Merge pull request #145 from lulf/generic-config

Pass config directly to chip specific configure function
This commit is contained in:
Dario Nieuwenhuis
2021-04-23 21:29:13 +02:00
committed by GitHub
15 changed files with 546 additions and 142 deletions

View File

@ -1,2 +1,4 @@
pub mod rtc;
pub mod serial;
pub mod spi;
pub mod system;

View File

@ -0,0 +1,61 @@
use crate::{hal::prelude::*, pac, Peripherals};
#[derive(Default)]
pub struct Config {
pub use_hse: Option<u32>,
pub sysclk: Option<u32>,
pub pclk1: Option<u32>,
pub require_pll48clk: bool,
}
impl Config {
pub fn new() -> Self {
Default::default()
}
pub fn use_hse(mut self, freq: u32) -> Self {
self.use_hse = Some(freq);
self
}
pub fn sysclk(mut self, freq: u32) -> Self {
self.sysclk = Some(freq);
self
}
pub fn pclk1(mut self, freq: u32) -> Self {
self.pclk1 = Some(freq);
self
}
pub fn require_pll48clk(mut self) -> Self {
self.require_pll48clk = true;
self
}
}
/// safety: must only call once.
pub unsafe fn configure(config: Config) {
let dp = pac::Peripherals::take().unwrap();
let mut cfgr = dp.RCC.constrain().cfgr;
if let Some(hz) = config.use_hse {
cfgr = cfgr.use_hse(hz.mhz());
};
if let Some(hz) = config.sysclk {
cfgr = cfgr.sysclk(hz.mhz());
};
if let Some(hz) = config.pclk1 {
cfgr = cfgr.pclk1(hz.mhz());
};
if config.require_pll48clk {
cfgr = cfgr.require_pll48clk();
};
let clocks = cfgr.freeze();
unsafe { Peripherals::set_peripherals(clocks) };
}

View File

@ -0,0 +1,2 @@
pub mod rtc;
pub mod system;

371
embassy-stm32/src/l0/rtc.rs Normal file
View File

@ -0,0 +1,371 @@
use crate::hal::rcc::Clocks;
use atomic_polyfill::{compiler_fence, AtomicU32, Ordering};
use core::cell::Cell;
use core::convert::TryInto;
use embassy::interrupt::InterruptExt;
use embassy::time::{Clock, TICKS_PER_SECOND};
use crate::interrupt;
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
// RTC timekeeping works with something we call "periods", which are time intervals
// of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
//
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
fn calc_now(period: u32, counter: u16) -> u64 {
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
}
struct AlarmState {
timestamp: Cell<u64>,
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
}
impl AlarmState {
fn new() -> Self {
Self {
timestamp: Cell::new(u64::MAX),
callback: Cell::new(None),
}
}
}
// TODO: This is sometimes wasteful, try to find a better way
const ALARM_COUNT: usize = 3;
/// RTC timer that can be used by the executor and to set alarms.
///
/// It can work with Timers 2 and 3.
/// This timer works internally with a unit of 2^15 ticks, which means that if a call to
/// [`embassy::time::Clock::now`] is blocked for that amount of ticks the returned value will be
/// wrong (an old value). The current default tick rate is 32768 ticks per second.
pub struct RTC<T: Instance> {
rtc: T,
irq: T::Interrupt,
/// Number of 2^23 periods elapsed since boot.
period: AtomicU32,
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
clocks: Clocks,
}
impl<T: Instance> RTC<T> {
pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self {
Self {
rtc,
irq,
period: AtomicU32::new(0),
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
clocks,
}
}
pub fn start(&'static self) {
self.rtc.enable_clock();
self.rtc.stop_and_reset();
let freq = T::pclk(&self.clocks);
let psc = freq / TICKS_PER_SECOND as u32 - 1;
let psc: u16 = psc.try_into().unwrap();
self.rtc.set_psc_arr(psc, u16::MAX);
// Mid-way point
self.rtc.set_compare(0, 0x8000);
self.rtc.set_compare_interrupt(0, true);
self.irq.set_handler(|ptr| unsafe {
let this = &*(ptr as *const () as *const Self);
this.on_interrupt();
});
self.irq.set_handler_context(self as *const _ as *mut _);
self.irq.unpend();
self.irq.enable();
self.rtc.start();
}
fn on_interrupt(&self) {
if self.rtc.overflow_interrupt_status() {
self.rtc.overflow_clear_flag();
self.next_period();
}
// Half overflow
if self.rtc.compare_interrupt_status(0) {
self.rtc.compare_clear_flag(0);
self.next_period();
}
for n in 1..=ALARM_COUNT {
if self.rtc.compare_interrupt_status(n) {
self.rtc.compare_clear_flag(n);
interrupt::free(|cs| self.trigger_alarm(n, cs));
}
}
}
fn next_period(&self) {
interrupt::free(|cs| {
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
let t = (period as u64) << 15;
for n in 1..=ALARM_COUNT {
let alarm = &self.alarms.borrow(cs)[n - 1];
let at = alarm.timestamp.get();
let diff = at - t;
if diff < 0xc000 {
self.rtc.set_compare(n, at as u16);
self.rtc.set_compare_interrupt(n, true);
}
}
})
}
fn trigger_alarm(&self, n: usize, cs: &CriticalSection) {
self.rtc.set_compare_interrupt(n, false);
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(u64::MAX);
// Call after clearing alarm, so the callback can set another alarm.
if let Some((f, ctx)) = alarm.callback.get() {
f(ctx);
}
}
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.callback.set(Some((callback, ctx)));
})
}
fn set_alarm(&self, n: usize, timestamp: u64) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(timestamp);
let t = self.now();
if timestamp <= t {
self.trigger_alarm(n, cs);
return;
}
let diff = timestamp - t;
if diff < 0xc000 {
let safe_timestamp = timestamp.max(t + 3);
self.rtc.set_compare(n, safe_timestamp as u16);
self.rtc.set_compare_interrupt(n, true);
} else {
self.rtc.set_compare_interrupt(n, false);
}
});
}
pub fn alarm1(&'static self) -> Alarm<T> {
Alarm { n: 1, rtc: self }
}
pub fn alarm2(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 2 {
Some(Alarm { n: 2, rtc: self })
} else {
None
}
}
pub fn alarm3(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 3 {
Some(Alarm { n: 3, rtc: self })
} else {
None
}
}
}
impl<T: Instance> embassy::time::Clock for RTC<T> {
fn now(&self) -> u64 {
let period = self.period.load(Ordering::Relaxed);
compiler_fence(Ordering::Acquire);
let counter = self.rtc.counter();
calc_now(period, counter)
}
}
pub struct Alarm<T: Instance> {
n: usize,
rtc: &'static RTC<T>,
}
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
self.rtc.set_alarm_callback(self.n, callback, ctx);
}
fn set(&self, timestamp: u64) {
self.rtc.set_alarm(self.n, timestamp);
}
fn clear(&self) {
self.rtc.set_alarm(self.n, u64::MAX);
}
}
mod sealed {
pub trait Sealed {}
}
pub trait Instance: sealed::Sealed + Sized + 'static {
type Interrupt: Interrupt;
const REAL_ALARM_COUNT: usize;
fn enable_clock(&self);
fn set_compare(&self, n: usize, value: u16);
fn set_compare_interrupt(&self, n: usize, enable: bool);
fn compare_interrupt_status(&self, n: usize) -> bool;
fn compare_clear_flag(&self, n: usize);
fn overflow_interrupt_status(&self) -> bool;
fn overflow_clear_flag(&self);
// This method should ensure that the values are really updated before returning
fn set_psc_arr(&self, psc: u16, arr: u16);
fn stop_and_reset(&self);
fn start(&self);
fn counter(&self) -> u16;
fn pclk(clocks: &Clocks) -> u32;
}
#[allow(unused_macros)]
macro_rules! impl_timer {
($module:ident: ($TYPE:ident, $INT:ident, $timXen:ident, $timXrst:ident, $apbenr:ident, $apbrstr:ident, $pclk: ident)) => {
mod $module {
use super::*;
use crate::hal::pac::{$TYPE, RCC};
impl sealed::Sealed for $TYPE {}
impl Instance for $TYPE {
type Interrupt = interrupt::$INT;
const REAL_ALARM_COUNT: usize = 3;
fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations
unsafe {
let rcc = &*RCC::ptr();
rcc.$apbenr.modify(|_, w| w.$timXen().set_bit());
rcc.$apbrstr.modify(|_, w| w.$timXrst().set_bit());
rcc.$apbrstr.modify(|_, w| w.$timXrst().clear_bit());
}
}
fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values
match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
_ => {}
}
}
fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
if enable {
self.dier.modify(|r, w| w.bits(r.bits() | (1 << bit)));
} else {
self.dier.modify(|r, w| w.bits(r.bits() & !(1 << bit)));
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
2 => status.cc3if().bit_is_set(),
3 => status.cc4if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
self.sr.modify(|r, w| w.bits(r.bits() & !(1 << bit)));
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
self.sr.modify(|_, w| w.uif().clear_bit());
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
self.cr1.modify(|_, w| w.urs().set_bit());
self.egr.write(|w| w.ug().set_bit());
self.cr1.modify(|_, w| w.urs().clear_bit());
}
}
fn stop_and_reset(&self) {
unsafe {
self.cr1.modify(|_, w| w.cen().clear_bit());
}
self.cnt.reset();
}
fn start(&self) {
self.cr1.modify(|_, w| w.cen().set_bit());
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.$pclk().0
}
}
}
};
}
impl_timer!(tim2: (TIM2, TIM2, tim2en, tim2rst, apb1enr, apb1rstr, apb1_tim_clk));
impl_timer!(tim3: (TIM3, TIM3, tim3en, tim3rst, apb1enr, apb1rstr, apb1_tim_clk));

View File

@ -0,0 +1,17 @@
use crate::{hal, pac, Peripherals};
pub use hal::{
prelude::*,
rcc::{Clocks, Config},
};
/// safety: must only call once.
pub unsafe fn configure(config: Config) {
let dp = pac::Peripherals::take().unwrap();
let rcc = dp.RCC.freeze(config);
let clocks = rcc.clocks;
unsafe { Peripherals::set_peripherals(clocks) };
}

View File

@ -49,6 +49,12 @@ pub use {stm32f4xx_hal as hal, stm32f4xx_hal::stm32 as pac};
#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3",))]
pub use {stm32l0xx_hal as hal, stm32l0xx_hal::pac};
#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3",))]
mod l0;
#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3",))]
pub use l0::{rtc, system};
pub mod fmt;
pub mod exti;
@ -89,26 +95,7 @@ pub mod can;
feature = "stm32f469",
feature = "stm32f479",
))]
pub mod rtc;
#[cfg(any(
feature = "stm32f401",
feature = "stm32f405",
feature = "stm32f407",
feature = "stm32f412",
feature = "stm32f413",
feature = "stm32f415",
feature = "stm32f417",
feature = "stm32f423",
feature = "stm32f427",
feature = "stm32f429",
feature = "stm32f437",
feature = "stm32f439",
feature = "stm32f446",
feature = "stm32f469",
feature = "stm32f479",
))]
pub use f4::{serial, spi};
pub use f4::{rtc, serial, spi, system};
#[cfg(any(
feature = "stm32f401",
@ -452,3 +439,40 @@ embassy_extras::std_peripherals! {
FPU_CPACR,
SCB_ACTRL,
}
#[cfg(feature = "stm32l0x2")]
embassy_extras::std_peripherals! {
SPI1,
SPI2,
USART1,
USART2,
USART4,
USART5,
I2C1,
I2C2,
I2C3,
RNG,
TIM2,
TIM3,
TIM6,
TIM7,
TIM21,
TIM22,
DAC,
RTC,
PWR,
CRC,
GPIOA,
GPIOB,
GPIOC,
GPIOD,
GPIOE,
GPIOH,
SYSCFG,
DMA1,
EXTI,
ADC,
IWDG,
WWDG,
DBG,
}