await?;
trace!("Wrote from 0x{:x} len {}", offset, bytes.len());
@ -48,7 +43,7 @@ impl Partition {
}
/// Erase part of the partition on the provided flash
pub(crate) async fn erase<F: AsyncNorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
pub async fn erase<F: AsyncNorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
let from = self.from as u32 + from;
let to = self.from as u32 + to;
flash.erase(from, to).await?;
@ -66,18 +61,13 @@ impl Partition {
}
/// Read from the partition on the provided flash
pub(crate) fn read_blocking<F: ReadNorFlash>(
&self,
flash: &mut F,
offset: u32,
bytes: &mut [u8],
) -> Result<(), F::Error> {
pub fn read_blocking<F: ReadNorFlash>(&self, flash: &mut F, offset: u32, bytes: &mut [u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.read(offset, bytes)
}
/// Write to the partition on the provided flash
pub(crate) fn write_blocking<F: NorFlash>(&self, flash: &mut F, offset: u32, bytes: &[u8]) -> Result<(), F::Error> {
pub fn write_blocking<F: NorFlash>(&self, flash: &mut F, offset: u32, bytes: &[u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.write(offset, bytes)?;
trace!("Wrote from 0x{:x} len {}", offset, bytes.len());
@ -85,7 +75,7 @@ impl Partition {
}
/// Erase part of the partition on the provided flash
pub(crate) fn erase_blocking<F: NorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
pub fn erase_blocking<F: NorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
let from = self.from as u32 + from;
let to = self.from as u32 + to;
flash.erase(from, to)?;
@ -105,45 +95,45 @@ impl Partition {
#[cfg(test)]
mod tests {
use crate::tests::MemFlash;
use crate::mem_flash::MemFlash;
use crate::Partition;
#[test]
fn can_erase() {
let mut flash = MemFlash::<1024, 64, 4>([0x00; 1024]);
let mut flash = MemFlash::<1024, 64, 4>::new(0x00);
let partition = Partition::new(256, 512);
partition.erase_blocking(&mut flash, 64, 192).unwrap();
for (index, byte) in flash.0.iter().copied().enumerate().take(256 + 64) {
for (index, byte) in flash.mem.iter().copied().enumerate().take(256 + 64) {
assert_eq!(0x00, byte, "Index {}", index);
}
for (index, byte) in flash.0.iter().copied().enumerate().skip(256 + 64).take(128) {
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256 + 64).take(128) {
assert_eq!(0xFF, byte, "Index {}", index);
}
for (index, byte) in flash.0.iter().copied().enumerate().skip(256 + 64 + 128) {
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256 + 64 + 128) {
assert_eq!(0x00, byte, "Index {}", index);
}
}
#[test]
fn can_wipe() {
let mut flash = MemFlash::<1024, 64, 4>([0x00; 1024]);
let mut flash = MemFlash::<1024, 64, 4>::new(0x00);
let partition = Partition::new(256, 512);
partition.wipe_blocking(&mut flash).unwrap();
for (index, byte) in flash.0.iter().copied().enumerate().take(256) {
for (index, byte) in flash.mem.iter().copied().enumerate().take(256) {
assert_eq!(0x00, byte, "Index {}", index);
}
for (index, byte) in flash.0.iter().copied().enumerate().skip(256).take(256) {
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256).take(256) {
assert_eq!(0xFF, byte, "Index {}", index);
}
for (index, byte) in flash.0.iter().copied().enumerate().skip(512) {
for (index, byte) in flash.mem.iter().copied().enumerate().skip(512) {
assert_eq!(0x00, byte, "Index {}", index);
}
}

View File

@ -1,116 +0,0 @@
//! Executor specific to cortex-m devices.
use core::cell::UnsafeCell;
use core::mem::MaybeUninit;
use atomic_polyfill::{AtomicBool, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
pub use embassy_executor::*;
#[derive(Clone, Copy)]
struct N(u16);
unsafe impl cortex_m::interrupt::InterruptNumber for N {
fn number(self) -> u16 {
self.0
}
}
fn pend_by_number(n: u16) {
cortex_m::peripheral::NVIC::pend(N(n))
}
/// Interrupt mode executor.
///
/// This executor runs tasks in interrupt mode. The interrupt handler is set up
/// to poll tasks, and when a task is woken the interrupt is pended from software.
///
/// This allows running async tasks at a priority higher than thread mode. One
/// use case is to leave thread mode free for non-async tasks. Another use case is
/// to run multiple executors: one in thread mode for low priority tasks and another in
/// interrupt mode for higher priority tasks. Higher priority tasks will preempt lower
/// priority ones.
///
/// It is even possible to run multiple interrupt mode executors at different priorities,
/// by assigning different priorities to the interrupts. For an example on how to do this,
/// See the 'multiprio' example for 'embassy-nrf'.
///
/// To use it, you have to pick an interrupt that won't be used by the hardware.
/// Some chips reserve some interrupts for this purpose, sometimes named "software interrupts" (SWI).
/// If this is not the case, you may use an interrupt from any unused peripheral.
///
/// It is somewhat more complex to use, it's recommended to use the thread-mode
/// [`Executor`] instead, if it works for your use case.
pub struct InterruptExecutor {
started: AtomicBool,
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
}
unsafe impl Send for InterruptExecutor {}
unsafe impl Sync for InterruptExecutor {}
impl InterruptExecutor {
/// Create a new, not started `InterruptExecutor`.
#[inline]
pub const fn new() -> Self {
Self {
started: AtomicBool::new(false),
executor: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Executor interrupt callback.
///
/// # Safety
///
/// You MUST call this from the interrupt handler, and from nowhere else.
pub unsafe fn on_interrupt(&'static self) {
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
executor.poll();
}
/// Start the executor.
///
/// This initializes the executor, enables the interrupt, and returns.
/// The executor keeps running in the background through the interrupt.
///
/// This returns a [`SendSpawner`] you can use to spawn tasks on it. A [`SendSpawner`]
/// is returned instead of a [`Spawner`](embassy_executor::Spawner) because the executor effectively runs in a
/// different "thread" (the interrupt), so spawning tasks on it is effectively
/// sending them.
///
/// To obtain a [`Spawner`](embassy_executor::Spawner) for this executor, use [`Spawner::for_current_executor()`](embassy_executor::Spawner::for_current_executor()) from
/// a task running in it.
///
/// # Interrupt requirements
///
/// You must write the interrupt handler yourself, and make it call [`on_interrupt()`](Self::on_interrupt).
///
/// This method already enables (unmasks) the interrupt, you must NOT do it yourself.
///
/// You must set the interrupt priority before calling this method. You MUST NOT
/// do it after.
///
pub fn start(&'static self, irq: impl InterruptNumber) -> SendSpawner {
if self
.started
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
panic!("InterruptExecutor::start() called multiple times on the same executor.");
}
unsafe {
(&mut *self.executor.get()).as_mut_ptr().write(raw::Executor::new(
|ctx| pend_by_number(ctx as u16),
irq.number() as *mut (),
))
}
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
unsafe { NVIC::unmask(irq) }
executor.spawner().make_send()
}
}

View File

@ -5,6 +5,6 @@
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
pub mod executor;
pub use embassy_executor as executor;
pub mod interrupt;
pub mod peripheral;

View File

@ -31,9 +31,22 @@ flavors = [
features = ["std", "nightly", "defmt"]
[features]
default = []
std = ["critical-section/std"]
wasm = ["dep:wasm-bindgen", "dep:js-sys"]
# Architecture
_arch = [] # some arch was picked
arch-std = ["_arch", "critical-section/std"]
arch-cortex-m = ["_arch", "dep:cortex-m"]
arch-xtensa = ["_arch"]
arch-riscv32 = ["_arch"]
arch-wasm = ["_arch", "dep:wasm-bindgen", "dep:js-sys"]
# Enable creating a `Pender` from an arbitrary function pointer callback.
pender-callback = []
# Enable the thread-mode executor (using WFE/SEV in Cortex-M, WFI in other embedded archs)
executor-thread = []
# Enable the interrupt-mode executor (available in Cortex-M only)
executor-interrupt = []
# Enable nightly-only features
nightly = []
@ -55,9 +68,11 @@ embassy-macros = { version = "0.1.0", path = "../embassy-macros" }
embassy-time = { version = "0.1.0", path = "../embassy-time", optional = true}
atomic-polyfill = "1.0.1"
critical-section = "1.1"
cfg-if = "1.0.0"
static_cell = "1.0"
# WASM dependencies
# arch-cortex-m dependencies
cortex-m = { version = "0.7.6", optional = true }
# arch-wasm dependencies
wasm-bindgen = { version = "0.2.82", optional = true }
js-sys = { version = "0.3", optional = true }

View File

@ -1,59 +1,209 @@
use core::arch::asm;
use core::marker::PhantomData;
use core::ptr;
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::arch::asm;
use core::marker::PhantomData;
use super::{raw, Spawner};
#[cfg(feature = "nightly")]
pub use embassy_macros::main_cortex_m as main;
/// Thread mode executor, using WFE/SEV.
///
/// This is the simplest and most common kind of executor. It runs on
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
/// is executed, to make the `WFE` exit from sleep and poll the task.
///
/// This executor allows for ultra low power consumption for chips where `WFE`
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
/// you may use [`raw::Executor`] directly to program custom behavior.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(|_| unsafe { asm!("sev") }, ptr::null_mut()),
not_send: PhantomData,
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl ThreadPender {
pub(crate) fn pend(self) {
unsafe { core::arch::asm!("sev") }
}
}
/// Run the executor.
/// Thread mode executor, using WFE/SEV.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
/// This is the simplest and most common kind of executor. It runs on
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
/// is executed, to make the `WFE` exit from sleep and poll the task.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
/// This executor allows for ultra low power consumption for chips where `WFE`
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
/// you may use [`raw::Executor`] directly to program custom behavior.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
asm!("wfe");
};
}
}
}
}
#[cfg(feature = "executor-interrupt")]
pub use interrupt::*;
#[cfg(feature = "executor-interrupt")]
mod interrupt {
use core::cell::UnsafeCell;
use core::mem::MaybeUninit;
use atomic_polyfill::{AtomicBool, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
use crate::raw::{self, Pender, PenderInner};
#[derive(Clone, Copy)]
pub(crate) struct InterruptPender(u16);
impl InterruptPender {
pub(crate) fn pend(self) {
// STIR is faster, but is only available in v7 and higher.
#[cfg(not(armv6m))]
{
let mut nvic: cortex_m::peripheral::NVIC = unsafe { core::mem::transmute(()) };
nvic.request(self);
}
#[cfg(armv6m)]
cortex_m::peripheral::NVIC::pend(self);
}
}
unsafe impl cortex_m::interrupt::InterruptNumber for InterruptPender {
fn number(self) -> u16 {
self.0
}
}
/// Interrupt mode executor.
///
/// This executor runs tasks in interrupt mode. The interrupt handler is set up
/// to poll tasks, and when a task is woken the interrupt is pended from software.
///
/// This allows running async tasks at a priority higher than thread mode. One
/// use case is to leave thread mode free for non-async tasks. Another use case is
/// to run multiple executors: one in thread mode for low priority tasks and another in
/// interrupt mode for higher priority tasks. Higher priority tasks will preempt lower
/// priority ones.
///
/// It is even possible to run multiple interrupt mode executors at different priorities,
/// by assigning different priorities to the interrupts. For an example on how to do this,
/// See the 'multiprio' example for 'embassy-nrf'.
///
/// To use it, you have to pick an interrupt that won't be used by the hardware.
/// Some chips reserve some interrupts for this purpose, sometimes named "software interrupts" (SWI).
/// If this is not the case, you may use an interrupt from any unused peripheral.
///
/// It is somewhat more complex to use, it's recommended to use the thread-mode
/// [`Executor`] instead, if it works for your use case.
pub struct InterruptExecutor {
started: AtomicBool,
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
}
unsafe impl Send for InterruptExecutor {}
unsafe impl Sync for InterruptExecutor {}
impl InterruptExecutor {
/// Create a new, not started `InterruptExecutor`.
#[inline]
pub const fn new() -> Self {
Self {
started: AtomicBool::new(false),
executor: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Executor interrupt callback.
///
/// # Safety
///
/// You MUST call this from the interrupt handler, and from nowhere else.
pub unsafe fn on_interrupt(&'static self) {
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
executor.poll();
}
/// Start the executor.
///
/// This initializes the executor, enables the interrupt, and returns.
/// The executor keeps running in the background through the interrupt.
///
/// This returns a [`SendSpawner`] you can use to spawn tasks on it. A [`SendSpawner`]
/// is returned instead of a [`Spawner`](embassy_executor::Spawner) because the executor effectively runs in a
/// different "thread" (the interrupt), so spawning tasks on it is effectively
/// sending them.
///
/// To obtain a [`Spawner`](embassy_executor::Spawner) for this executor, use [`Spawner::for_current_executor()`](embassy_executor::Spawner::for_current_executor()) from
/// a task running in it.
///
/// # Interrupt requirements
///
/// You must write the interrupt handler yourself, and make it call [`on_interrupt()`](Self::on_interrupt).
///
/// This method already enables (unmasks) the interrupt, you must NOT do it yourself.
///
/// You must set the interrupt priority before calling this method. You MUST NOT
/// do it after.
///
pub fn start(&'static self, irq: impl InterruptNumber) -> crate::SendSpawner {
if self
.started
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
panic!("InterruptExecutor::start() called multiple times on the same executor.");
}
loop {
unsafe {
self.inner.poll();
asm!("wfe");
};
(&mut *self.executor.get())
.as_mut_ptr()
.write(raw::Executor::new(Pender(PenderInner::Interrupt(InterruptPender(
irq.number(),
)))))
}
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
unsafe { NVIC::unmask(irq) }
executor.spawner().make_send()
}
}
}

View File

@ -1,72 +1,83 @@
use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::{AtomicBool, Ordering};
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-riscv32`.");
use super::{raw, Spawner};
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::marker::PhantomData;
use core::sync::atomic::{AtomicBool, Ordering};
/// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
/// RISCV32 Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData,
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
SIGNAL_WORK_THREAD_MODE.store(true, core::sync::atomic::Ordering::SeqCst);
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
/// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
//will only set this value to true.
critical_section::with(|_| {
// if there is work to do, loop back to polling
// TODO can we relax this?
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
}
// if not, wait for interrupt
else {
core::arch::asm!("wfi");
}
});
// if an interrupt occurred while waiting, it will be serviced here
/// RISCV32 Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
//will only set this value to true.
critical_section::with(|_| {
// if there is work to do, loop back to polling
// TODO can we relax this?
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
}
// if not, wait for interrupt
else {
core::arch::asm!("wfi");
}
});
// if an interrupt occurred while waiting, it will be serviced here
}
}
}
}

View File

@ -1,84 +1,100 @@
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-std`.");
use super::{raw, Spawner};
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};
/// Single-threaded std-based executor.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
signaler: &'static Signaler,
}
#[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let signaler = &*Box::leak(Box::new(Signaler::new()));
Self {
inner: raw::Executor::new(
|p| unsafe {
let s = &*(p as *const () as *const Signaler);
s.signal()
},
signaler as *const _ as _,
),
not_send: PhantomData,
signaler,
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender(&'static Signaler);
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
self.0.signal()
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe { self.inner.poll() };
self.signaler.wait()
}
/// Single-threaded std-based executor.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
signaler: &'static Signaler,
}
}
struct Signaler {
mutex: Mutex<bool>,
condvar: Condvar,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let signaler = &*Box::leak(Box::new(Signaler::new()));
Self {
inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender(signaler)))),
not_send: PhantomData,
signaler,
}
}
impl Signaler {
fn new() -> Self {
Self {
mutex: Mutex::new(false),
condvar: Condvar::new(),
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe { self.inner.poll() };
self.signaler.wait()
}
}
}
fn wait(&self) {
let mut signaled = self.mutex.lock().unwrap();
while !*signaled {
signaled = self.condvar.wait(signaled).unwrap();
}
*signaled = false;
struct Signaler {
mutex: Mutex<bool>,
condvar: Condvar,
}
fn signal(&self) {
let mut signaled = self.mutex.lock().unwrap();
*signaled = true;
self.condvar.notify_one();
impl Signaler {
fn new() -> Self {
Self {
mutex: Mutex::new(false),
condvar: Condvar::new(),
}
}
fn wait(&self) {
let mut signaled = self.mutex.lock().unwrap();
while !*signaled {
signaled = self.condvar.wait(signaled).unwrap();
}
*signaled = false;
}
fn signal(&self) {
let mut signaled = self.mutex.lock().unwrap();
*signaled = true;
self.condvar.notify_one();
}
}
}

View File

@ -1,74 +1,88 @@
use core::marker::PhantomData;
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-wasm`.");
use js_sys::Promise;
use wasm_bindgen::prelude::*;
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use super::raw::util::UninitCell;
use super::raw::{self};
use super::Spawner;
use core::marker::PhantomData;
/// WASM executor, wasm_bindgen to schedule tasks on the JS event loop.
pub struct Executor {
inner: raw::Executor,
ctx: &'static WasmContext,
not_send: PhantomData<*mut ()>,
}
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
use js_sys::Promise;
use wasm_bindgen::prelude::*;
pub(crate) struct WasmContext {
promise: Promise,
closure: UninitCell<Closure<dyn FnMut(JsValue)>>,
}
use crate::raw::util::UninitCell;
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
impl WasmContext {
pub fn new() -> Self {
Self {
promise: Promise::resolve(&JsValue::undefined()),
closure: UninitCell::uninit(),
}
/// WASM executor, wasm_bindgen to schedule tasks on the JS event loop.
pub struct Executor {
inner: raw::Executor,
ctx: &'static WasmContext,
not_send: PhantomData<*mut ()>,
}
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let ctx = &*Box::leak(Box::new(WasmContext::new()));
let inner = raw::Executor::new(
|p| unsafe {
let ctx = &*(p as *const () as *const WasmContext);
let _ = ctx.promise.then(ctx.closure.as_mut());
},
ctx as *const _ as _,
);
Self {
inner,
not_send: PhantomData,
ctx,
pub(crate) struct WasmContext {
promise: Promise,
closure: UninitCell<Closure<dyn FnMut(JsValue)>>,
}
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender(&'static WasmContext);
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
let _ = self.0.promise.then(unsafe { self.0.closure.as_mut() });
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
pub fn start(&'static mut self, init: impl FnOnce(Spawner)) {
unsafe {
let executor = &self.inner;
self.ctx.closure.write(Closure::new(move |_| {
executor.poll();
}));
init(self.inner.spawner());
impl WasmContext {
pub fn new() -> Self {
Self {
promise: Promise::resolve(&JsValue::undefined()),
closure: UninitCell::uninit(),
}
}
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let ctx = &*Box::leak(Box::new(WasmContext::new()));
Self {
inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender(ctx)))),
not_send: PhantomData,
ctx,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
pub fn start(&'static mut self, init: impl FnOnce(Spawner)) {
unsafe {
let executor = &self.inner;
self.ctx.closure.write(Closure::new(move |_| {
executor.poll();
}));
init(self.inner.spawner());
}
}
}
}

View File

@ -1,73 +1,84 @@
use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::{AtomicBool, Ordering};
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-xtensa`.");
use super::{raw, Spawner};
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::marker::PhantomData;
use core::sync::atomic::{AtomicBool, Ordering};
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
/// Xtensa Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData,
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
SIGNAL_WORK_THREAD_MODE.store(true, core::sync::atomic::Ordering::SeqCst);
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
// will only set this value to true.
// if there is work to do, loop back to polling
// TODO can we relax this?
critical_section::with(|_| {
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
} else {
// waiti sets the PS.INTLEVEL when slipping into sleep
// because critical sections in Xtensa are implemented via increasing
// PS.INTLEVEL the critical section ends here
// take care not add code after `waiti` if it needs to be inside the CS
core::arch::asm!("waiti 0"); // critical section ends here
}
});
/// Xtensa Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
// will only set this value to true.
// if there is work to do, loop back to polling
// TODO can we relax this?
critical_section::with(|_| {
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
} else {
// waiti sets the PS.INTLEVEL when slipping into sleep
// because critical sections in Xtensa are implemented via increasing
// PS.INTLEVEL the critical section ends here
// take care not add code after `waiti` if it needs to be inside the CS
core::arch::asm!("waiti 0"); // critical section ends here
}
});
}
}
}
}

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(any(feature = "std", feature = "wasm")), no_std)]
#![cfg_attr(all(feature = "nightly", target_arch = "xtensa"), feature(asm_experimental_arch))]
#![cfg_attr(not(any(feature = "arch-std", feature = "arch-wasm")), no_std)]
#![cfg_attr(all(feature = "nightly", feature = "arch-xtensa"), feature(asm_experimental_arch))]
#![allow(clippy::new_without_default)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
@ -10,47 +10,43 @@ pub(crate) mod fmt;
#[cfg(feature = "nightly")]
pub use embassy_macros::task;
cfg_if::cfg_if! {
if #[cfg(cortex_m)] {
#[path="arch/cortex_m.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_cortex_m as main;
}
else if #[cfg(target_arch="riscv32")] {
#[path="arch/riscv32.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_riscv as main;
}
else if #[cfg(all(target_arch="xtensa", feature = "nightly"))] {
#[path="arch/xtensa.rs"]
mod arch;
pub use arch::*;
}
else if #[cfg(feature="wasm")] {
#[path="arch/wasm.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
}
else if #[cfg(feature="std")] {
#[path="arch/std.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
}
macro_rules! check_at_most_one {
(@amo [$($feats:literal)*] [] [$($res:tt)*]) => {
#[cfg(any($($res)*))]
compile_error!(concat!("At most one of these features can be enabled at the same time:", $(" `", $feats, "`",)*));
};
(@amo $feats:tt [$curr:literal $($rest:literal)*] [$($res:tt)*]) => {
check_at_most_one!(@amo $feats [$($rest)*] [$($res)* $(all(feature=$curr, feature=$rest),)*]);
};
($($f:literal),*$(,)?) => {
check_at_most_one!(@amo [$($f)*] [$($f)*] []);
};
}
check_at_most_one!("arch-cortex-m", "arch-riscv32", "arch-xtensa", "arch-std", "arch-wasm",);
#[cfg(feature = "_arch")]
#[cfg_attr(feature = "arch-cortex-m", path = "arch/cortex_m.rs")]
#[cfg_attr(feature = "arch-riscv32", path = "arch/riscv32.rs")]
#[cfg_attr(feature = "arch-xtensa", path = "arch/xtensa.rs")]
#[cfg_attr(feature = "arch-std", path = "arch/std.rs")]
#[cfg_attr(feature = "arch-wasm", path = "arch/wasm.rs")]
mod arch;
#[cfg(feature = "_arch")]
pub use arch::*;
pub mod raw;
mod spawner;
pub use spawner::*;
/// Implementation details for embassy macros.
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)]
/// Implementation details for embassy macros. DO NOT USE.
pub mod export {
pub mod _export {
#[cfg(feature = "rtos-trace")]
pub use rtos_trace::trace;
pub use static_cell::StaticCell;
/// Expands the given block of code when `embassy-executor` is compiled with
/// the `rtos-trace-interrupt` feature.
@ -70,14 +66,3 @@ pub mod export {
($($tt:tt)*) => {};
}
}
pub mod raw;
mod spawner;
pub use spawner::*;
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)]
pub mod _export {
pub use static_cell::StaticCell;
}

View File

@ -19,7 +19,6 @@ use core::marker::PhantomData;
use core::mem;
use core::pin::Pin;
use core::ptr::NonNull;
use core::sync::atomic::AtomicPtr;
use core::task::{Context, Poll};
use atomic_polyfill::{AtomicU32, Ordering};
@ -290,10 +289,60 @@ impl<F: Future + 'static, const N: usize> TaskPool<F, N> {
}
}
#[derive(Clone, Copy)]
pub(crate) enum PenderInner {
#[cfg(feature = "executor-thread")]
Thread(crate::arch::ThreadPender),
#[cfg(feature = "executor-interrupt")]
Interrupt(crate::arch::InterruptPender),
#[cfg(feature = "pender-callback")]
Callback { func: fn(*mut ()), context: *mut () },
}
unsafe impl Send for PenderInner {}
unsafe impl Sync for PenderInner {}
/// Platform/architecture-specific action executed when an executor has pending work.
///
/// When a task within an executor is woken, the `Pender` is called. This does a
/// platform/architecture-specific action to signal there is pending work in the executor.
/// When this happens, you must arrange for [`Executor::poll`] to be called.
///
/// You can think of it as a waker, but for the whole executor.
pub struct Pender(pub(crate) PenderInner);
impl Pender {
/// Create a `Pender` that will call an arbitrary function pointer.
///
/// # Arguments
///
/// - `func`: The function pointer to call.
/// - `context`: Opaque context pointer, that will be passed to the function pointer.
#[cfg(feature = "pender-callback")]
pub fn new_from_callback(func: fn(*mut ()), context: *mut ()) -> Self {
Self(PenderInner::Callback {
func,
context: context.into(),
})
}
}
impl Pender {
pub(crate) fn pend(&self) {
match self.0 {
#[cfg(feature = "executor-thread")]
PenderInner::Thread(x) => x.pend(),
#[cfg(feature = "executor-interrupt")]
PenderInner::Interrupt(x) => x.pend(),
#[cfg(feature = "pender-callback")]
PenderInner::Callback { func, context } => func(context),
}
}
}
pub(crate) struct SyncExecutor {
run_queue: RunQueue,
signal_fn: fn(*mut ()),
signal_ctx: AtomicPtr<()>,
pender: Pender,
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue: timer_queue::TimerQueue,
@ -302,16 +351,13 @@ pub(crate) struct SyncExecutor {
}
impl SyncExecutor {
pub(crate) fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self {
pub(crate) fn new(pender: Pender) -> Self {
#[cfg(feature = "integrated-timers")]
let alarm = unsafe { unwrap!(driver::allocate_alarm()) };
#[cfg(feature = "integrated-timers")]
driver::set_alarm_callback(alarm, signal_fn, signal_ctx);
Self {
run_queue: RunQueue::new(),
signal_fn,
signal_ctx: AtomicPtr::new(signal_ctx),
pender,
#[cfg(feature = "integrated-timers")]
timer_queue: timer_queue::TimerQueue::new(),
@ -332,10 +378,16 @@ impl SyncExecutor {
trace::task_ready_begin(task.as_ptr() as u32);
if self.run_queue.enqueue(cs, task) {
(self.signal_fn)(self.signal_ctx.load(Ordering::Relaxed))
self.pender.pend();
}
}
#[cfg(feature = "integrated-timers")]
fn alarm_callback(ctx: *mut ()) {
let this: &Self = unsafe { &*(ctx as *const Self) };
this.pender.pend();
}
pub(super) unsafe fn spawn(&'static self, task: TaskRef) {
task.header().executor.set(Some(self));
@ -351,6 +403,9 @@ impl SyncExecutor {
///
/// Same as [`Executor::poll`], plus you must only call this on the thread this executor was created.
pub(crate) unsafe fn poll(&'static self) {
#[cfg(feature = "integrated-timers")]
driver::set_alarm_callback(self.alarm, Self::alarm_callback, self as *const _ as *mut ());
#[allow(clippy::never_loop)]
loop {
#[cfg(feature = "integrated-timers")]
@ -417,14 +472,14 @@ impl SyncExecutor {
///
/// - To get the executor to do work, call `poll()`. This will poll all queued tasks (all tasks
/// that "want to run").
/// - You must supply a `signal_fn`. The executor will call it to notify you it has work
/// - You must supply a [`Pender`]. The executor will call it to notify you it has work
/// to do. You must arrange for `poll()` to be called as soon as possible.
///
/// `signal_fn` can be called from *any* context: any thread, any interrupt priority
/// The [`Pender`] can be called from *any* context: any thread, any interrupt priority
/// level, etc. It may be called synchronously from any `Executor` method call as well.
/// You must deal with this correctly.
///
/// In particular, you must NOT call `poll` directly from `signal_fn`, as this violates
/// In particular, you must NOT call `poll` directly from the pender callback, as this violates
/// the requirement for `poll` to not be called reentrantly.
#[repr(transparent)]
pub struct Executor {
@ -437,15 +492,15 @@ impl Executor {
pub(crate) unsafe fn wrap(inner: &SyncExecutor) -> &Self {
mem::transmute(inner)
}
/// Create a new executor.
///
/// When the executor has work to do, it will call `signal_fn` with
/// `signal_ctx` as argument.
/// When the executor has work to do, it will call the [`Pender`].
///
/// See [`Executor`] docs for details on `signal_fn`.
pub fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self {
/// See [`Executor`] docs for details on `Pender`.
pub fn new(pender: Pender) -> Self {
Self {
inner: SyncExecutor::new(signal_fn, signal_ctx),
inner: SyncExecutor::new(pender),
_not_sync: PhantomData,
}
}
@ -468,16 +523,16 @@ impl Executor {
/// This loops over all tasks that are queued to be polled (i.e. they're
/// freshly spawned or they've been woken). Other tasks are not polled.
///
/// You must call `poll` after receiving a call to `signal_fn`. It is OK
/// to call `poll` even when not requested by `signal_fn`, but it wastes
/// You must call `poll` after receiving a call to the [`Pender`]. It is OK
/// to call `poll` even when not requested by the `Pender`, but it wastes
/// energy.
///
/// # Safety
///
/// You must NOT call `poll` reentrantly on the same executor.
///
/// In particular, note that `poll` may call `signal_fn` synchronously. Therefore, you
/// must NOT directly call `poll()` from your `signal_fn`. Instead, `signal_fn` has to
/// In particular, note that `poll` may call the `Pender` synchronously. Therefore, you
/// must NOT directly call `poll()` from the `Pender` callback. Instead, the callback has to
/// somehow schedule for `poll()` to be called later, at a time you know for sure there's
/// no `poll()` already running.
pub unsafe fn poll(&'static self) {

View File

@ -10,12 +10,12 @@ pub fn run(name: syn::Ident) -> Result<TokenStream, TokenStream> {
let (isr_enter, isr_exit) = (
quote! {
::embassy_executor::rtos_trace_interrupt! {
::embassy_executor::export::trace::isr_enter();
::embassy_executor::_export::trace::isr_enter();
}
},
quote! {
::embassy_executor::rtos_trace_interrupt! {
::embassy_executor::export::trace::isr_exit();
::embassy_executor::_export::trace::isr_exit();
}
},
);

View File

@ -50,10 +50,13 @@ fn main() {
// We *shouldn't* have singletons for these, but the HAL currently requires
// singletons, for using with RccPeripheral to enable/disable clocks to them.
"rcc" => {
if r.version.starts_with("h7") {
if r.version.starts_with("h7") || r.version.starts_with("f4") {
singletons.push("MCO1".to_string());
singletons.push("MCO2".to_string());
}
if r.version.starts_with("l4") {
singletons.push("MCO".to_string());
}
singletons.push(p.name.to_string());
}
//"dbgmcu" => {}
@ -258,6 +261,7 @@ fn main() {
(("i2c", "SCL"), quote!(crate::i2c::SclPin)),
(("rcc", "MCO_1"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO_2"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO"), quote!(crate::rcc::McoPin)),
(("dcmi", "D0"), quote!(crate::dcmi::D0Pin)),
(("dcmi", "D1"), quote!(crate::dcmi::D1Pin)),
(("dcmi", "D2"), quote!(crate::dcmi::D2Pin)),
@ -447,13 +451,22 @@ fn main() {
// MCO is special
if pin.signal.starts_with("MCO_") {
// Supported in H7 only for now
if regs.version.starts_with("h7") {
if regs.version.starts_with("h7") || regs.version.starts_with("f4") {
peri = format_ident!("{}", pin.signal.replace("_", ""));
} else {
continue;
}
}
if pin.signal == "MCO" {
// Supported in H7 only for now
if regs.version.starts_with("l4") {
peri = format_ident!("MCO");
} else {
continue;
}
}
g.extend(quote! {
pin_trait_impl!(#tr, #peri, #pin_name, #af);
})

View File

@ -1,8 +1,16 @@
use core::marker::PhantomData;
use embassy_hal_common::into_ref;
use stm32_metapac::rcc::vals::{Mco1, Mco2, Mcopre};
use super::sealed::RccPeripheral;
use crate::gpio::sealed::AFType;
use crate::gpio::Speed;
use crate::pac::rcc::vals::{Hpre, Ppre, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
@ -96,6 +104,164 @@ unsafe fn setup_pll(pllsrcclk: u32, use_hse: bool, pllsysclk: Option<u32>, pll48
}
}
pub enum McoClock {
DIV1,
DIV2,
DIV3,
DIV4,
DIV5,
}
impl McoClock {
fn into_raw(&self) -> Mcopre {
match self {
McoClock::DIV1 => Mcopre::DIV1,
McoClock::DIV2 => Mcopre::DIV2,
McoClock::DIV3 => Mcopre::DIV3,
McoClock::DIV4 => Mcopre::DIV4,
McoClock::DIV5 => Mcopre::DIV5,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco1Source {
Hsi,
Lse,
Hse,
Pll,
}
impl Default for Mco1Source {
fn default() -> Self {
Self::Hsi
}
}
pub trait McoSource {
type Raw;
fn into_raw(&self) -> Self::Raw;
}
impl McoSource for Mco1Source {
type Raw = Mco1;
fn into_raw(&self) -> Self::Raw {
match self {
Mco1Source::Hsi => Mco1::HSI,
Mco1Source::Lse => Mco1::LSE,
Mco1Source::Hse => Mco1::HSE,
Mco1Source::Pll => Mco1::PLL,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco2Source {
SysClk,
Plli2s,
Hse,
Pll,
}
impl Default for Mco2Source {
fn default() -> Self {
Self::SysClk
}
}
impl McoSource for Mco2Source {
type Raw = Mco2;
fn into_raw(&self) -> Self::Raw {
match self {
Mco2Source::SysClk => Mco2::SYSCLK,
Mco2Source::Plli2s => Mco2::PLLI2S,
Mco2Source::Hse => Mco2::HSE,
Mco2Source::Pll => Mco2::PLL,
}
}
}
pub(crate) mod sealed {
use stm32_metapac::rcc::vals::Mcopre;
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
impl sealed::McoInstance for peripherals::MCO1 {
type Source = Mco1;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mco1(source);
w.set_mco1pre(prescaler);
});
match source {
Mco1::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
}
Mco1::HSI => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO1 {}
impl sealed::McoInstance for peripherals::MCO2 {
type Source = Mco2;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mco2(source);
w.set_mco2pre(prescaler);
});
match source {
Mco2::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
}
#[cfg(not(stm32f410))]
Mco2::PLLI2S => {
RCC.cr().modify(|w| w.set_plli2son(true));
while !RCC.cr().read().plli2srdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO2 {}
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
pin: impl Peripheral<P = impl McoPin<T>> + 'd,
source: impl McoSource<Raw = T::Source>,
prescaler: McoClock,
) -> Self {
into_ref!(pin);
critical_section::with(|_| unsafe {
T::apply_clock_settings(source.into_raw(), prescaler.into_raw());
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
pin.set_speed(Speed::VeryHigh);
});
Self { phantom: PhantomData }
}
}
unsafe fn flash_setup(sysclk: u32) {
use crate::pac::flash::vals::Latency;

View File

@ -1,7 +1,15 @@
use core::marker::PhantomData;
use embassy_hal_common::into_ref;
use stm32_metapac::rcc::vals::{Mcopre, Mcosel};
use crate::gpio::sealed::AFType;
use crate::gpio::Speed;
use crate::pac::rcc::vals::{Hpre, Msirange, Pllsrc, Ppre, Sw};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
@ -298,6 +306,131 @@ impl Default for Config {
}
}
pub enum McoClock {
DIV1,
DIV2,
DIV4,
DIV8,
DIV16,
}
impl McoClock {
fn into_raw(&self) -> Mcopre {
match self {
McoClock::DIV1 => Mcopre::DIV1,
McoClock::DIV2 => Mcopre::DIV2,
McoClock::DIV4 => Mcopre::DIV4,
McoClock::DIV8 => Mcopre::DIV8,
McoClock::DIV16 => Mcopre::DIV16,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco1Source {
Disabled,
Lse,
Lsi,
Hse,
Hsi16,
PllClk,
SysClk,
Msi,
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Hsi48,
}
impl Default for Mco1Source {
fn default() -> Self {
Self::Hsi16
}
}
pub trait McoSource {
type Raw;
fn into_raw(&self) -> Self::Raw;
}
impl McoSource for Mco1Source {
type Raw = Mcosel;
fn into_raw(&self) -> Self::Raw {
match self {
Mco1Source::Disabled => Mcosel::NOCLOCK,
Mco1Source::Lse => Mcosel::LSE,
Mco1Source::Lsi => Mcosel::LSI,
Mco1Source::Hse => Mcosel::HSE,
Mco1Source::Hsi16 => Mcosel::HSI16,
Mco1Source::PllClk => Mcosel::PLL,
Mco1Source::SysClk => Mcosel::SYSCLK,
Mco1Source::Msi => Mcosel::MSI,
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Mco1Source::Hsi48 => Mcosel::HSI48,
}
}
}
pub(crate) mod sealed {
use stm32_metapac::rcc::vals::Mcopre;
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
impl sealed::McoInstance for peripherals::MCO {
type Source = Mcosel;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mcosel(source);
w.set_mcopre(prescaler);
});
match source {
Mcosel::HSI16 => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
}
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Mcosel::HSI48 => {
RCC.crrcr().modify(|w| w.set_hsi48on(true));
while !RCC.crrcr().read().hsi48rdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO {}
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
pin: impl Peripheral<P = impl McoPin<T>> + 'd,
source: impl McoSource<Raw = T::Source>,
prescaler: McoClock,
) -> Self {
into_ref!(pin);
critical_section::with(|_| unsafe {
T::apply_clock_settings(source.into_raw(), prescaler.into_raw());
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
pin.set_speed(Speed::VeryHigh);
});
Self { phantom: PhantomData }
}
}
pub(crate) unsafe fn init(config: Config) {
let (sys_clk, sw) = match config.mux {
ClockSrc::MSI(range) => {

View File

@ -1,55 +1,51 @@
use core::cell::RefCell;
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::slice;
use core::task::Poll;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_hal_common::ring_buffer::RingBuffer;
use embassy_sync::waitqueue::WakerRegistration;
use embassy_cortex_m::interrupt::Interrupt;
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State<'d, T: BasicInstance>(StateStorage<StateInner<'d, T>>);
impl<'d, T: BasicInstance> State<'d, T> {
pub struct State {
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self {
Self(StateStorage::new())
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
}
}
struct StateInner<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
rx_waker: WakerRegistration,
rx: RingBuffer<'d>,
tx_waker: WakerRegistration,
tx: RingBuffer<'d>,
}
unsafe impl<'d, T: BasicInstance> Send for StateInner<'d, T> {}
unsafe impl<'d, T: BasicInstance> Sync for StateInner<'d, T> {}
pub struct BufferedUart<'d, T: BasicInstance> {
inner: RefCell<PeripheralMutex<'d, StateInner<'d, T>>>,
rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartTx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
pub struct BufferedUartTx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartRx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
pub struct BufferedUartRx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: BasicInstance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: BasicInstance> BufferedUart<'d, T> {
pub fn new(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
@ -57,15 +53,14 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
T::enable();
T::reset();
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
}
pub fn new_with_rtscts(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
@ -86,16 +81,15 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
}
#[cfg(not(usart_v1))]
pub fn new_with_de(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
de: impl Peripheral<P = impl DePin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
@ -113,23 +107,27 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
}
fn new_inner(
state: &'d mut State<'d, T>,
_peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> BufferedUart<'d, T> {
into_ref!(_peri, rx, tx, irq);
let r = T::regs();
let state = T::buffered_state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
@ -147,273 +145,259 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self {
inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner {
phantom: PhantomData,
tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(),
rx: RingBuffer::new(rx_buffer),
rx_waker: WakerRegistration::new(),
})),
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn split<'u>(&'u mut self) -> (BufferedUartRx<'u, 'd, T>, BufferedUartTx<'u, 'd, T>) {
(BufferedUartRx { inner: self }, BufferedUartTx { inner: self })
pub fn split(self) -> (BufferedUartTx<'d, T>, BufferedUartRx<'d, T>) {
(self.tx, self.rx)
}
}
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, Error> {
impl<'d, T: BasicInstance> BufferedUartRx<'d, T> {
async fn read(&self, buf: &mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let res = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let data = rx_reader.pop_slice();
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
let do_pend = state.rx_buf.is_full();
rx_reader.pop_done(len);
return Poll::Ready(Ok(len));
if do_pend {
unsafe { T::Interrupt::steal().pend() };
}
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
})
.await
}
fn blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
loop {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let data = rx_reader.pop_slice();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
let do_pend = state.rx_buf.is_full();
rx_reader.pop_done(len);
if do_pend {
unsafe { T::Interrupt::steal().pend() };
}
return Ok(len);
}
}
}
async fn fill_buf(&self) -> Result<&[u8], Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
state.rx_waker.register(cx.waker());
Poll::Pending
});
if do_pend {
inner.pend();
return Poll::Pending;
}
res
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
.await
}
fn inner_blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
loop {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let n = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
fn consume(&self, amt: usize) {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let full = state.rx_buf.is_full();
rx_reader.pop_done(amt);
if full {
unsafe { T::Interrupt::steal().pend() };
}
}
}
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
impl<'d, T: BasicInstance> BufferedUartTx<'d, T> {
async fn write(&self, buf: &[u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
let empty = state.tx_buf.is_empty();
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
return len;
}
0
});
if do_pend {
inner.pend();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let data = tx_writer.push_slice();
if data.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
if n > 0 {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
if empty {
unsafe { T::Interrupt::steal() }.pend();
}
Poll::Ready(Ok(n))
})
.await
}
async fn flush(&self) -> Result<(), Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
.await
}
fn blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
loop {
let state = T::buffered_state();
let empty = state.tx_buf.is_empty();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let data = tx_writer.push_slice();
if !data.is_empty() {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
if empty {
unsafe { T::Interrupt::steal() }.pend();
}
return Ok(n);
}
}
}
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let mut inner = self.inner.borrow_mut();
let (poll, empty) = inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
inner.pend();
}
poll
})
.await
}
async fn inner_flush<'a>(&'a self) -> Result<(), Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
if !state.tx.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
})
.await
}
fn inner_blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
fn blocking_flush(&self) -> Result<(), Error> {
loop {
let mut inner = self.inner.borrow_mut();
let (n, empty) = inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
return (0, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(n, empty)
});
if empty {
inner.pend();
}
if n != 0 {
return Ok(n);
}
}
}
fn inner_blocking_flush(&self) -> Result<(), Error> {
loop {
if !self.inner.borrow_mut().with(|state| state.tx.is_empty()) {
let state = T::buffered_state();
if state.tx_buf.is_empty() {
return Ok(());
}
}
}
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], Error>>::Pending
})
})
.await
}
fn inner_consume(&self, amt: usize) {
let mut inner = self.inner.borrow_mut();
let signal = inner.with(|state| {
let full = state.rx.is_full();
state.rx.pop(amt);
full
});
if signal {
inner.pend();
}
}
}
impl<'d, T: BasicInstance> StateInner<'d, T>
where
Self: 'd,
{
fn on_rx(&mut self) {
let r = T::regs();
impl<'d, T: BasicInstance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
state.rx_buf.deinit();
// This read also clears the error and idle interrupt flags on v1.
let b = rdr(r).read_volatile();
if sr.rxne() {
if sr.pe() {
warn!("Parity error");
}
if sr.fe() {
warn!("Framing error");
}
if sr.ne() {
warn!("Noise error");
}
if sr.ore() {
warn!("Overrun error");
}
let buf = self.rx.push_buf();
if !buf.is_empty() {
buf[0] = b;
self.rx.push(1);
} else {
warn!("RX buffer full, discard received byte");
}
if self.rx.is_full() {
self.rx_waker.wake();
}
}
if sr.idle() {
self.rx_waker.wake();
};
}
}
fn on_tx(&mut self) {
let r = T::regs();
unsafe {
if sr(r).read().txe() {
let buf = self.tx.pop_buf();
if !buf.is_empty() {
r.cr1().modify(|w| {
w.set_txeie(true);
});
tdr(r).write_volatile(buf[0].into());
self.tx.pop(1);
self.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.cr1().modify(|w| {
w.set_txeie(false);
});
}
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
impl<'d, T: BasicInstance> PeripheralState for StateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.on_rx();
self.on_tx();
impl<'d, T: BasicInstance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.tx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
unsafe fn on_interrupt<T: BasicInstance>(_: *mut ()) {
let r = T::regs();
let state = T::buffered_state();
// RX
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
if sr.rxne() {
if sr.pe() {
warn!("Parity error");
}
if sr.fe() {
warn!("Framing error");
}
if sr.ne() {
warn!("Noise error");
}
if sr.ore() {
warn!("Overrun error");
}
let mut rx_writer = state.rx_buf.writer();
let buf = rx_writer.push_slice();
if !buf.is_empty() {
// This read also clears the error and idle interrupt flags on v1.
buf[0] = rdr(r).read_volatile();
rx_writer.push_done(1);
} else {
// FIXME: Should we disable any further RX interrupts when the buffer becomes full.
}
if state.rx_buf.is_full() {
state.rx_waker.wake();
}
}
if sr.idle() {
state.rx_waker.wake();
};
}
// TX
unsafe {
if sr(r).read().txe() {
let mut tx_reader = state.tx_buf.reader();
let buf = tx_reader.pop_slice();
if !buf.is_empty() {
r.cr1().modify(|w| {
w.set_txeie(true);
});
tdr(r).write_volatile(buf[0].into());
tx_reader.pop_done(1);
state.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.cr1().modify(|w| {
w.set_txeie(false);
});
}
}
}
}
@ -427,94 +411,284 @@ impl<'d, T: BasicInstance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error;
}
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_read(buf).await
self.rx.read(buf).await
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_read(buf).await
Self::read(self, buf).await
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner_fill_buf().await
self.rx.fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner_consume(amt)
self.rx.consume(amt)
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner.inner_fill_buf().await
Self::fill_buf(self).await
}
fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
Self::consume(self, amt)
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_write(buf).await
self.tx.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_flush().await
self.tx.flush().await
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_write(buf).await
Self::write(self, buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_flush().await
Self::flush(self).await
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUart<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_blocking_read(buf)
self.rx.blocking_read(buf)
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_read(buf)
self.blocking_read(buf)
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUart<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_blocking_write(buf)
self.tx.blocking_write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_blocking_flush()
self.tx.blocking_flush()
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_write(buf)
Self::blocking_write(self, buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_blocking_flush()
Self::blocking_flush(self)
}
}
mod eh02 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
let sr = sr(r).read();
if sr.pe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Parity))
} else if sr.fe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Framing))
} else if sr.ne() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Noise))
} else if sr.ore() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Overrun))
} else if sr.rxne() {
Ok(rdr(r).read_volatile())
} else {
Err(nb::Error::WouldBlock)
}
}
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.tx.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
embedded_hal_02::serial::Read::read(self)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.tx.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.tx.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.blocking_flush().map_err(nb::Error::Other)
}
}
}
#[cfg(all(
feature = "unstable-traits",
feature = "nightly",
feature = "_todo_embedded_hal_serial"
))]
mod eha {
use core::future::Future;
use super::*;
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
Self::write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
Self::read(buf)
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
self.tx.write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
self.rx.read(buf)
}
}
}

View File

@ -1112,6 +1112,9 @@ pub(crate) mod sealed {
fn regs() -> Regs;
fn state() -> &'static State;
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State;
}
pub trait FullInstance: BasicInstance {
@ -1147,6 +1150,12 @@ macro_rules! impl_lpuart {
static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new();
&STATE
}
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
}
impl BasicInstance for peripherals::$inst {}

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] }
embassy-nrf = { version = "0.1.0", path = "../../../../embassy-nrf", features = ["time-driver-rtc1", "gpiote", "nightly"] }
embassy-boot = { version = "0.1.0", path = "../../../../embassy-boot/boot" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] }
embassy-rp = { version = "0.1.0", path = "../../../../embassy-rp", features = ["time-driver", "unstable-traits", "nightly"] }
embassy-boot-rp = { version = "0.1.0", path = "../../../../embassy-boot/rp" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f303re", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f767zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32h743zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l072cz", "time-driver-any", "exti", "memory-x"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l151cb-a", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l475vg", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32wl55jc-cm4", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -17,7 +17,7 @@ log = [
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features=["rtos-trace", "rtos-trace-interrupt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "rtos-trace-interrupt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time" }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] }

View File

@ -12,7 +12,7 @@ nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/night
[dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time"] }
embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet"], optional = true }

View File

@ -9,7 +9,7 @@ embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = [
"defmt",
] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = [
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread",
"nightly",
"defmt",
"integrated-timers",

View File

@ -7,7 +7,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-rp = { version = "0.1.0", path = "../../embassy-rp", features = ["defmt", "unstable-traits", "nightly", "unstable-pac", "time-driver", "pio", "critical-section-impl"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["log"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["log", "std", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-std", "executor-thread", "log", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["log", "std", "nightly"] }
embassy-net = { version = "0.1.0", path = "../../embassy-net", features=[ "std", "nightly", "log", "medium-ethernet", "tcp", "udp", "dns", "dhcpv4", "unstable-traits", "proto-ipv6"] }
embassy-net-driver = { version = "0.1.0", path = "../../embassy-net-driver" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "time-driver-any", "stm32c031c6", "memory-x", "unstable-pac", "exti"] }

View File

@ -13,7 +13,7 @@ defmt = "0.3"
defmt-rtt = "0.4"
panic-probe = "0.3"
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "memory-x", "stm32f091rc", "time-driver-any", "exti", "unstable-pac"] }
static_cell = "1.0"

View File

@ -62,7 +62,7 @@ use core::mem;
use cortex_m::peripheral::NVIC;
use cortex_m_rt::entry;
use defmt::*;
use embassy_stm32::executor::{Executor, InterruptExecutor};
use embassy_executor::{Executor, InterruptExecutor};
use embassy_stm32::interrupt;
use embassy_stm32::pac::Interrupt;
use embassy_time::{Duration, Instant, Timer};

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f103c8", "unstable-pac", "memory-x", "time-driver-any"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f207zg", "unstable-pac", "memory-x", "time-driver-any", "exti"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f303ze", "unstable-pac", "memory-x", "time-driver-any", "exti"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -62,7 +62,7 @@ use core::mem;
use cortex_m::peripheral::NVIC;
use cortex_m_rt::entry;
use defmt::*;
use embassy_stm32::executor::{Executor, InterruptExecutor};
use embassy_executor::{Executor, InterruptExecutor};
use embassy_stm32::interrupt;
use embassy_stm32::pac::Interrupt;
use embassy_time::{Duration, Instant, Timer};

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers", "arch-cortex-m", "executor-thread", "executor-interrupt"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "unstable-traits", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "unstable-traits", "defmt", "stm32f429zi", "unstable-pac", "memory-x", "time-driver-any", "exti"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -0,0 +1,30 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::gpio::{Level, Output, Speed};
use embassy_stm32::rcc::{Mco, Mco1Source, Mco2Source, McoClock};
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
info!("Hello World!");
let _mco1 = Mco::new(p.MCO1, p.PA8, Mco1Source::Hsi, McoClock::DIV1);
let _mco2 = Mco::new(p.MCO2, p.PC9, Mco2Source::Pll, McoClock::DIV4);
let mut led = Output::new(p.PB7, Level::High, Speed::Low);
loop {
info!("high");
led.set_high();
Timer::after(Duration::from_millis(300)).await;
info!("low");
led.set_low();
Timer::after(Duration::from_millis(300)).await;
}
}

View File

@ -62,7 +62,7 @@ use core::mem;
use cortex_m::peripheral::NVIC;
use cortex_m_rt::entry;
use defmt::*;
use embassy_stm32::executor::{Executor, InterruptExecutor};
use embassy_executor::{Executor, InterruptExecutor};
use embassy_stm32::interrupt;
use embassy_stm32::pac::Interrupt;
use embassy_time::{Duration, Instant, Timer};

View File

@ -5,7 +5,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::interrupt;
use embassy_stm32::usart::{BufferedUart, Config, State};
use embassy_stm32::usart::{BufferedUart, Config};
use embedded_io::asynch::BufRead;
use {defmt_rtt as _, panic_probe as _};
@ -16,20 +16,10 @@ async fn main(_spawner: Spawner) {
let config = Config::default();
let mut state = State::new();
let irq = interrupt::take!(USART3);
let mut tx_buf = [0u8; 32];
let mut rx_buf = [0u8; 32];
let mut buf_usart = BufferedUart::new(
&mut state,
p.USART3,
p.PD9,
p.PD8,
irq,
&mut tx_buf,
&mut rx_buf,
config,
);
let mut buf_usart = BufferedUart::new(p.USART3, irq, p.PD9, p.PD8, &mut tx_buf, &mut rx_buf, config);
loop {
let buf = buf_usart.fill_buf().await.unwrap();

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f767zi", "unstable-pac", "time-driver-any", "exti"] }
embassy-net = { path = "../../embassy-net", features = ["defmt", "nightly", "tcp", "dhcpv4", "medium-ethernet"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "time-driver-any", "stm32g071rb", "memory-x", "unstable-pac", "exti"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "time-driver-any", "stm32g491re", "memory-x", "unstable-pac", "exti"] }
embassy-hal-common = {version = "0.1.0", path = "../../embassy-hal-common" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "unstable-traits", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32h743bi", "time-driver-any", "exti", "unstable-pac", "unstable-traits"] }
embassy-net = { path = "../../embassy-net", features = ["defmt", "nightly", "tcp", "dhcpv4", "medium-ethernet", "unstable-traits", "proto-ipv6"] }

View File

@ -10,7 +10,7 @@ nightly = ["embassy-stm32/nightly", "embassy-lora", "lorawan-device", "lorawan",
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["defmt", "stm32l072cz", "time-driver-any", "exti", "unstable-traits", "memory-x"] }
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["sx127x", "time", "defmt"], optional = true}

View File

@ -5,7 +5,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::interrupt;
use embassy_stm32::usart::{BufferedUart, Config, State};
use embassy_stm32::usart::{BufferedUart, Config};
use embedded_io::asynch::{Read, Write};
use {defmt_rtt as _, panic_probe as _};
@ -20,20 +20,8 @@ async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.baudrate = 9600;
let mut state = State::new();
let irq = interrupt::take!(USART2);
let mut usart = unsafe {
BufferedUart::new(
&mut state,
p.USART2,
p.PA3,
p.PA2,
irq,
&mut TX_BUFFER,
&mut RX_BUFFER,
config,
)
};
let mut usart = unsafe { BufferedUart::new(p.USART2, irq, p.PA3, p.PA2, &mut TX_BUFFER, &mut RX_BUFFER, config) };
usart.write_all(b"Hello Embassy World!\r\n").await.unwrap();
info!("wrote Hello, starting echo");

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32l151cb-a", "time-driver-any", "memory-x"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-embedded-hal = { version = "0.1.0", path = "../../embassy-embedded-hal" }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "unstable-pac", "stm32l4s5vi", "time-driver-any", "exti", "unstable-traits"] }

View File

@ -0,0 +1,27 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::gpio::{Level, Output, Speed};
use embassy_stm32::rcc::{Mco, Mco1Source, McoClock};
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
info!("Hello World!");
let _mco = Mco::new(p.MCO, p.PA8, Mco1Source::Hsi16, McoClock::DIV1);
let mut led = Output::new(p.PB14, Level::High, Speed::Low);
loop {
led.set_high();
Timer::after(Duration::from_millis(300)).await;
led.set_low();
Timer::after(Duration::from_millis(300)).await;
}
}

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "unstable-pac", "stm32l552ze", "time-driver-any", "exti", "unstable-traits", "memory-x"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "unstable-pac", "stm32u585ai", "time-driver-any", "memory-x" ] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32wb55cc", "time-driver-any", "exti"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32wl55jc-cm4", "time-driver-any", "memory-x", "subghz", "unstable-pac", "exti"] }
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["stm32wl", "time", "defmt"] }

View File

@ -9,7 +9,7 @@ crate-type = ["cdylib"]
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["log"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["log", "wasm", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-wasm", "executor-thread", "log", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["log", "wasm", "nightly"] }
wasm-logger = "0.2.0"

View File

@ -7,7 +7,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt", "nightly"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "nightly", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nightly", "unstable-traits", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] }
embedded-io = { version = "0.4.0", features = ["async"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt"] }
embassy-rp = { version = "0.1.0", path = "../../embassy-rp", features = ["nightly", "defmt", "unstable-pac", "unstable-traits", "time-driver", "critical-section-impl"] }
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }

View File

@ -15,7 +15,7 @@ stm32u585ai = ["embassy-stm32/stm32u585ai"] # IoT board
[dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "unstable-pac", "memory-x", "time-driver-tim2"] }