Split embassy-time from embassy-executor.
This commit is contained in:
@ -7,7 +7,7 @@ edition = "2021"
|
||||
[package.metadata.embassy_docs]
|
||||
src_base = "https://github.com/embassy-rs/embassy/blob/embassy-executor-v$VERSION/embassy-executor/src/"
|
||||
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-executor/src/"
|
||||
features = ["nightly", "defmt", "unstable-traits", "time", "time-tick-1mhz"]
|
||||
features = ["nightly", "defmt", "unstable-traits"]
|
||||
flavors = [
|
||||
{ name = "std", target = "x86_64-unknown-linux-gnu", features = ["std"] },
|
||||
{ name = "wasm", target = "wasm32-unknown-unknown", features = ["wasm"] },
|
||||
@ -22,49 +22,25 @@ flavors = [
|
||||
|
||||
[features]
|
||||
default = []
|
||||
std = ["time", "time-tick-1mhz", "embassy-macros/std"]
|
||||
wasm = ["wasm-bindgen", "js-sys", "embassy-macros/wasm", "wasm-timer", "time", "time-tick-1mhz"]
|
||||
std = ["embassy-macros/std"]
|
||||
wasm = ["dep:wasm-bindgen", "dep:js-sys", "embassy-macros/wasm"]
|
||||
|
||||
# Enable nightly-only features
|
||||
nightly = ["embedded-hal-async"]
|
||||
nightly = []
|
||||
|
||||
# Implement embedded-hal 1.0 alpha and embedded-hal-async traits.
|
||||
# Implement embedded-hal-async traits if `nightly` is set as well.
|
||||
unstable-traits = ["embedded-hal-1"]
|
||||
|
||||
# Display a timestamp of the number of seconds since startup next to defmt log messages
|
||||
# To use this you must have a time driver provided.
|
||||
defmt-timestamp-uptime = ["defmt"]
|
||||
|
||||
# Enable `embassy_executor::time` module.
|
||||
# NOTE: This feature is only intended to be enabled by crates providing the time driver implementation.
|
||||
# Enabling it directly without supplying a time driver will fail to link.
|
||||
time = []
|
||||
|
||||
# Set the `embassy_executor::time` tick rate.
|
||||
# NOTE: This feature is only intended to be enabled by crates providing the time driver implementation.
|
||||
# If you're not writing your own driver, check the driver documentation to customize the tick rate.
|
||||
# If you're writing a driver and your tick rate is not listed here, please add it and send a PR!
|
||||
time-tick-32768hz = ["time"]
|
||||
time-tick-1000hz = ["time"]
|
||||
time-tick-1mhz = ["time"]
|
||||
time-tick-16mhz = ["time"]
|
||||
integrated-timers = ["dep:embassy-time"]
|
||||
|
||||
[dependencies]
|
||||
defmt = { version = "0.3", optional = true }
|
||||
log = { version = "0.4.14", optional = true }
|
||||
|
||||
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6" }
|
||||
embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.8", optional = true}
|
||||
embedded-hal-async = { version = "0.1.0-alpha.1", optional = true}
|
||||
|
||||
futures-util = { version = "0.3.17", default-features = false }
|
||||
embassy-macros = { version = "0.1.0", path = "../embassy-macros"}
|
||||
embassy-time = { version = "0.1.0", path = "../embassy-time", optional = true}
|
||||
atomic-polyfill = "1.0.1"
|
||||
critical-section = "1.1"
|
||||
cfg-if = "1.0.0"
|
||||
|
||||
# WASM dependencies
|
||||
wasm-bindgen = { version = "0.2.76", features = ["nightly"], optional = true }
|
||||
js-sys = { version = "0.3", optional = true }
|
||||
wasm-timer = { version = "0.2.5", optional = true }
|
||||
js-sys = { version = "0.3", optional = true }
|
11
embassy-executor/README.md
Normal file
11
embassy-executor/README.md
Normal file
@ -0,0 +1,11 @@
|
||||
# embassy-executor
|
||||
|
||||
An async/await executor designed for embedded usage.
|
||||
|
||||
- No `alloc`, no heap needed. Task futures are statically allocated.
|
||||
- No "fixed capacity" data structures, executor works with 1 or 1000 tasks without needing config/tuning.
|
||||
- Integrated timer queue: sleeping is easy, just do `Timer::after(Duration::from_secs(1)).await;`.
|
||||
- No busy-loop polling: CPU sleeps when there's no work to do, using interrupts or `WFE/SEV`.
|
||||
- Efficient polling: a wake will only poll the woken task, not all of them.
|
||||
- Fair: a task can't monopolize CPU time even if it's constantly being woken. All other tasks get a chance to run before a given task gets polled for the second time.
|
||||
- Creating multiple executor instances is supported, to run tasks with multiple priority levels. This allows higher-priority tasks to preempt lower-priority tasks.
|
@ -1,44 +0,0 @@
|
||||
//! Async task executor.
|
||||
//!
|
||||
//! This module provides an async/await executor designed for embedded usage.
|
||||
//!
|
||||
//! - No `alloc`, no heap needed. Task futures are statically allocated.
|
||||
//! - No "fixed capacity" data structures, executor works with 1 or 1000 tasks without needing config/tuning.
|
||||
//! - Integrated timer queue: sleeping is easy, just do `Timer::after(Duration::from_secs(1)).await;`.
|
||||
//! - No busy-loop polling: CPU sleeps when there's no work to do, using interrupts or `WFE/SEV`.
|
||||
//! - Efficient polling: a wake will only poll the woken task, not all of them.
|
||||
//! - Fair: a task can't monopolize CPU time even if it's constantly being woken. All other tasks get a chance to run before a given task gets polled for the second time.
|
||||
//! - Creating multiple executor instances is supported, to run tasks with multiple priority levels. This allows higher-priority tasks to preempt lower-priority tasks.
|
||||
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(cortex_m)] {
|
||||
#[path="arch/cortex_m.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(target_arch="riscv32")] {
|
||||
#[path="arch/riscv32.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(all(target_arch="xtensa", feature = "nightly"))] {
|
||||
#[path="arch/xtensa.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(feature="wasm")] {
|
||||
#[path="arch/wasm.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(feature="std")] {
|
||||
#[path="arch/std.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
}
|
||||
|
||||
pub mod raw;
|
||||
|
||||
mod spawner;
|
||||
pub use spawner::*;
|
@ -195,9 +195,6 @@ macro_rules! unwrap {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "defmt-timestamp-uptime")]
|
||||
defmt::timestamp! {"{=u64:us}", crate::time::Instant::now().as_micros() }
|
||||
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
pub struct NoneError;
|
||||
|
||||
|
@ -1,22 +1,44 @@
|
||||
#![cfg_attr(not(any(feature = "std", feature = "wasm")), no_std)]
|
||||
#![cfg_attr(feature = "nightly", feature(generic_associated_types, type_alias_impl_trait))]
|
||||
#![cfg_attr(all(feature = "nightly", target_arch = "xtensa"), feature(asm_experimental_arch))]
|
||||
#![allow(clippy::new_without_default)]
|
||||
#![doc = include_str!("../../README.md")]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![warn(missing_docs)]
|
||||
|
||||
// This mod MUST go first, so that the others see its macros.
|
||||
pub(crate) mod fmt;
|
||||
|
||||
pub mod executor;
|
||||
#[cfg(feature = "time")]
|
||||
pub mod time;
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
pub use embassy_macros::{main, task};
|
||||
|
||||
#[doc(hidden)]
|
||||
/// Implementation details for embassy macros. DO NOT USE.
|
||||
pub mod export {
|
||||
pub use atomic_polyfill as atomic;
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(cortex_m)] {
|
||||
#[path="arch/cortex_m.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(target_arch="riscv32")] {
|
||||
#[path="arch/riscv32.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(all(target_arch="xtensa", feature = "nightly"))] {
|
||||
#[path="arch/xtensa.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(feature="wasm")] {
|
||||
#[path="arch/wasm.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
else if #[cfg(feature="std")] {
|
||||
#[path="arch/std.rs"]
|
||||
mod arch;
|
||||
pub use arch::*;
|
||||
}
|
||||
}
|
||||
|
||||
pub mod raw;
|
||||
|
||||
mod spawner;
|
||||
pub use spawner::*;
|
||||
|
@ -8,7 +8,7 @@
|
||||
//! executor wrappers in [`executor`](crate::executor) and the [`embassy_executor::task`](embassy_macros::task) macro, which are fully safe.
|
||||
|
||||
mod run_queue;
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
mod timer_queue;
|
||||
pub(crate) mod util;
|
||||
mod waker;
|
||||
@ -22,22 +22,22 @@ use core::{mem, ptr};
|
||||
|
||||
use atomic_polyfill::{AtomicU32, Ordering};
|
||||
use critical_section::CriticalSection;
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
use embassy_time::driver::{self, AlarmHandle};
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
use embassy_time::Instant;
|
||||
|
||||
use self::run_queue::{RunQueue, RunQueueItem};
|
||||
use self::util::UninitCell;
|
||||
pub use self::waker::task_from_waker;
|
||||
use super::SpawnToken;
|
||||
#[cfg(feature = "time")]
|
||||
use crate::time::driver::{self, AlarmHandle};
|
||||
#[cfg(feature = "time")]
|
||||
use crate::time::Instant;
|
||||
|
||||
/// Task is spawned (has a future)
|
||||
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
|
||||
/// Task is in the executor run queue
|
||||
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
|
||||
/// Task is in the executor timer queue
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
|
||||
|
||||
/// Raw task header for use in task pointers.
|
||||
@ -50,9 +50,9 @@ pub struct TaskHeader {
|
||||
pub(crate) executor: Cell<*const Executor>, // Valid if state != 0
|
||||
pub(crate) poll_fn: UninitCell<unsafe fn(NonNull<TaskHeader>)>, // Valid if STATE_SPAWNED
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
pub(crate) expires_at: Cell<Instant>,
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
pub(crate) timer_queue_item: timer_queue::TimerQueueItem,
|
||||
}
|
||||
|
||||
@ -64,9 +64,9 @@ impl TaskHeader {
|
||||
executor: Cell::new(ptr::null()),
|
||||
poll_fn: UninitCell::uninit(),
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
expires_at: Cell::new(Instant::from_ticks(0)),
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
timer_queue_item: timer_queue::TimerQueueItem::new(),
|
||||
}
|
||||
}
|
||||
@ -267,9 +267,9 @@ pub struct Executor {
|
||||
signal_fn: fn(*mut ()),
|
||||
signal_ctx: *mut (),
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
pub(crate) timer_queue: timer_queue::TimerQueue,
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
alarm: AlarmHandle,
|
||||
}
|
||||
|
||||
@ -281,9 +281,9 @@ impl Executor {
|
||||
///
|
||||
/// See [`Executor`] docs for details on `signal_fn`.
|
||||
pub fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self {
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
let alarm = unsafe { unwrap!(driver::allocate_alarm()) };
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
driver::set_alarm_callback(alarm, signal_fn, signal_ctx);
|
||||
|
||||
Self {
|
||||
@ -291,9 +291,9 @@ impl Executor {
|
||||
signal_fn,
|
||||
signal_ctx,
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
timer_queue: timer_queue::TimerQueue::new(),
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
alarm,
|
||||
}
|
||||
}
|
||||
@ -346,13 +346,13 @@ impl Executor {
|
||||
/// somehow schedule for `poll()` to be called later, at a time you know for sure there's
|
||||
/// no `poll()` already running.
|
||||
pub unsafe fn poll(&'static self) {
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
self.timer_queue.dequeue_expired(Instant::now(), |task| wake_task(task));
|
||||
|
||||
self.run_queue.dequeue_all(|p| {
|
||||
let task = p.as_ref();
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
task.expires_at.set(Instant::MAX);
|
||||
|
||||
let state = task.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
|
||||
@ -369,11 +369,11 @@ impl Executor {
|
||||
task.poll_fn.read()(p as _);
|
||||
|
||||
// Enqueue or update into timer_queue
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
self.timer_queue.update(p);
|
||||
});
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
{
|
||||
// If this is already in the past, set_alarm will immediately trigger the alarm.
|
||||
// This will cause `signal_fn` to be called, which will cause `poll()` to be called again,
|
||||
@ -418,8 +418,9 @@ pub unsafe fn wake_task(task: NonNull<TaskHeader>) {
|
||||
})
|
||||
}
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
pub(crate) unsafe fn register_timer(at: Instant, waker: &core::task::Waker) {
|
||||
#[cfg(feature = "integrated-timers")]
|
||||
#[no_mangle]
|
||||
unsafe fn _embassy_time_schedule_wake(at: Instant, waker: &core::task::Waker) {
|
||||
let task = waker::task_from_waker(waker);
|
||||
let task = task.as_ref();
|
||||
let expires_at = task.expires_at.get();
|
@ -4,9 +4,9 @@ use core::ptr;
|
||||
use core::ptr::NonNull;
|
||||
|
||||
use atomic_polyfill::Ordering;
|
||||
use embassy_time::Instant;
|
||||
|
||||
use super::{TaskHeader, STATE_TIMER_QUEUED};
|
||||
use crate::time::Instant;
|
||||
|
||||
pub(crate) struct TimerQueueItem {
|
||||
next: Cell<*mut TaskHeader>,
|
@ -40,7 +40,7 @@ pub fn task_from_waker(waker: &Waker) -> NonNull<TaskHeader> {
|
||||
// TODO use waker_getters when stable. https://github.com/rust-lang/rust/issues/96992
|
||||
let hack: &WakerHack = unsafe { mem::transmute(waker) };
|
||||
if hack.vtable != &VTABLE {
|
||||
panic!("Found waker not created by the Embassy executor. `embassy_executor::time::Timer` only works with the Embassy executor.")
|
||||
panic!("Found waker not created by the Embassy executor. `embassy_time::Timer` only works with the Embassy executor.")
|
||||
}
|
||||
|
||||
// safety: we never create a waker with a null data pointer.
|
@ -1,98 +0,0 @@
|
||||
use super::{Duration, Instant};
|
||||
|
||||
/// Blocks for at least `duration`.
|
||||
pub fn block_for(duration: Duration) {
|
||||
let expires_at = Instant::now() + duration;
|
||||
while Instant::now() < expires_at {}
|
||||
}
|
||||
|
||||
/// Type implementing async delays and blocking `embedded-hal` delays.
|
||||
///
|
||||
/// The delays are implemented in a "best-effort" way, meaning that the cpu will block for at least
|
||||
/// the amount provided, but accuracy can be affected by many factors, including interrupt usage.
|
||||
/// Make sure to use a suitable tick rate for your use case. The tick rate is defined by the currently
|
||||
/// active driver.
|
||||
pub struct Delay;
|
||||
|
||||
#[cfg(feature = "unstable-traits")]
|
||||
mod eh1 {
|
||||
use super::*;
|
||||
|
||||
impl embedded_hal_1::delay::blocking::DelayUs for Delay {
|
||||
type Error = core::convert::Infallible;
|
||||
|
||||
fn delay_us(&mut self, us: u32) -> Result<(), Self::Error> {
|
||||
Ok(block_for(Duration::from_micros(us as u64)))
|
||||
}
|
||||
|
||||
fn delay_ms(&mut self, ms: u32) -> Result<(), Self::Error> {
|
||||
Ok(block_for(Duration::from_millis(ms as u64)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(all(feature = "unstable-traits", feature = "nightly"))] {
|
||||
use crate::time::Timer;
|
||||
use core::future::Future;
|
||||
use futures_util::FutureExt;
|
||||
|
||||
impl embedded_hal_async::delay::DelayUs for Delay {
|
||||
type Error = core::convert::Infallible;
|
||||
|
||||
type DelayUsFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
||||
|
||||
fn delay_us(&mut self, micros: u32) -> Self::DelayUsFuture<'_> {
|
||||
Timer::after(Duration::from_micros(micros as _)).map(Ok)
|
||||
}
|
||||
|
||||
type DelayMsFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
||||
|
||||
fn delay_ms(&mut self, millis: u32) -> Self::DelayMsFuture<'_> {
|
||||
Timer::after(Duration::from_millis(millis as _)).map(Ok)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mod eh02 {
|
||||
use embedded_hal_02::blocking::delay::{DelayMs, DelayUs};
|
||||
|
||||
use super::*;
|
||||
|
||||
impl DelayMs<u8> for Delay {
|
||||
fn delay_ms(&mut self, ms: u8) {
|
||||
block_for(Duration::from_millis(ms as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl DelayMs<u16> for Delay {
|
||||
fn delay_ms(&mut self, ms: u16) {
|
||||
block_for(Duration::from_millis(ms as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl DelayMs<u32> for Delay {
|
||||
fn delay_ms(&mut self, ms: u32) {
|
||||
block_for(Duration::from_millis(ms as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl DelayUs<u8> for Delay {
|
||||
fn delay_us(&mut self, us: u8) {
|
||||
block_for(Duration::from_micros(us as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl DelayUs<u16> for Delay {
|
||||
fn delay_us(&mut self, us: u16) {
|
||||
block_for(Duration::from_micros(us as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl DelayUs<u32> for Delay {
|
||||
fn delay_us(&mut self, us: u32) {
|
||||
block_for(Duration::from_micros(us as u64))
|
||||
}
|
||||
}
|
||||
}
|
@ -1,170 +0,0 @@
|
||||
//! Time driver interface
|
||||
//!
|
||||
//! This module defines the interface a driver needs to implement to power the `embassy_executor::time` module.
|
||||
//!
|
||||
//! # Implementing a driver
|
||||
//!
|
||||
//! - Define a struct `MyDriver`
|
||||
//! - Implement [`Driver`] for it
|
||||
//! - Register it as the global driver with [`time_driver_impl`].
|
||||
//! - Enable the Cargo features `embassy-executor/time` and one of `embassy-executor/time-tick-*` corresponding to the
|
||||
//! tick rate of your driver.
|
||||
//!
|
||||
//! If you wish to make the tick rate configurable by the end user, you should do so by exposing your own
|
||||
//! Cargo features and having each enable the corresponding `embassy-executor/time-tick-*`.
|
||||
//!
|
||||
//! # Linkage details
|
||||
//!
|
||||
//! Instead of the usual "trait + generic params" approach, calls from embassy to the driver are done via `extern` functions.
|
||||
//!
|
||||
//! `embassy` internally defines the driver functions as `extern "Rust" { fn _embassy_time_now() -> u64; }` and calls them.
|
||||
//! The driver crate defines the functions as `#[no_mangle] fn _embassy_time_now() -> u64`. The linker will resolve the
|
||||
//! calls from the `embassy` crate to call into the driver crate.
|
||||
//!
|
||||
//! If there is none or multiple drivers in the crate tree, linking will fail.
|
||||
//!
|
||||
//! This method has a few key advantages for something as foundational as timekeeping:
|
||||
//!
|
||||
//! - The time driver is available everywhere easily, without having to thread the implementation
|
||||
//! through generic parameters. This is especially helpful for libraries.
|
||||
//! - It means comparing `Instant`s will always make sense: if there were multiple drivers
|
||||
//! active, one could compare an `Instant` from driver A to an `Instant` from driver B, which
|
||||
//! would yield incorrect results.
|
||||
//!
|
||||
//! # Example
|
||||
//!
|
||||
//! ```
|
||||
//! use embassy_executor::time::driver::{Driver, AlarmHandle};
|
||||
//!
|
||||
//! struct MyDriver{}; // not public!
|
||||
//! embassy_executor::time_driver_impl!(static DRIVER: MyDriver = MyDriver{});
|
||||
//!
|
||||
//! impl Driver for MyDriver {
|
||||
//! fn now(&self) -> u64 {
|
||||
//! todo!()
|
||||
//! }
|
||||
//! unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
//! todo!()
|
||||
//! }
|
||||
//! fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
//! todo!()
|
||||
//! }
|
||||
//! fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) {
|
||||
//! todo!()
|
||||
//! }
|
||||
//! }
|
||||
//! ```
|
||||
|
||||
/// Alarm handle, assigned by the driver.
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct AlarmHandle {
|
||||
id: u8,
|
||||
}
|
||||
|
||||
impl AlarmHandle {
|
||||
/// Create an AlarmHandle
|
||||
///
|
||||
/// Safety: May only be called by the current global Driver impl.
|
||||
/// The impl is allowed to rely on the fact that all `AlarmHandle` instances
|
||||
/// are created by itself in unsafe code (e.g. indexing operations)
|
||||
pub unsafe fn new(id: u8) -> Self {
|
||||
Self { id }
|
||||
}
|
||||
|
||||
/// Get the ID of the AlarmHandle.
|
||||
pub fn id(&self) -> u8 {
|
||||
self.id
|
||||
}
|
||||
}
|
||||
|
||||
/// Time driver
|
||||
pub trait Driver: Send + Sync + 'static {
|
||||
/// Return the current timestamp in ticks.
|
||||
///
|
||||
/// Implementations MUST ensure that:
|
||||
/// - This is guaranteed to be monotonic, i.e. a call to now() will always return
|
||||
/// a greater or equal value than earler calls. Time can't "roll backwards".
|
||||
/// - It "never" overflows. It must not overflow in a sufficiently long time frame, say
|
||||
/// in 10_000 years (Human civilization is likely to already have self-destructed
|
||||
/// 10_000 years from now.). This means if your hardware only has 16bit/32bit timers
|
||||
/// you MUST extend them to 64-bit, for example by counting overflows in software,
|
||||
/// or chaining multiple timers together.
|
||||
fn now(&self) -> u64;
|
||||
|
||||
/// Try allocating an alarm handle. Returns None if no alarms left.
|
||||
/// Initially the alarm has no callback set, and a null `ctx` pointer.
|
||||
///
|
||||
/// # Safety
|
||||
/// It is UB to make the alarm fire before setting a callback.
|
||||
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle>;
|
||||
|
||||
/// Sets the callback function to be called when the alarm triggers.
|
||||
/// The callback may be called from any context (interrupt or thread mode).
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ());
|
||||
|
||||
/// Sets an alarm at the given timestamp. When the current timestamp reaches the alarm
|
||||
/// timestamp, the provided callback function will be called.
|
||||
///
|
||||
/// If `timestamp` is already in the past, the alarm callback must be immediately fired.
|
||||
/// In this case, it is allowed (but not mandatory) to call the alarm callback synchronously from `set_alarm`.
|
||||
///
|
||||
/// When callback is called, it is guaranteed that now() will return a value greater or equal than timestamp.
|
||||
///
|
||||
/// Only one alarm can be active at a time for each AlarmHandle. This overwrites any previously-set alarm if any.
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64);
|
||||
}
|
||||
|
||||
extern "Rust" {
|
||||
fn _embassy_time_now() -> u64;
|
||||
fn _embassy_time_allocate_alarm() -> Option<AlarmHandle>;
|
||||
fn _embassy_time_set_alarm_callback(alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ());
|
||||
fn _embassy_time_set_alarm(alarm: AlarmHandle, timestamp: u64);
|
||||
}
|
||||
|
||||
pub(crate) fn now() -> u64 {
|
||||
unsafe { _embassy_time_now() }
|
||||
}
|
||||
/// Safety: it is UB to make the alarm fire before setting a callback.
|
||||
pub(crate) unsafe fn allocate_alarm() -> Option<AlarmHandle> {
|
||||
_embassy_time_allocate_alarm()
|
||||
}
|
||||
pub(crate) fn set_alarm_callback(alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
unsafe { _embassy_time_set_alarm_callback(alarm, callback, ctx) }
|
||||
}
|
||||
pub(crate) fn set_alarm(alarm: AlarmHandle, timestamp: u64) {
|
||||
unsafe { _embassy_time_set_alarm(alarm, timestamp) }
|
||||
}
|
||||
|
||||
/// Set the time Driver implementation.
|
||||
///
|
||||
/// See the module documentation for an example.
|
||||
#[macro_export]
|
||||
macro_rules! time_driver_impl {
|
||||
(static $name:ident: $t: ty = $val:expr) => {
|
||||
static $name: $t = $val;
|
||||
|
||||
#[no_mangle]
|
||||
fn _embassy_time_now() -> u64 {
|
||||
<$t as $crate::time::driver::Driver>::now(&$name)
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
unsafe fn _embassy_time_allocate_alarm() -> Option<$crate::time::driver::AlarmHandle> {
|
||||
<$t as $crate::time::driver::Driver>::allocate_alarm(&$name)
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
fn _embassy_time_set_alarm_callback(
|
||||
alarm: $crate::time::driver::AlarmHandle,
|
||||
callback: fn(*mut ()),
|
||||
ctx: *mut (),
|
||||
) {
|
||||
<$t as $crate::time::driver::Driver>::set_alarm_callback(&$name, alarm, callback, ctx)
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
fn _embassy_time_set_alarm(alarm: $crate::time::driver::AlarmHandle, timestamp: u64) {
|
||||
<$t as $crate::time::driver::Driver>::set_alarm(&$name, alarm, timestamp)
|
||||
}
|
||||
};
|
||||
}
|
@ -1,208 +0,0 @@
|
||||
use std::cell::UnsafeCell;
|
||||
use std::mem::MaybeUninit;
|
||||
use std::sync::{Condvar, Mutex, Once};
|
||||
use std::time::{Duration as StdDuration, Instant as StdInstant};
|
||||
use std::{mem, ptr, thread};
|
||||
|
||||
use atomic_polyfill::{AtomicU8, Ordering};
|
||||
|
||||
use crate::time::driver::{AlarmHandle, Driver};
|
||||
|
||||
const ALARM_COUNT: usize = 4;
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: u64,
|
||||
|
||||
// This is really a Option<(fn(*mut ()), *mut ())>
|
||||
// but fn pointers aren't allowed in const yet
|
||||
callback: *const (),
|
||||
ctx: *mut (),
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
impl AlarmState {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
timestamp: u64::MAX,
|
||||
callback: ptr::null(),
|
||||
ctx: ptr::null_mut(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct TimeDriver {
|
||||
alarm_count: AtomicU8,
|
||||
|
||||
once: Once,
|
||||
alarms: UninitCell<Mutex<[AlarmState; ALARM_COUNT]>>,
|
||||
zero_instant: UninitCell<StdInstant>,
|
||||
signaler: UninitCell<Signaler>,
|
||||
}
|
||||
|
||||
const ALARM_NEW: AlarmState = AlarmState::new();
|
||||
crate::time_driver_impl!(static DRIVER: TimeDriver = TimeDriver {
|
||||
alarm_count: AtomicU8::new(0),
|
||||
|
||||
once: Once::new(),
|
||||
alarms: UninitCell::uninit(),
|
||||
zero_instant: UninitCell::uninit(),
|
||||
signaler: UninitCell::uninit(),
|
||||
});
|
||||
|
||||
impl TimeDriver {
|
||||
fn init(&self) {
|
||||
self.once.call_once(|| unsafe {
|
||||
self.alarms.write(Mutex::new([ALARM_NEW; ALARM_COUNT]));
|
||||
self.zero_instant.write(StdInstant::now());
|
||||
self.signaler.write(Signaler::new());
|
||||
|
||||
thread::spawn(Self::alarm_thread);
|
||||
});
|
||||
}
|
||||
|
||||
fn alarm_thread() {
|
||||
let zero = unsafe { DRIVER.zero_instant.read() };
|
||||
loop {
|
||||
let now = DRIVER.now();
|
||||
|
||||
let mut next_alarm = u64::MAX;
|
||||
{
|
||||
let alarms = &mut *unsafe { DRIVER.alarms.as_ref() }.lock().unwrap();
|
||||
for alarm in alarms {
|
||||
if alarm.timestamp <= now {
|
||||
alarm.timestamp = u64::MAX;
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback) };
|
||||
f(alarm.ctx);
|
||||
} else {
|
||||
next_alarm = next_alarm.min(alarm.timestamp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure we don't overflow
|
||||
let until = zero
|
||||
.checked_add(StdDuration::from_micros(next_alarm))
|
||||
.unwrap_or_else(|| StdInstant::now() + StdDuration::from_secs(1));
|
||||
|
||||
unsafe { DRIVER.signaler.as_ref() }.wait_until(until);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Driver for TimeDriver {
|
||||
fn now(&self) -> u64 {
|
||||
self.init();
|
||||
|
||||
let zero = unsafe { self.zero_instant.read() };
|
||||
StdInstant::now().duration_since(zero).as_micros() as u64
|
||||
}
|
||||
|
||||
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self.alarm_count.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(AlarmHandle::new(id)),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.callback = callback as *const ();
|
||||
alarm.ctx = ctx;
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.timestamp = timestamp;
|
||||
unsafe { self.signaler.as_ref() }.signal();
|
||||
}
|
||||
}
|
||||
|
||||
struct Signaler {
|
||||
mutex: Mutex<bool>,
|
||||
condvar: Condvar,
|
||||
}
|
||||
|
||||
impl Signaler {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
mutex: Mutex::new(false),
|
||||
condvar: Condvar::new(),
|
||||
}
|
||||
}
|
||||
|
||||
fn wait_until(&self, until: StdInstant) {
|
||||
let mut signaled = self.mutex.lock().unwrap();
|
||||
while !*signaled {
|
||||
let now = StdInstant::now();
|
||||
|
||||
if now >= until {
|
||||
break;
|
||||
}
|
||||
|
||||
let dur = until - now;
|
||||
let (signaled2, timeout) = self.condvar.wait_timeout(signaled, dur).unwrap();
|
||||
signaled = signaled2;
|
||||
if timeout.timed_out() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
*signaled = false;
|
||||
}
|
||||
|
||||
fn signal(&self) {
|
||||
let mut signaled = self.mutex.lock().unwrap();
|
||||
*signaled = true;
|
||||
self.condvar.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct UninitCell<T>(MaybeUninit<UnsafeCell<T>>);
|
||||
unsafe impl<T> Send for UninitCell<T> {}
|
||||
unsafe impl<T> Sync for UninitCell<T> {}
|
||||
|
||||
impl<T> UninitCell<T> {
|
||||
pub const fn uninit() -> Self {
|
||||
Self(MaybeUninit::uninit())
|
||||
}
|
||||
|
||||
pub unsafe fn as_ptr(&self) -> *const T {
|
||||
(*self.0.as_ptr()).get()
|
||||
}
|
||||
|
||||
pub unsafe fn as_mut_ptr(&self) -> *mut T {
|
||||
(*self.0.as_ptr()).get()
|
||||
}
|
||||
|
||||
pub unsafe fn as_ref(&self) -> &T {
|
||||
&*self.as_ptr()
|
||||
}
|
||||
|
||||
pub unsafe fn write(&self, val: T) {
|
||||
ptr::write(self.as_mut_ptr(), val)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy> UninitCell<T> {
|
||||
pub unsafe fn read(&self) -> T {
|
||||
ptr::read(self.as_mut_ptr())
|
||||
}
|
||||
}
|
@ -1,134 +0,0 @@
|
||||
use std::cell::UnsafeCell;
|
||||
use std::mem::MaybeUninit;
|
||||
use std::ptr;
|
||||
use std::sync::{Mutex, Once};
|
||||
|
||||
use atomic_polyfill::{AtomicU8, Ordering};
|
||||
use wasm_bindgen::prelude::*;
|
||||
use wasm_timer::Instant as StdInstant;
|
||||
|
||||
use crate::time::driver::{AlarmHandle, Driver};
|
||||
|
||||
const ALARM_COUNT: usize = 4;
|
||||
|
||||
struct AlarmState {
|
||||
token: Option<f64>,
|
||||
closure: Option<Closure<dyn FnMut() + 'static>>,
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
impl AlarmState {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
token: None,
|
||||
closure: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[wasm_bindgen]
|
||||
extern "C" {
|
||||
fn setTimeout(closure: &Closure<dyn FnMut()>, millis: u32) -> f64;
|
||||
fn clearTimeout(token: f64);
|
||||
}
|
||||
|
||||
struct TimeDriver {
|
||||
alarm_count: AtomicU8,
|
||||
|
||||
once: Once,
|
||||
alarms: UninitCell<Mutex<[AlarmState; ALARM_COUNT]>>,
|
||||
zero_instant: UninitCell<StdInstant>,
|
||||
}
|
||||
|
||||
const ALARM_NEW: AlarmState = AlarmState::new();
|
||||
crate::time_driver_impl!(static DRIVER: TimeDriver = TimeDriver {
|
||||
alarm_count: AtomicU8::new(0),
|
||||
once: Once::new(),
|
||||
alarms: UninitCell::uninit(),
|
||||
zero_instant: UninitCell::uninit(),
|
||||
});
|
||||
|
||||
impl TimeDriver {
|
||||
fn init(&self) {
|
||||
self.once.call_once(|| unsafe {
|
||||
self.alarms.write(Mutex::new([ALARM_NEW; ALARM_COUNT]));
|
||||
self.zero_instant.write(StdInstant::now());
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
impl Driver for TimeDriver {
|
||||
fn now(&self) -> u64 {
|
||||
self.init();
|
||||
|
||||
let zero = unsafe { self.zero_instant.read() };
|
||||
StdInstant::now().duration_since(zero).as_micros() as u64
|
||||
}
|
||||
|
||||
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self.alarm_count.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(AlarmHandle::new(id)),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.closure.replace(Closure::new(move || {
|
||||
callback(ctx);
|
||||
}));
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
let timeout = (timestamp - self.now()) as u32;
|
||||
if let Some(token) = alarm.token {
|
||||
clearTimeout(token);
|
||||
}
|
||||
alarm.token = Some(setTimeout(alarm.closure.as_ref().unwrap(), timeout / 1000));
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct UninitCell<T>(MaybeUninit<UnsafeCell<T>>);
|
||||
unsafe impl<T> Send for UninitCell<T> {}
|
||||
unsafe impl<T> Sync for UninitCell<T> {}
|
||||
|
||||
impl<T> UninitCell<T> {
|
||||
pub const fn uninit() -> Self {
|
||||
Self(MaybeUninit::uninit())
|
||||
}
|
||||
unsafe fn as_ptr(&self) -> *const T {
|
||||
(*self.0.as_ptr()).get()
|
||||
}
|
||||
|
||||
pub unsafe fn as_mut_ptr(&self) -> *mut T {
|
||||
(*self.0.as_ptr()).get()
|
||||
}
|
||||
|
||||
pub unsafe fn as_ref(&self) -> &T {
|
||||
&*self.as_ptr()
|
||||
}
|
||||
|
||||
pub unsafe fn write(&self, val: T) {
|
||||
ptr::write(self.as_mut_ptr(), val)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy> UninitCell<T> {
|
||||
pub unsafe fn read(&self) -> T {
|
||||
ptr::read(self.as_mut_ptr())
|
||||
}
|
||||
}
|
@ -1,184 +0,0 @@
|
||||
use core::fmt;
|
||||
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
|
||||
|
||||
use super::{GCD_1K, GCD_1M, TICKS_PER_SECOND};
|
||||
|
||||
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
/// Represents the difference between two [Instant](struct.Instant.html)s
|
||||
pub struct Duration {
|
||||
pub(crate) ticks: u64,
|
||||
}
|
||||
|
||||
impl Duration {
|
||||
/// The smallest value that can be represented by the `Duration` type.
|
||||
pub const MIN: Duration = Duration { ticks: u64::MIN };
|
||||
/// The largest value that can be represented by the `Duration` type.
|
||||
pub const MAX: Duration = Duration { ticks: u64::MAX };
|
||||
|
||||
/// Tick count of the `Duration`.
|
||||
pub const fn as_ticks(&self) -> u64 {
|
||||
self.ticks
|
||||
}
|
||||
|
||||
/// Convert the `Duration` to seconds, rounding down.
|
||||
pub const fn as_secs(&self) -> u64 {
|
||||
self.ticks / TICKS_PER_SECOND
|
||||
}
|
||||
|
||||
/// Convert the `Duration` to milliseconds, rounding down.
|
||||
pub const fn as_millis(&self) -> u64 {
|
||||
self.ticks * (1000 / GCD_1K) / (TICKS_PER_SECOND / GCD_1K)
|
||||
}
|
||||
|
||||
/// Convert the `Duration` to microseconds, rounding down.
|
||||
pub const fn as_micros(&self) -> u64 {
|
||||
self.ticks * (1_000_000 / GCD_1M) / (TICKS_PER_SECOND / GCD_1M)
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of clock ticks
|
||||
pub const fn from_ticks(ticks: u64) -> Duration {
|
||||
Duration { ticks }
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of seconds, rounding up.
|
||||
pub const fn from_secs(secs: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: secs * TICKS_PER_SECOND,
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of milliseconds, rounding up.
|
||||
pub const fn from_millis(millis: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: div_ceil(millis * (TICKS_PER_SECOND / GCD_1K), 1000 / GCD_1K),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of microseconds, rounding up.
|
||||
/// NOTE: Delays this small may be inaccurate.
|
||||
pub const fn from_micros(micros: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: div_ceil(micros * (TICKS_PER_SECOND / GCD_1M), 1_000_000 / GCD_1M),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of seconds, rounding down.
|
||||
pub const fn from_secs_floor(secs: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: secs * TICKS_PER_SECOND,
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of milliseconds, rounding down.
|
||||
pub const fn from_millis_floor(millis: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: millis * (TICKS_PER_SECOND / GCD_1K) / (1000 / GCD_1K),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a duration from the specified number of microseconds, rounding down.
|
||||
/// NOTE: Delays this small may be inaccurate.
|
||||
pub const fn from_micros_floor(micros: u64) -> Duration {
|
||||
Duration {
|
||||
ticks: micros * (TICKS_PER_SECOND / GCD_1M) / (1_000_000 / GCD_1M),
|
||||
}
|
||||
}
|
||||
|
||||
/// Adds one Duration to another, returning a new Duration or None in the event of an overflow.
|
||||
pub fn checked_add(self, rhs: Duration) -> Option<Duration> {
|
||||
self.ticks.checked_add(rhs.ticks).map(|ticks| Duration { ticks })
|
||||
}
|
||||
|
||||
/// Subtracts one Duration to another, returning a new Duration or None in the event of an overflow.
|
||||
pub fn checked_sub(self, rhs: Duration) -> Option<Duration> {
|
||||
self.ticks.checked_sub(rhs.ticks).map(|ticks| Duration { ticks })
|
||||
}
|
||||
|
||||
/// Multiplies one Duration by a scalar u32, returning a new Duration or None in the event of an overflow.
|
||||
pub fn checked_mul(self, rhs: u32) -> Option<Duration> {
|
||||
self.ticks.checked_mul(rhs as _).map(|ticks| Duration { ticks })
|
||||
}
|
||||
|
||||
/// Divides one Duration a scalar u32, returning a new Duration or None in the event of an overflow.
|
||||
pub fn checked_div(self, rhs: u32) -> Option<Duration> {
|
||||
self.ticks.checked_div(rhs as _).map(|ticks| Duration { ticks })
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Duration {
|
||||
type Output = Duration;
|
||||
|
||||
fn add(self, rhs: Duration) -> Duration {
|
||||
self.checked_add(rhs).expect("overflow when adding durations")
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for Duration {
|
||||
fn add_assign(&mut self, rhs: Duration) {
|
||||
*self = *self + rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Duration {
|
||||
type Output = Duration;
|
||||
|
||||
fn sub(self, rhs: Duration) -> Duration {
|
||||
self.checked_sub(rhs).expect("overflow when subtracting durations")
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for Duration {
|
||||
fn sub_assign(&mut self, rhs: Duration) {
|
||||
*self = *self - rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<u32> for Duration {
|
||||
type Output = Duration;
|
||||
|
||||
fn mul(self, rhs: u32) -> Duration {
|
||||
self.checked_mul(rhs)
|
||||
.expect("overflow when multiplying duration by scalar")
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Duration> for u32 {
|
||||
type Output = Duration;
|
||||
|
||||
fn mul(self, rhs: Duration) -> Duration {
|
||||
rhs * self
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign<u32> for Duration {
|
||||
fn mul_assign(&mut self, rhs: u32) {
|
||||
*self = *self * rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<u32> for Duration {
|
||||
type Output = Duration;
|
||||
|
||||
fn div(self, rhs: u32) -> Duration {
|
||||
self.checked_div(rhs)
|
||||
.expect("divide by zero error when dividing duration by scalar")
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign<u32> for Duration {
|
||||
fn div_assign(&mut self, rhs: u32) {
|
||||
*self = *self / rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> fmt::Display for Duration {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{} ticks", self.ticks)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
const fn div_ceil(num: u64, den: u64) -> u64 {
|
||||
(num + den - 1) / den
|
||||
}
|
@ -1,159 +0,0 @@
|
||||
use core::fmt;
|
||||
use core::ops::{Add, AddAssign, Sub, SubAssign};
|
||||
|
||||
use super::{driver, Duration, GCD_1K, GCD_1M, TICKS_PER_SECOND};
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
/// An Instant in time, based on the MCU's clock ticks since startup.
|
||||
pub struct Instant {
|
||||
ticks: u64,
|
||||
}
|
||||
|
||||
impl Instant {
|
||||
/// The smallest (earliest) value that can be represented by the `Instant` type.
|
||||
pub const MIN: Instant = Instant { ticks: u64::MIN };
|
||||
/// The largest (latest) value that can be represented by the `Instant` type.
|
||||
pub const MAX: Instant = Instant { ticks: u64::MAX };
|
||||
|
||||
/// Returns an Instant representing the current time.
|
||||
pub fn now() -> Instant {
|
||||
Instant { ticks: driver::now() }
|
||||
}
|
||||
|
||||
/// Create an Instant from a tick count since system boot.
|
||||
pub const fn from_ticks(ticks: u64) -> Self {
|
||||
Self { ticks }
|
||||
}
|
||||
|
||||
/// Create an Instant from a microsecond count since system boot.
|
||||
pub const fn from_micros(micros: u64) -> Self {
|
||||
Self {
|
||||
ticks: micros * (TICKS_PER_SECOND / GCD_1M) / (1_000_000 / GCD_1M),
|
||||
}
|
||||
}
|
||||
|
||||
/// Create an Instant from a millisecond count since system boot.
|
||||
pub const fn from_millis(millis: u64) -> Self {
|
||||
Self {
|
||||
ticks: millis * (TICKS_PER_SECOND / GCD_1K) / (1000 / GCD_1K),
|
||||
}
|
||||
}
|
||||
|
||||
/// Create an Instant from a second count since system boot.
|
||||
pub const fn from_secs(seconds: u64) -> Self {
|
||||
Self {
|
||||
ticks: seconds * TICKS_PER_SECOND,
|
||||
}
|
||||
}
|
||||
|
||||
/// Tick count since system boot.
|
||||
pub const fn as_ticks(&self) -> u64 {
|
||||
self.ticks
|
||||
}
|
||||
|
||||
/// Seconds since system boot.
|
||||
pub const fn as_secs(&self) -> u64 {
|
||||
self.ticks / TICKS_PER_SECOND
|
||||
}
|
||||
|
||||
/// Milliseconds since system boot.
|
||||
pub const fn as_millis(&self) -> u64 {
|
||||
self.ticks * (1000 / GCD_1K) / (TICKS_PER_SECOND / GCD_1K)
|
||||
}
|
||||
|
||||
/// Microseconds since system boot.
|
||||
pub const fn as_micros(&self) -> u64 {
|
||||
self.ticks * (1_000_000 / GCD_1M) / (TICKS_PER_SECOND / GCD_1M)
|
||||
}
|
||||
|
||||
/// Duration between this Instant and another Instant
|
||||
/// Panics on over/underflow.
|
||||
pub fn duration_since(&self, earlier: Instant) -> Duration {
|
||||
Duration {
|
||||
ticks: self.ticks.checked_sub(earlier.ticks).unwrap(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Duration between this Instant and another Instant
|
||||
pub fn checked_duration_since(&self, earlier: Instant) -> Option<Duration> {
|
||||
if self.ticks < earlier.ticks {
|
||||
None
|
||||
} else {
|
||||
Some(Duration {
|
||||
ticks: self.ticks - earlier.ticks,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the duration since the "earlier" Instant.
|
||||
/// If the "earlier" instant is in the future, the duration is set to zero.
|
||||
pub fn saturating_duration_since(&self, earlier: Instant) -> Duration {
|
||||
Duration {
|
||||
ticks: if self.ticks < earlier.ticks {
|
||||
0
|
||||
} else {
|
||||
self.ticks - earlier.ticks
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
/// Duration elapsed since this Instant.
|
||||
pub fn elapsed(&self) -> Duration {
|
||||
Instant::now() - *self
|
||||
}
|
||||
|
||||
/// Adds one Duration to self, returning a new `Instant` or None in the event of an overflow.
|
||||
pub fn checked_add(&self, duration: Duration) -> Option<Instant> {
|
||||
self.ticks.checked_add(duration.ticks).map(|ticks| Instant { ticks })
|
||||
}
|
||||
|
||||
/// Subtracts one Duration to self, returning a new `Instant` or None in the event of an overflow.
|
||||
pub fn checked_sub(&self, duration: Duration) -> Option<Instant> {
|
||||
self.ticks.checked_sub(duration.ticks).map(|ticks| Instant { ticks })
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<Duration> for Instant {
|
||||
type Output = Instant;
|
||||
|
||||
fn add(self, other: Duration) -> Instant {
|
||||
self.checked_add(other)
|
||||
.expect("overflow when adding duration to instant")
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<Duration> for Instant {
|
||||
fn add_assign(&mut self, other: Duration) {
|
||||
*self = *self + other;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<Duration> for Instant {
|
||||
type Output = Instant;
|
||||
|
||||
fn sub(self, other: Duration) -> Instant {
|
||||
self.checked_sub(other)
|
||||
.expect("overflow when subtracting duration from instant")
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<Duration> for Instant {
|
||||
fn sub_assign(&mut self, other: Duration) {
|
||||
*self = *self - other;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<Instant> for Instant {
|
||||
type Output = Duration;
|
||||
|
||||
fn sub(self, other: Instant) -> Duration {
|
||||
self.duration_since(other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> fmt::Display for Instant {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{} ticks", self.ticks)
|
||||
}
|
||||
}
|
@ -1,91 +0,0 @@
|
||||
//! Timekeeping, delays and timeouts.
|
||||
//!
|
||||
//! Timekeeping is done with elapsed time since system boot. Time is represented in
|
||||
//! ticks, where the tick rate is defined by the current driver, usually to match
|
||||
//! the tick rate of the hardware.
|
||||
//!
|
||||
//! Tick counts are 64 bits. At the highest supported tick rate of 1Mhz this supports
|
||||
//! representing time spans of up to ~584558 years, which is big enough for all practical
|
||||
//! purposes and allows not having to worry about overflows.
|
||||
//!
|
||||
//! [`Instant`] represents a given instant of time (relative to system boot), and [`Duration`]
|
||||
//! represents the duration of a span of time. They implement the math operations you'd expect,
|
||||
//! like addition and substraction.
|
||||
//!
|
||||
//! # Delays and timeouts
|
||||
//!
|
||||
//! [`Timer`] allows performing async delays. [`Ticker`] allows periodic delays without drifting over time.
|
||||
//!
|
||||
//! An implementation of the `embedded-hal` delay traits is provided by [`Delay`], for compatibility
|
||||
//! with libraries from the ecosystem.
|
||||
//!
|
||||
//! # Wall-clock time
|
||||
//!
|
||||
//! The `time` module deals exclusively with a monotonically increasing tick count.
|
||||
//! Therefore it has no direct support for wall-clock time ("real life" datetimes
|
||||
//! like `2021-08-24 13:33:21`).
|
||||
//!
|
||||
//! If persistence across reboots is not needed, support can be built on top of
|
||||
//! `embassy_executor::time` by storing the offset between "seconds elapsed since boot"
|
||||
//! and "seconds since unix epoch".
|
||||
//!
|
||||
//! # Time driver
|
||||
//!
|
||||
//! The `time` module is backed by a global "time driver" specified at build time.
|
||||
//! Only one driver can be active in a program.
|
||||
//!
|
||||
//! All methods and structs transparently call into the active driver. This makes it
|
||||
//! possible for libraries to use `embassy_executor::time` in a driver-agnostic way without
|
||||
//! requiring generic parameters.
|
||||
//!
|
||||
//! For more details, check the [`driver`] module.
|
||||
|
||||
#![deny(missing_docs)]
|
||||
|
||||
mod delay;
|
||||
pub mod driver;
|
||||
mod duration;
|
||||
mod instant;
|
||||
mod timer;
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
mod driver_std;
|
||||
|
||||
#[cfg(feature = "wasm")]
|
||||
mod driver_wasm;
|
||||
|
||||
pub use delay::{block_for, Delay};
|
||||
pub use duration::Duration;
|
||||
pub use instant::Instant;
|
||||
pub use timer::{with_timeout, Ticker, TimeoutError, Timer};
|
||||
|
||||
#[cfg(feature = "time-tick-1000hz")]
|
||||
const TPS: u64 = 1_000;
|
||||
|
||||
#[cfg(feature = "time-tick-32768hz")]
|
||||
const TPS: u64 = 32_768;
|
||||
|
||||
#[cfg(feature = "time-tick-1mhz")]
|
||||
const TPS: u64 = 1_000_000;
|
||||
|
||||
#[cfg(feature = "time-tick-16mhz")]
|
||||
const TPS: u64 = 16_000_000;
|
||||
|
||||
/// Ticks per second of the global timebase.
|
||||
///
|
||||
/// This value is specified by the `time-tick-*` Cargo features, which
|
||||
/// should be set by the time driver. Some drivers support a fixed tick rate, others
|
||||
/// allow you to choose a tick rate with Cargo features of their own. You should not
|
||||
/// set the `time-tick-*` features for embassy yourself as an end user.
|
||||
pub const TICKS_PER_SECOND: u64 = TPS;
|
||||
|
||||
const fn gcd(a: u64, b: u64) -> u64 {
|
||||
if b == 0 {
|
||||
a
|
||||
} else {
|
||||
gcd(b, a % b)
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const GCD_1K: u64 = gcd(TICKS_PER_SECOND, 1_000);
|
||||
pub(crate) const GCD_1M: u64 = gcd(TICKS_PER_SECOND, 1_000_000);
|
@ -1,151 +0,0 @@
|
||||
use core::future::Future;
|
||||
use core::pin::Pin;
|
||||
use core::task::{Context, Poll};
|
||||
|
||||
use futures_util::future::{select, Either};
|
||||
use futures_util::{pin_mut, Stream};
|
||||
|
||||
use crate::executor::raw;
|
||||
use crate::time::{Duration, Instant};
|
||||
|
||||
/// Error returned by [`with_timeout`] on timeout.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct TimeoutError;
|
||||
|
||||
/// Runs a given future with a timeout.
|
||||
///
|
||||
/// If the future completes before the timeout, its output is returned. Otherwise, on timeout,
|
||||
/// work on the future is stopped (`poll` is no longer called), the future is dropped and `Err(TimeoutError)` is returned.
|
||||
pub async fn with_timeout<F: Future>(timeout: Duration, fut: F) -> Result<F::Output, TimeoutError> {
|
||||
let timeout_fut = Timer::after(timeout);
|
||||
pin_mut!(fut);
|
||||
match select(fut, timeout_fut).await {
|
||||
Either::Left((r, _)) => Ok(r),
|
||||
Either::Right(_) => Err(TimeoutError),
|
||||
}
|
||||
}
|
||||
|
||||
/// A future that completes at a specified [Instant](struct.Instant.html).
|
||||
pub struct Timer {
|
||||
expires_at: Instant,
|
||||
yielded_once: bool,
|
||||
}
|
||||
|
||||
impl Timer {
|
||||
/// Expire at specified [Instant](struct.Instant.html)
|
||||
pub fn at(expires_at: Instant) -> Self {
|
||||
Self {
|
||||
expires_at,
|
||||
yielded_once: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Expire after specified [Duration](struct.Duration.html).
|
||||
/// This can be used as a `sleep` abstraction.
|
||||
///
|
||||
/// Example:
|
||||
/// ``` no_run
|
||||
/// # #![feature(type_alias_impl_trait)]
|
||||
/// #
|
||||
/// # fn foo() {}
|
||||
/// use embassy_executor::time::{Duration, Timer};
|
||||
///
|
||||
/// #[embassy_executor::task]
|
||||
/// async fn demo_sleep_seconds() {
|
||||
/// // suspend this task for one second.
|
||||
/// Timer::after(Duration::from_secs(1)).await;
|
||||
/// }
|
||||
/// ```
|
||||
pub fn after(duration: Duration) -> Self {
|
||||
Self {
|
||||
expires_at: Instant::now() + duration,
|
||||
yielded_once: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Unpin for Timer {}
|
||||
|
||||
impl Future for Timer {
|
||||
type Output = ();
|
||||
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
if self.yielded_once && self.expires_at <= Instant::now() {
|
||||
Poll::Ready(())
|
||||
} else {
|
||||
unsafe { raw::register_timer(self.expires_at, cx.waker()) };
|
||||
self.yielded_once = true;
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Asynchronous stream that yields every Duration, indefinitely.
|
||||
///
|
||||
/// This stream will tick at uniform intervals, even if blocking work is performed between ticks.
|
||||
///
|
||||
/// For instance, consider the following code fragment.
|
||||
/// ``` no_run
|
||||
/// # #![feature(type_alias_impl_trait)]
|
||||
/// #
|
||||
/// use embassy_executor::time::{Duration, Timer};
|
||||
/// # fn foo() {}
|
||||
///
|
||||
/// #[embassy_executor::task]
|
||||
/// async fn ticker_example_0() {
|
||||
/// loop {
|
||||
/// foo();
|
||||
/// Timer::after(Duration::from_secs(1)).await;
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// This fragment will not call `foo` every second.
|
||||
/// Instead, it will call it every second + the time it took to previously call `foo`.
|
||||
///
|
||||
/// Example using ticker, which will consistently call `foo` once a second.
|
||||
///
|
||||
/// ``` no_run
|
||||
/// # #![feature(type_alias_impl_trait)]
|
||||
/// #
|
||||
/// use embassy_executor::time::{Duration, Ticker};
|
||||
/// use futures::StreamExt;
|
||||
/// # fn foo(){}
|
||||
///
|
||||
/// #[embassy_executor::task]
|
||||
/// async fn ticker_example_1() {
|
||||
/// let mut ticker = Ticker::every(Duration::from_secs(1));
|
||||
/// loop {
|
||||
/// foo();
|
||||
/// ticker.next().await;
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
pub struct Ticker {
|
||||
expires_at: Instant,
|
||||
duration: Duration,
|
||||
}
|
||||
|
||||
impl Ticker {
|
||||
/// Creates a new ticker that ticks at the specified duration interval.
|
||||
pub fn every(duration: Duration) -> Self {
|
||||
let expires_at = Instant::now() + duration;
|
||||
Self { expires_at, duration }
|
||||
}
|
||||
}
|
||||
|
||||
impl Unpin for Ticker {}
|
||||
|
||||
impl Stream for Ticker {
|
||||
type Item = ();
|
||||
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
|
||||
if self.expires_at <= Instant::now() {
|
||||
let dur = self.duration;
|
||||
self.expires_at += dur;
|
||||
Poll::Ready(Some(()))
|
||||
} else {
|
||||
unsafe { raw::register_timer(self.expires_at, cx.waker()) };
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user