stm32: update stm32-metapac.

This commit is contained in:
Dario Nieuwenhuis
2023-06-19 03:07:26 +02:00
parent adaed307b4
commit 558918651e
68 changed files with 2893 additions and 3568 deletions

View File

@ -68,53 +68,45 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
T::enable();
T::reset();
unsafe {
scl.set_as_af_pull(
scl.af_num(),
AFType::OutputOpenDrain,
match config.scl_pullup {
true => Pull::Up,
false => Pull::None,
},
);
sda.set_as_af_pull(
sda.af_num(),
AFType::OutputOpenDrain,
match config.sda_pullup {
true => Pull::Up,
false => Pull::None,
},
);
}
scl.set_as_af_pull(
scl.af_num(),
AFType::OutputOpenDrain,
match config.scl_pullup {
true => Pull::Up,
false => Pull::None,
},
);
sda.set_as_af_pull(
sda.af_num(),
AFType::OutputOpenDrain,
match config.sda_pullup {
true => Pull::Up,
false => Pull::None,
},
);
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_pe(false);
//reg.set_anfoff(false);
});
}
T::regs().cr1().modify(|reg| {
reg.set_pe(false);
//reg.set_anfoff(false);
});
let timings = Timings::new(T::frequency(), freq.into());
unsafe {
T::regs().cr2().modify(|reg| {
reg.set_freq(timings.freq);
});
T::regs().ccr().modify(|reg| {
reg.set_f_s(timings.mode.f_s());
reg.set_duty(timings.duty.duty());
reg.set_ccr(timings.ccr);
});
T::regs().trise().modify(|reg| {
reg.set_trise(timings.trise);
});
}
T::regs().cr2().modify(|reg| {
reg.set_freq(timings.freq);
});
T::regs().ccr().modify(|reg| {
reg.set_f_s(timings.mode.f_s());
reg.set_duty(timings.duty.duty());
reg.set_ccr(timings.ccr);
});
T::regs().trise().modify(|reg| {
reg.set_trise(timings.trise);
});
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_pe(true);
});
}
T::regs().cr1().modify(|reg| {
reg.set_pe(true);
});
Self {
phantom: PhantomData,
@ -123,7 +115,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
unsafe fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read();
@ -162,7 +154,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(sr1)
}
unsafe fn write_bytes(
fn write_bytes(
&mut self,
addr: u8,
bytes: &[u8],
@ -211,7 +203,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
unsafe fn send_byte(&self, byte: u8, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
fn send_byte(&self, byte: u8, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
// Wait until we're ready for sending
while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
@ -234,7 +226,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
unsafe fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while {
// Check for any potential error conditions.
self.check_and_clear_error_flags()?;
@ -256,56 +248,52 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
) -> Result<(), Error> {
if let Some((last, buffer)) = buffer.split_last_mut() {
// Send a START condition and set ACK bit
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
}
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
while unsafe { !self.check_and_clear_error_flags()?.start() } {
while !self.check_and_clear_error_flags()?.start() {
check_timeout()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
let sr2 = unsafe { T::regs().sr2().read() };
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
} {
check_timeout()?;
}
// Set up current address, we're trying to talk to
unsafe { T::regs().dr().write(|reg| reg.set_dr((addr << 1) + 1)) }
T::regs().dr().write(|reg| reg.set_dr((addr << 1) + 1));
// Wait until address was sent
// Wait for the address to be acknowledged
while unsafe { !self.check_and_clear_error_flags()?.addr() } {
while !self.check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
// Clear condition by reading SR2
let _ = unsafe { T::regs().sr2().read() };
let _ = T::regs().sr2().read();
// Receive bytes into buffer
for c in buffer {
*c = unsafe { self.recv_byte(&check_timeout)? };
*c = self.recv_byte(&check_timeout)?;
}
// Prepare to send NACK then STOP after next byte
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_ack(false);
reg.set_stop(true);
})
}
T::regs().cr1().modify(|reg| {
reg.set_ack(false);
reg.set_stop(true);
});
// Receive last byte
*last = unsafe { self.recv_byte(&check_timeout)? };
*last = self.recv_byte(&check_timeout)?;
// Wait for the STOP to be sent.
while unsafe { T::regs().cr1().read().stop() } {
while T::regs().cr1().read().stop() {
check_timeout()?;
}
@ -326,15 +314,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
write: &[u8],
check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> {
unsafe {
self.write_bytes(addr, write, &check_timeout)?;
// Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit.
while T::regs().cr1().read().stop() {
check_timeout()?;
}
};
self.write_bytes(addr, write, &check_timeout)?;
// Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit.
while T::regs().cr1().read().stop() {
check_timeout()?;
}
// Fallthrough is success
Ok(())
@ -351,7 +337,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
read: &mut [u8],
check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> {
unsafe { self.write_bytes(addr, write, &check_timeout)? };
self.write_bytes(addr, write, &check_timeout)?;
self.blocking_read_timeout(addr, read, &check_timeout)?;
Ok(())
@ -478,8 +464,6 @@ impl Timings {
assert!(freq >= 2 && freq <= 50);
// Configure bus frequency into I2C peripheral
//self.i2c.cr2.write(|w| unsafe { w.freq().bits(freq as u8) });
let trise = if speed <= 100_000 {
freq + 1
} else {
@ -539,18 +523,16 @@ impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
fn set_config(&mut self, config: &Self::Config) {
let timings = Timings::new(T::frequency(), *config);
unsafe {
T::regs().cr2().modify(|reg| {
reg.set_freq(timings.freq);
});
T::regs().ccr().modify(|reg| {
reg.set_f_s(timings.mode.f_s());
reg.set_duty(timings.duty.duty());
reg.set_ccr(timings.ccr);
});
T::regs().trise().modify(|reg| {
reg.set_trise(timings.trise);
});
}
T::regs().cr2().modify(|reg| {
reg.set_freq(timings.freq);
});
T::regs().ccr().modify(|reg| {
reg.set_f_s(timings.mode.f_s());
reg.set_duty(timings.duty.duty());
reg.set_ccr(timings.ccr);
});
T::regs().trise().modify(|reg| {
reg.set_trise(timings.trise);
});
}
}

View File

@ -89,49 +89,41 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
T::enable();
T::reset();
unsafe {
scl.set_as_af_pull(
scl.af_num(),
AFType::OutputOpenDrain,
match config.scl_pullup {
true => Pull::Up,
false => Pull::None,
},
);
sda.set_as_af_pull(
sda.af_num(),
AFType::OutputOpenDrain,
match config.sda_pullup {
true => Pull::Up,
false => Pull::None,
},
);
}
scl.set_as_af_pull(
scl.af_num(),
AFType::OutputOpenDrain,
match config.scl_pullup {
true => Pull::Up,
false => Pull::None,
},
);
sda.set_as_af_pull(
sda.af_num(),
AFType::OutputOpenDrain,
match config.sda_pullup {
true => Pull::Up,
false => Pull::None,
},
);
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_pe(false);
reg.set_anfoff(false);
});
}
T::regs().cr1().modify(|reg| {
reg.set_pe(false);
reg.set_anfoff(false);
});
let timings = Timings::new(T::frequency(), freq.into());
unsafe {
T::regs().timingr().write(|reg| {
reg.set_presc(timings.prescale);
reg.set_scll(timings.scll);
reg.set_sclh(timings.sclh);
reg.set_sdadel(timings.sdadel);
reg.set_scldel(timings.scldel);
});
}
T::regs().timingr().write(|reg| {
reg.set_presc(timings.prescale);
reg.set_scll(timings.scll);
reg.set_sclh(timings.sclh);
reg.set_sdadel(timings.sdadel);
reg.set_scldel(timings.scldel);
});
unsafe {
T::regs().cr1().modify(|reg| {
reg.set_pe(true);
});
}
T::regs().cr1().modify(|reg| {
reg.set_pe(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
@ -144,12 +136,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
fn master_stop(&mut self) {
unsafe {
T::regs().cr2().write(|w| w.set_stop(true));
}
T::regs().cr2().write(|w| w.set_stop(true));
}
unsafe fn master_read(
fn master_read(
address: u8,
length: usize,
stop: Stop,
@ -191,7 +181,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
unsafe fn master_write(
fn master_write(
address: u8,
length: usize,
stop: Stop,
@ -229,7 +219,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
unsafe fn master_continue(
fn master_continue(
length: usize,
reload: bool,
check_timeout: impl Fn() -> Result<(), Error>,
@ -259,13 +249,11 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
//$i2c.txdr.write(|w| w.txdata().bits(0));
//}
unsafe {
if T::regs().isr().read().txis() {
T::regs().txdr().write(|w| w.set_txdata(0));
}
if !T::regs().isr().read().txe() {
T::regs().isr().modify(|w| w.set_txe(true))
}
if T::regs().isr().read().txis() {
T::regs().txdr().write(|w| w.set_txdata(0));
}
if !T::regs().isr().read().txe() {
T::regs().isr().modify(|w| w.set_txe(true))
}
// If TXDR is not flagged as empty, write 1 to flush it
@ -276,21 +264,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
if isr.txe() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
let isr = T::regs().isr().read();
if isr.txe() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
check_timeout()?;
@ -299,21 +285,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn wait_rxne(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
if isr.rxne() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
let isr = T::regs().isr().read();
if isr.rxne() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
check_timeout()?;
@ -322,21 +306,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn wait_tc(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
if isr.tc() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
let isr = T::regs().isr().read();
if isr.tc() {
return Ok(());
} else if isr.berr() {
T::regs().icr().write(|reg| reg.set_berrcf(true));
return Err(Error::Bus);
} else if isr.arlo() {
T::regs().icr().write(|reg| reg.set_arlocf(true));
return Err(Error::Arbitration);
} else if isr.nackf() {
T::regs().icr().write(|reg| reg.set_nackcf(true));
self.flush_txdr();
return Err(Error::Nack);
}
check_timeout()?;
@ -358,32 +340,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
};
let last_chunk_idx = total_chunks.saturating_sub(1);
unsafe {
Self::master_read(
address,
read.len().min(255),
Stop::Automatic,
last_chunk_idx != 0,
restart,
&check_timeout,
)?;
}
Self::master_read(
address,
read.len().min(255),
Stop::Automatic,
last_chunk_idx != 0,
restart,
&check_timeout,
)?;
for (number, chunk) in read.chunks_mut(255).enumerate() {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
for byte in chunk {
// Wait until we have received something
self.wait_rxne(&check_timeout)?;
unsafe {
*byte = T::regs().rxdr().read().rxdata();
}
*byte = T::regs().rxdr().read().rxdata();
}
}
Ok(())
@ -407,23 +382,17 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// I2C start
//
// ST SAD+W
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_write(
address,
write.len().min(255),
Stop::Software,
last_chunk_idx != 0,
&check_timeout,
)?;
}
Self::master_write(
address,
write.len().min(255),
Stop::Software,
last_chunk_idx != 0,
&check_timeout,
)?;
for (number, chunk) in write.chunks(255).enumerate() {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
for byte in chunk {
@ -432,9 +401,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// through)
self.wait_txe(&check_timeout)?;
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
// Wait until the write finishes
@ -467,7 +434,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_tcie(true);
}
});
let dst = regs.txdr().ptr() as *mut u8;
let dst = regs.txdr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
@ -479,37 +446,30 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let on_drop = OnDrop::new(|| {
let regs = T::regs();
unsafe {
regs.cr1().modify(|w| {
if last_slice {
w.set_txdmaen(false);
}
w.set_tcie(false);
})
}
regs.cr1().modify(|w| {
if last_slice {
w.set_txdmaen(false);
}
w.set_tcie(false);
})
});
poll_fn(|cx| {
state.waker.register(cx.waker());
let isr = unsafe { T::regs().isr().read() };
let isr = T::regs().isr().read();
if remaining_len == total_len {
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
if first_slice {
unsafe {
Self::master_write(
address,
total_len.min(255),
Stop::Software,
(total_len > 255) || !last_slice,
&check_timeout,
)?;
}
Self::master_write(
address,
total_len.min(255),
Stop::Software,
(total_len > 255) || !last_slice,
&check_timeout,
)?;
} else {
unsafe {
Self::master_continue(total_len.min(255), (total_len > 255) || !last_slice, &check_timeout)?;
T::regs().cr1().modify(|w| w.set_tcie(true));
}
Self::master_continue(total_len.min(255), (total_len > 255) || !last_slice, &check_timeout)?;
T::regs().cr1().modify(|w| w.set_tcie(true));
}
} else if !(isr.tcr() || isr.tc()) {
// poll_fn was woken without an interrupt present
@ -519,13 +479,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} else {
let last_piece = (remaining_len <= 255) && last_slice;
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
unsafe {
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true));
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true));
}
remaining_len = remaining_len.saturating_sub(255);
@ -564,7 +521,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_rxdmaen(true);
w.set_tcie(true);
});
let src = regs.rxdr().ptr() as *mut u8;
let src = regs.rxdr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
@ -576,30 +533,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let on_drop = OnDrop::new(|| {
let regs = T::regs();
unsafe {
regs.cr1().modify(|w| {
w.set_rxdmaen(false);
w.set_tcie(false);
})
}
regs.cr1().modify(|w| {
w.set_rxdmaen(false);
w.set_tcie(false);
})
});
poll_fn(|cx| {
state.waker.register(cx.waker());
let isr = unsafe { T::regs().isr().read() };
let isr = T::regs().isr().read();
if remaining_len == total_len {
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
Self::master_read(
address,
total_len.min(255),
Stop::Software,
total_len > 255,
restart,
&check_timeout,
)?;
}
Self::master_read(
address,
total_len.min(255),
Stop::Software,
total_len > 255,
restart,
&check_timeout,
)?;
} else if !(isr.tcr() || isr.tc()) {
// poll_fn was woken without an interrupt present
return Poll::Pending;
@ -608,13 +560,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} else {
let last_piece = remaining_len <= 255;
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true));
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true));
}
remaining_len = remaining_len.saturating_sub(255);
@ -758,16 +707,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let first_length = write[0].len();
let last_slice_index = write.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_write(
address,
first_length.min(255),
Stop::Software,
(first_length > 255) || (last_slice_index != 0),
&check_timeout,
)?;
}
Self::master_write(
address,
first_length.min(255),
Stop::Software,
(first_length > 255) || (last_slice_index != 0),
&check_timeout,
)?;
for (idx, slice) in write.iter().enumerate() {
let slice_len = slice.len();
@ -780,26 +726,20 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let last_chunk_idx = total_chunks.saturating_sub(1);
if idx != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(
slice_len.min(255),
(idx != last_slice_index) || (slice_len > 255),
&check_timeout,
)?;
}
Self::master_continue(
slice_len.min(255),
(idx != last_slice_index) || (slice_len > 255),
&check_timeout,
)?;
}
for (number, chunk) in slice.chunks(255).enumerate() {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(
chunk.len(),
(number != last_chunk_idx) || (idx != last_slice_index),
&check_timeout,
)?;
}
Self::master_continue(
chunk.len(),
(number != last_chunk_idx) || (idx != last_slice_index),
&check_timeout,
)?;
}
for byte in chunk {
@ -810,9 +750,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
}
@ -1061,14 +999,12 @@ impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
fn set_config(&mut self, config: &Self::Config) {
let timings = Timings::new(T::frequency(), *config);
unsafe {
T::regs().timingr().write(|reg| {
reg.set_presc(timings.prescale);
reg.set_scll(timings.scll);
reg.set_sclh(timings.sclh);
reg.set_sdadel(timings.sdadel);
reg.set_scldel(timings.scldel);
});
}
T::regs().timingr().write(|reg| {
reg.set_presc(timings.prescale);
reg.set_scll(timings.scll);
reg.set_sclh(timings.sclh);
reg.set_sdadel(timings.sdadel);
reg.set_scldel(timings.scldel);
});
}
}