Split embassy-time from embassy-executor.

This commit is contained in:
Dario Nieuwenhuis
2022-08-17 23:40:16 +02:00
parent 1c5b54a482
commit 5daa173ce4
254 changed files with 847 additions and 552 deletions

View File

@ -0,0 +1,59 @@
use core::arch::asm;
use core::marker::PhantomData;
use core::ptr;
use super::{raw, Spawner};
/// Thread mode executor, using WFE/SEV.
///
/// This is the simplest and most common kind of executor. It runs on
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
/// is executed, to make the `WFE` exit from sleep and poll the task.
///
/// This executor allows for ultra low power consumption for chips where `WFE`
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
/// you may use [`raw::Executor`] directly to program custom behavior.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
inner: raw::Executor::new(|_| unsafe { asm!("sev") }, ptr::null_mut()),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [Forever](crate::util::Forever) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
asm!("wfe");
};
}
}
}

View File

@ -0,0 +1,74 @@
use core::marker::PhantomData;
use core::ptr;
use atomic_polyfill::{AtomicBool, Ordering};
use super::{raw, Spawner};
/// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
/// RISCV32 Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [Forever](crate::util::Forever) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
//will only set this value to true.
critical_section::with(|_| {
// if there is work to do, loop back to polling
// TODO can we relax this?
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
}
// if not, wait for interrupt
else {
core::arch::asm!("wfi");
}
});
// if an interrupt occurred while waiting, it will be serviced here
}
}
}
}

View File

@ -0,0 +1,84 @@
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};
use super::{raw, Spawner};
/// Single-threaded std-based executor.
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
signaler: &'static Signaler,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let signaler = &*Box::leak(Box::new(Signaler::new()));
Self {
inner: raw::Executor::new(
|p| unsafe {
let s = &*(p as *const () as *const Signaler);
s.signal()
},
signaler as *const _ as _,
),
not_send: PhantomData,
signaler,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [Forever](crate::util::Forever) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe { self.inner.poll() };
self.signaler.wait()
}
}
}
struct Signaler {
mutex: Mutex<bool>,
condvar: Condvar,
}
impl Signaler {
fn new() -> Self {
Self {
mutex: Mutex::new(false),
condvar: Condvar::new(),
}
}
fn wait(&self) {
let mut signaled = self.mutex.lock().unwrap();
while !*signaled {
signaled = self.condvar.wait(signaled).unwrap();
}
*signaled = false;
}
fn signal(&self) {
let mut signaled = self.mutex.lock().unwrap();
*signaled = true;
self.condvar.notify_one();
}
}

View File

@ -0,0 +1,74 @@
use core::marker::PhantomData;
use js_sys::Promise;
use wasm_bindgen::prelude::*;
use super::raw::util::UninitCell;
use super::raw::{self};
use super::Spawner;
/// WASM executor, wasm_bindgen to schedule tasks on the JS event loop.
pub struct Executor {
inner: raw::Executor,
ctx: &'static WasmContext,
not_send: PhantomData<*mut ()>,
}
pub(crate) struct WasmContext {
promise: Promise,
closure: UninitCell<Closure<dyn FnMut(JsValue)>>,
}
impl WasmContext {
pub fn new() -> Self {
Self {
promise: Promise::resolve(&JsValue::undefined()),
closure: UninitCell::uninit(),
}
}
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
let ctx = &*Box::leak(Box::new(WasmContext::new()));
let inner = raw::Executor::new(
|p| unsafe {
let ctx = &*(p as *const () as *const WasmContext);
let _ = ctx.promise.then(ctx.closure.as_mut());
},
ctx as *const _ as _,
);
Self {
inner,
not_send: PhantomData,
ctx,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [Forever](crate::util::Forever) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
pub fn start(&'static mut self, init: impl FnOnce(Spawner)) {
unsafe {
let executor = &self.inner;
self.ctx.closure.write(Closure::new(move |_| {
executor.poll();
}));
init(self.inner.spawner());
}
}
}

View File

@ -0,0 +1,75 @@
use core::marker::PhantomData;
use core::ptr;
use atomic_polyfill::{AtomicBool, Ordering};
use super::{raw, Spawner};
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
/// Xtensa Executor
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
/// Create a new Executor.
pub fn new() -> Self {
Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData,
}
}
/// Run the executor.
///
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
/// this executor. Use it to spawn the initial task(s). After `init` returns,
/// the executor starts running the tasks.
///
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
/// for example by passing it as an argument to the initial tasks.
///
/// This function requires `&'static mut self`. This means you have to store the
/// Executor instance in a place where it'll live forever and grants you mutable
/// access. There's a few ways to do this:
///
/// - a [Forever](crate::util::Forever) (safe)
/// - a `static mut` (unsafe)
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(self.inner.spawner());
loop {
unsafe {
self.inner.poll();
// we do not care about race conditions between the load and store operations, interrupts
// will only set this value to true.
// if there is work to do, loop back to polling
// TODO can we relax this?
critical_section::with(|_| {
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
} else {
// waiti sets the PS.INTLEVEL when slipping into sleep
// because critical sections in Xtensa are implemented via increasing
// PS.INTLEVEL the critical section ends here
// take care not add code after `waiti` if it needs to be inside the CS
core::arch::asm!("waiti 0"); // critical section ends here
}
});
}
}
}
}