2c slave based on transactions and a channel
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
#![macro_use]
|
||||
|
||||
use stm32_metapac::i2c::vals::Oamsk;
|
||||
use stm32_metapac::i2c;
|
||||
|
||||
use crate::interrupt;
|
||||
|
||||
@ -9,6 +9,8 @@ use crate::interrupt;
|
||||
mod _version;
|
||||
pub use _version::*;
|
||||
|
||||
mod v2slave;
|
||||
|
||||
use crate::peripherals;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
@ -22,13 +24,7 @@ pub enum Error {
|
||||
Overrun,
|
||||
ZeroLengthTransfer,
|
||||
BufferSize,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
#[repr(usize)]
|
||||
pub enum AddressType {
|
||||
Address1 = 0,
|
||||
Address2,
|
||||
NoTransaction,
|
||||
}
|
||||
|
||||
#[repr(u8)]
|
||||
@ -45,19 +41,25 @@ pub enum Address2Mask {
|
||||
}
|
||||
impl Address2Mask {
|
||||
#[inline(always)]
|
||||
pub const fn to_vals_impl(self) -> Oamsk {
|
||||
pub const fn to_vals_impl(self) -> i2c::vals::Oamsk {
|
||||
match self {
|
||||
Address2Mask::NOMASK => Oamsk::NOMASK,
|
||||
Address2Mask::MASK1 => Oamsk::MASK1,
|
||||
Address2Mask::MASK2 => Oamsk::MASK2,
|
||||
Address2Mask::MASK3 => Oamsk::MASK3,
|
||||
Address2Mask::MASK4 => Oamsk::MASK4,
|
||||
Address2Mask::MASK5 => Oamsk::MASK5,
|
||||
Address2Mask::MASK6 => Oamsk::MASK6,
|
||||
Address2Mask::MASK7 => Oamsk::MASK7,
|
||||
Address2Mask::NOMASK => i2c::vals::Oamsk::NOMASK,
|
||||
Address2Mask::MASK1 => i2c::vals::Oamsk::MASK1,
|
||||
Address2Mask::MASK2 => i2c::vals::Oamsk::MASK2,
|
||||
Address2Mask::MASK3 => i2c::vals::Oamsk::MASK3,
|
||||
Address2Mask::MASK4 => i2c::vals::Oamsk::MASK4,
|
||||
Address2Mask::MASK5 => i2c::vals::Oamsk::MASK5,
|
||||
Address2Mask::MASK6 => i2c::vals::Oamsk::MASK6,
|
||||
Address2Mask::MASK7 => i2c::vals::Oamsk::MASK7,
|
||||
}
|
||||
}
|
||||
}
|
||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||
#[repr(usize)]
|
||||
pub enum AddressIndex {
|
||||
Address1 = 0,
|
||||
Address2 = 2,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
|
||||
pub enum Dir {
|
||||
|
@ -15,14 +15,14 @@ use embassy_sync::waitqueue::AtomicWaker;
|
||||
use embassy_time::{Duration, Instant};
|
||||
#[cfg(feature = "time")]
|
||||
use futures::task::Poll;
|
||||
use stm32_metapac::i2c::vals;
|
||||
|
||||
use super::v2slave::SlaveState;
|
||||
use crate::dma::NoDma;
|
||||
#[cfg(feature = "time")]
|
||||
use crate::dma::Transfer;
|
||||
use crate::gpio::sealed::AFType;
|
||||
use crate::gpio::Pull;
|
||||
use crate::i2c::{Address2Mask, AddressType, Dir, Error, Instance, SclPin, SdaPin};
|
||||
use crate::i2c::{Address2Mask, Error, Instance, SclPin, SdaPin};
|
||||
use crate::interrupt::typelevel::Interrupt;
|
||||
use crate::pac::i2c;
|
||||
use crate::time::Hertz;
|
||||
@ -35,105 +35,13 @@ pub struct InterruptHandler<T: Instance> {
|
||||
|
||||
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
|
||||
unsafe fn on_interrupt() {
|
||||
let regs = T::regs();
|
||||
let isr = regs.isr().read();
|
||||
|
||||
T::state().mutex.lock(|f| {
|
||||
let regs = T::regs();
|
||||
let mut state_m = f.borrow_mut();
|
||||
if state_m.slave_mode {
|
||||
// ============================================ slave interrupt state_m machine
|
||||
if isr.berr() {
|
||||
regs.icr().modify(|w| {
|
||||
w.set_berrcf(true);
|
||||
});
|
||||
state_m.result = Some(Error::Bus);
|
||||
} else if isr.arlo() {
|
||||
state_m.result = Some(Error::Arbitration);
|
||||
regs.icr().write(|w| w.set_arlocf(true));
|
||||
} else if isr.nackf() {
|
||||
regs.icr().write(|w| w.set_nackcf(true));
|
||||
} else if isr.txis() {
|
||||
// send the next byte to the master, or NACK in case of error, then end transaction
|
||||
let b = match state_m.read_byte() {
|
||||
Ok(b) => b,
|
||||
Err(e) => {
|
||||
// An extra interrupt after the last byte is sent seems to be generated always
|
||||
// Do not generate an error in this (overrun) case
|
||||
match e {
|
||||
Error::Overrun => (),
|
||||
_ => state_m.result = Some(e),
|
||||
}
|
||||
0xFF
|
||||
}
|
||||
};
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
} else if isr.rxne() {
|
||||
let b = regs.rxdr().read().rxdata();
|
||||
// byte is received from master. Store in buffer. In case of error send NACK, then end transaction
|
||||
match state_m.write_byte(b) {
|
||||
Ok(()) => (),
|
||||
Err(e) => {
|
||||
state_m.result = Some(e);
|
||||
}
|
||||
}
|
||||
} else if isr.stopf() {
|
||||
// Clear the stop condition flag
|
||||
state_m.ready = true;
|
||||
// make a copy of the current state as result of the transaction
|
||||
state_m.transaction_result =
|
||||
(state_m.current_address, state_m.dir, state_m.get_size(), state_m.result);
|
||||
T::state().waker.wake();
|
||||
regs.icr().write(|w| w.set_stopcf(true));
|
||||
} else if isr.tcr() {
|
||||
// This condition Will only happen when reload == 1 and sbr == 1 (slave) and nbytes was written.
|
||||
// Send a NACK, set nbytes to clear tcr flag
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nack(true);
|
||||
});
|
||||
// Make one extra loop here to wait on the stop condition
|
||||
} else if isr.addr() {
|
||||
// handle the slave is addressed case, first step in the transaction
|
||||
state_m.current_address = isr.addcode();
|
||||
state_m.dir = if isr.dir() as u8 == 0 { Dir::WRITE } else { Dir::READ };
|
||||
state_m.result = None;
|
||||
|
||||
if state_m.dir == Dir::READ {
|
||||
// flush i2c tx register
|
||||
regs.isr().write(|w| w.set_txe(true));
|
||||
|
||||
// Set the nbytes START and prepare to receive bytes into `buffer`.
|
||||
// Set the actual number of bytes to transfer
|
||||
// error case that n = 0 cannot be handled by i2c, we need to send at least 1 byte.
|
||||
let (b, size) = match state_m.read_byte() {
|
||||
Ok(b) => (b, state_m.get_size()),
|
||||
_ => (0xFF, 1),
|
||||
};
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(size);
|
||||
// during sending nbytes automatically send a ACK, stretch clock after last byte
|
||||
w.set_reload(vals::Reload::COMPLETED);
|
||||
});
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
// restore sbc after a master_write_read transaction
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
} else {
|
||||
// Set the nbytes to the maximum buffer size and wait for the bytes from the master
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(BUFFER_SIZE as u8);
|
||||
w.set_reload(vals::Reload::COMPLETED)
|
||||
});
|
||||
// flush the rx data register
|
||||
if regs.isr().read().rxne() {
|
||||
_ = regs.rxdr().read().rxdata();
|
||||
}
|
||||
}
|
||||
// end address phase, release clock stretching
|
||||
regs.icr().write(|w| w.set_addrcf(true));
|
||||
}
|
||||
// ============================================ end slave interrupt state machine
|
||||
I2c::<'_, T, NoDma, NoDma>::slave_interupt_handler(&mut state_m, ®s)
|
||||
} else {
|
||||
let isr = regs.isr().read();
|
||||
if isr.tcr() || isr.tc() {
|
||||
T::state().waker.wake();
|
||||
}
|
||||
@ -142,6 +50,7 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandl
|
||||
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
|
||||
// the interrupt
|
||||
critical_section::with(|_| {
|
||||
let regs = T::regs();
|
||||
regs.cr1().modify(|w| w.set_tcie(false));
|
||||
});
|
||||
}
|
||||
@ -196,147 +105,18 @@ impl Default for Config {
|
||||
}
|
||||
|
||||
pub struct State {
|
||||
waker: AtomicWaker,
|
||||
mutex: Mutex<CriticalSectionRawMutex, RefCell<I2cStateMachine>>,
|
||||
pub(crate) waker: AtomicWaker,
|
||||
pub(crate) mutex: Mutex<CriticalSectionRawMutex, RefCell<SlaveState>>,
|
||||
}
|
||||
|
||||
impl State {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
waker: AtomicWaker::new(),
|
||||
mutex: Mutex::new(RefCell::new(I2cStateMachine::new())),
|
||||
mutex: Mutex::new(RefCell::new(SlaveState::new())),
|
||||
}
|
||||
}
|
||||
}
|
||||
struct I2cStateMachine {
|
||||
buffers: [[I2cBuffer; 2]; 2],
|
||||
result: Option<Error>,
|
||||
slave_mode: bool,
|
||||
address1: u16,
|
||||
ready: bool,
|
||||
current_address: u8,
|
||||
dir: Dir,
|
||||
// at the end of the transaction make a copy of the result
|
||||
// to prevent corruption if a new transaction starts immediatly
|
||||
transaction_result: (u8, Dir, u8, Option<Error>),
|
||||
}
|
||||
impl I2cStateMachine {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
// first dimension: address type, main or generic, second dimension read or write
|
||||
buffers: [
|
||||
[I2cBuffer::new(), I2cBuffer::new()],
|
||||
[I2cBuffer::new(), I2cBuffer::new()],
|
||||
],
|
||||
result: None,
|
||||
slave_mode: false,
|
||||
address1: 0,
|
||||
current_address: 0,
|
||||
dir: Dir::READ,
|
||||
ready: false,
|
||||
transaction_result: (0, Dir::READ, 0, None),
|
||||
}
|
||||
}
|
||||
fn read_byte(&mut self) -> Result<u8, Error> {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][Dir::READ as usize].master_read()
|
||||
}
|
||||
fn write_byte(&mut self, b: u8) -> Result<(), Error> {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][Dir::WRITE as usize].master_write(b)
|
||||
}
|
||||
fn get_size(&self) -> u8 {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][self.dir as usize].size
|
||||
}
|
||||
}
|
||||
const BUFFER_SIZE: usize = 64;
|
||||
|
||||
struct I2cBuffer {
|
||||
buffer: [u8; BUFFER_SIZE],
|
||||
index: usize,
|
||||
size: u8, // only used for the master read slave write scenario
|
||||
}
|
||||
|
||||
impl I2cBuffer {
|
||||
const fn new() -> Self {
|
||||
I2cBuffer {
|
||||
buffer: [0; BUFFER_SIZE],
|
||||
index: 0,
|
||||
size: 0,
|
||||
}
|
||||
}
|
||||
fn reset(&mut self) {
|
||||
self.index = 0;
|
||||
self.size = 0;
|
||||
for i in 0..self.buffer.len() {
|
||||
self.buffer[i] = 0xFF;
|
||||
}
|
||||
}
|
||||
/// master read slave write scenario. Master can read until self.size bytes
|
||||
/// If no data available (self.size == 0)
|
||||
fn master_read(&mut self) -> Result<u8, Error> {
|
||||
if self.size == 0 {
|
||||
return Err(Error::ZeroLengthTransfer);
|
||||
};
|
||||
if self.index < self.size as usize {
|
||||
let b = self.buffer[self.index];
|
||||
self.index += 1;
|
||||
Ok(b)
|
||||
} else {
|
||||
Err(Error::Overrun) // too many bytes asked
|
||||
}
|
||||
}
|
||||
/// master write slave read scenario. Master can write until buffer full
|
||||
fn master_write(&mut self, b: u8) -> Result<(), Error> {
|
||||
if self.index < BUFFER_SIZE {
|
||||
self.buffer[self.index] = b;
|
||||
self.index += 1;
|
||||
self.size = self.index as u8;
|
||||
Ok(())
|
||||
} else {
|
||||
Err(Error::Overrun)
|
||||
}
|
||||
}
|
||||
// read data into this buffer (master read, slave write)
|
||||
fn from_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
||||
let len = buffer.len();
|
||||
if len > self.buffer.len() {
|
||||
return Err(Error::Overrun);
|
||||
};
|
||||
for i in 0..len {
|
||||
self.buffer[i] = buffer[i];
|
||||
}
|
||||
self.size = len as u8;
|
||||
self.index = 0;
|
||||
Ok(())
|
||||
}
|
||||
// read data from this buffer, and leave empty at the end (master write, slave read)
|
||||
// Buffer parameter must be of the size of the recieved bytes, otherwise a BufferSize error is returned
|
||||
fn to_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
||||
if buffer.len() != self.size as usize {
|
||||
return Err(Error::BufferSize);
|
||||
}
|
||||
for i in 0..buffer.len() {
|
||||
buffer[i] = self.buffer[i];
|
||||
}
|
||||
self.size = 0;
|
||||
self.index = 0;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
|
||||
_peri: PeripheralRef<'d, T>,
|
||||
@ -405,9 +185,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let (mode, address) = if config.address_11bits {
|
||||
(vals::Addmode::BIT10, config.slave_address_1)
|
||||
(i2c::vals::Addmode::BIT10, config.slave_address_1)
|
||||
} else {
|
||||
(vals::Addmode::BIT7, config.slave_address_1 << 1)
|
||||
(i2c::vals::Addmode::BIT7, config.slave_address_1 << 1)
|
||||
};
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(address);
|
||||
@ -1040,115 +820,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Ok(())
|
||||
}
|
||||
// =========================
|
||||
// async Slave implementation
|
||||
/// Starts listening for slave transactions
|
||||
pub fn slave_start_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(true);
|
||||
reg.set_txie(true);
|
||||
reg.set_addrie(true);
|
||||
reg.set_rxie(true);
|
||||
reg.set_nackie(true);
|
||||
reg.set_stopie(true);
|
||||
reg.set_errie(true);
|
||||
reg.set_tcie(true);
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
for i in 0..1 {
|
||||
for j in 0..1 {
|
||||
state_m.buffers[i][j].reset();
|
||||
}
|
||||
}
|
||||
state_m.slave_mode = true;
|
||||
state_m.ready = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
// slave stop listening for slave transactions and switch back to master role
|
||||
pub fn slave_stop_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(false);
|
||||
reg.set_txie(false);
|
||||
reg.set_addrie(false);
|
||||
reg.set_rxie(false);
|
||||
reg.set_nackie(false);
|
||||
reg.set_stopie(false);
|
||||
reg.set_errie(false);
|
||||
reg.set_tcie(false);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.slave_mode = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn set_address_1(&self, address7: u8) -> Result<(), Error> {
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let adress_u16 = address7 as u16;
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(adress_u16 << 1);
|
||||
reg.set_oa1mode(vals::Addmode::BIT7);
|
||||
reg.set_oa1en(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.address1 = adress_u16;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
pub fn slave_sbc(&self, sbc_enabled: bool) {
|
||||
// enable acknowlidge control
|
||||
T::regs().cr1().modify(|w| w.set_sbc(sbc_enabled));
|
||||
}
|
||||
/// Prepare write data to master (master_read_slave_write) before transaction starts
|
||||
/// Will return buffersize error in case the incoming buffer is too big
|
||||
pub fn slave_write_buffer(&self, buffer: &[u8], address_type: AddressType) -> Result<(), super::Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][Dir::READ as usize];
|
||||
buf.from_buffer(buffer)
|
||||
})
|
||||
}
|
||||
pub fn slave_reset_buffer(&self, dir: Dir, address_type: AddressType) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][dir as usize];
|
||||
buf.reset();
|
||||
})
|
||||
}
|
||||
|
||||
/// Read data from master (master_write_slave_read) after transaction is finished
|
||||
/// Will fail if the size of the incoming buffer is smaller than the received bytes
|
||||
pub fn slave_read_buffer(&self, buffer: &mut [u8], address_type: AddressType) -> Result<(), super::Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][Dir::WRITE as usize];
|
||||
buf.to_buffer(buffer)
|
||||
})
|
||||
}
|
||||
/// wait until a slave transaction is finished, and return tuple address, direction, data size and error
|
||||
pub async fn slave_transaction(&self) -> (u8, Dir, u8, Option<Error>) {
|
||||
// async wait until addressed
|
||||
poll_fn(|cx| {
|
||||
T::state().waker.register(cx.waker());
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
if state_m.ready {
|
||||
state_m.ready = false;
|
||||
return Poll::Ready(state_m.transaction_result);
|
||||
} else {
|
||||
return Poll::Pending;
|
||||
}
|
||||
})
|
||||
})
|
||||
.await
|
||||
}
|
||||
// =========================
|
||||
// Blocking public API
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
|
462
embassy-stm32/src/i2c/v2slave.rs
Normal file
462
embassy-stm32/src/i2c/v2slave.rs
Normal file
@ -0,0 +1,462 @@
|
||||
use core::result::Result;
|
||||
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::channel::Channel;
|
||||
use stm32_metapac::i2c;
|
||||
|
||||
use super::{AddressIndex, I2c, Instance};
|
||||
use crate::i2c::{Dir, Error};
|
||||
// Declare a CHANNEL for all other tasks to communicate with this driver
|
||||
static CHANNEL_OUT: Channel<CriticalSectionRawMutex, SlaveTransaction, SLAVE_QUEUE_DEPTH> = Channel::new();
|
||||
|
||||
pub type I2cBuffer = [u8; SLAVE_BUFFER_SIZE];
|
||||
pub const SLAVE_BUFFER_SIZE: usize = 64;
|
||||
const SLAVE_QUEUE_DEPTH: usize = 5;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
#[repr(usize)]
|
||||
pub enum BufferIndex {
|
||||
MasterWriteAddress1 = 0,
|
||||
MasterReadAddress1,
|
||||
MasterWriteAddress2,
|
||||
MasterReadAddress2,
|
||||
}
|
||||
|
||||
pub struct SlaveTransaction {
|
||||
buffer: I2cBuffer,
|
||||
buffer_index: BufferIndex,
|
||||
size: u16,
|
||||
index: usize,
|
||||
address: u16,
|
||||
result: Option<Error>,
|
||||
}
|
||||
impl SlaveTransaction {
|
||||
fn new_write(address: AddressIndex) -> Self {
|
||||
SlaveTransaction {
|
||||
buffer: [0; SLAVE_BUFFER_SIZE],
|
||||
buffer_index: if address == AddressIndex::Address1 {
|
||||
BufferIndex::MasterWriteAddress1
|
||||
} else {
|
||||
BufferIndex::MasterWriteAddress2
|
||||
},
|
||||
size: 0,
|
||||
index: 0,
|
||||
address: 0,
|
||||
result: None,
|
||||
}
|
||||
}
|
||||
fn new_read(in_buffer: &[u8], address: AddressIndex) -> Self {
|
||||
let mut buffer = [0; SLAVE_BUFFER_SIZE];
|
||||
let size = if in_buffer.len() < SLAVE_BUFFER_SIZE {
|
||||
in_buffer.len()
|
||||
} else {
|
||||
SLAVE_BUFFER_SIZE
|
||||
};
|
||||
for i in 0..size {
|
||||
buffer[i] = in_buffer[i];
|
||||
}
|
||||
SlaveTransaction {
|
||||
buffer,
|
||||
buffer_index: if address == AddressIndex::Address1 {
|
||||
BufferIndex::MasterReadAddress1
|
||||
} else {
|
||||
BufferIndex::MasterReadAddress2
|
||||
},
|
||||
size: size as u16,
|
||||
index: 0,
|
||||
address: 0,
|
||||
result: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn result(&self) -> Option<Error> {
|
||||
self.result
|
||||
}
|
||||
pub fn address(&self) -> u16 {
|
||||
self.address
|
||||
}
|
||||
pub fn size(&self) -> u16 {
|
||||
self.size
|
||||
}
|
||||
pub fn index(&self) -> usize {
|
||||
self.index
|
||||
}
|
||||
// return a slice of the buffer with the correct transaction size
|
||||
pub fn buffer(&self) -> &[u8] {
|
||||
&self.buffer[0..self.size as usize]
|
||||
}
|
||||
pub fn dir(&self) -> Dir {
|
||||
match self.buffer_index {
|
||||
BufferIndex::MasterReadAddress1 => Dir::READ,
|
||||
BufferIndex::MasterReadAddress2 => Dir::READ,
|
||||
BufferIndex::MasterWriteAddress1 => Dir::WRITE,
|
||||
BufferIndex::MasterWriteAddress2 => Dir::WRITE,
|
||||
}
|
||||
}
|
||||
/// master read slave write scenario. Master can read until self.size bytes
|
||||
/// If no data available (self.size == 0)
|
||||
fn master_read(&mut self) -> Result<u8, Error> {
|
||||
if self.size == 0 {
|
||||
return Err(Error::ZeroLengthTransfer);
|
||||
};
|
||||
if self.index < self.size as usize {
|
||||
let b = self.buffer[self.index];
|
||||
self.index += 1;
|
||||
Ok(b)
|
||||
} else {
|
||||
self.index += 1;
|
||||
Err(Error::Overrun) // too many bytes asked
|
||||
}
|
||||
}
|
||||
/// master write slave read scenario. Master can write until buffer full
|
||||
fn master_write(&mut self, b: u8) -> Result<(), Error> {
|
||||
if self.index < SLAVE_BUFFER_SIZE {
|
||||
self.buffer[self.index] = b;
|
||||
self.index += 1;
|
||||
self.size = self.index as u16;
|
||||
Ok(())
|
||||
} else {
|
||||
self.index += 1;
|
||||
Err(Error::Overrun)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct SlaveState {
|
||||
transactions: [Option<SlaveTransaction>; 4],
|
||||
pub(crate) slave_mode: bool,
|
||||
pub(crate) address1: u16,
|
||||
transaction_index: BufferIndex,
|
||||
error_count: usize,
|
||||
}
|
||||
|
||||
impl SlaveState {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
transactions: [None, None, None, None],
|
||||
slave_mode: false,
|
||||
address1: 0,
|
||||
transaction_index: BufferIndex::MasterWriteAddress1,
|
||||
error_count: 0,
|
||||
}
|
||||
}
|
||||
fn reset(&mut self) {
|
||||
self.error_count = 0;
|
||||
self.reset_transactions();
|
||||
}
|
||||
fn reset_transactions(&mut self) {
|
||||
self.reset_transaction(BufferIndex::MasterReadAddress1);
|
||||
self.reset_transaction(BufferIndex::MasterReadAddress2);
|
||||
self.reset_transaction(BufferIndex::MasterWriteAddress1);
|
||||
self.reset_transaction(BufferIndex::MasterWriteAddress2);
|
||||
self.prepare_write();
|
||||
}
|
||||
fn reset_transaction(&mut self, index: BufferIndex) {
|
||||
_ = self.transactions[index as usize].take();
|
||||
}
|
||||
fn take_transaction(&mut self) -> Option<SlaveTransaction> {
|
||||
self.transactions[self.transaction_index as usize].take()
|
||||
}
|
||||
fn prepare_write(&mut self) {
|
||||
if self.transactions[0].is_none() {
|
||||
_ = self.transactions[0].insert(SlaveTransaction::new_write(AddressIndex::Address1));
|
||||
}
|
||||
if self.transactions[2].is_none() {
|
||||
_ = self.transactions[2].insert(SlaveTransaction::new_write(AddressIndex::Address2));
|
||||
}
|
||||
}
|
||||
// start the transaction. Select the current transaction index based on address and dir
|
||||
// Return the size of the current transaction
|
||||
fn start_transaction(&mut self, address: u8, dir: Dir) -> u16 {
|
||||
let address16 = address as u16;
|
||||
let mut address_index = AddressIndex::Address1;
|
||||
self.transaction_index = if address16 == self.address1 {
|
||||
match dir {
|
||||
Dir::WRITE => BufferIndex::MasterWriteAddress1,
|
||||
Dir::READ => BufferIndex::MasterReadAddress1,
|
||||
}
|
||||
} else {
|
||||
address_index = AddressIndex::Address2;
|
||||
match dir {
|
||||
Dir::WRITE => BufferIndex::MasterWriteAddress2,
|
||||
Dir::READ => BufferIndex::MasterReadAddress2,
|
||||
}
|
||||
};
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
if transaction.is_none() {
|
||||
// transactions should be prepared outside interrupt context.
|
||||
// this is fallback code
|
||||
match dir {
|
||||
Dir::WRITE => {
|
||||
// suboptimal, but not an error. Buffers are created in interrupt context,
|
||||
// where it should be done in user context
|
||||
let t = SlaveTransaction::new_write(address_index);
|
||||
_ = transaction.insert(t);
|
||||
}
|
||||
Dir::READ => {
|
||||
// this is a real error. Master wants to read but there is no transaction
|
||||
// Create a dummy transaction here to contain the error
|
||||
let buf = [0xff; 1];
|
||||
let mut t = SlaveTransaction::new_read(&buf, address_index);
|
||||
t.result = Some(Error::NoTransaction);
|
||||
_ = transaction.insert(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
// return the size of the transaction
|
||||
match transaction {
|
||||
Some(t) => {
|
||||
t.address = address16;
|
||||
t.size()
|
||||
}
|
||||
None => 0,
|
||||
}
|
||||
}
|
||||
pub fn address1(&self) -> u16 {
|
||||
self.address1
|
||||
}
|
||||
// return the error count, then reset
|
||||
fn error_count_reset(&mut self) -> usize {
|
||||
let result = self.error_count;
|
||||
self.error_count = 0;
|
||||
result
|
||||
}
|
||||
fn set_error(&mut self, error: Error) {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.result = Some(error),
|
||||
None => (),
|
||||
}
|
||||
}
|
||||
fn master_read_byte(&mut self) -> Result<u8, Error> {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.master_read(),
|
||||
None => {
|
||||
self.error_count += 1;
|
||||
Err(Error::NoTransaction)
|
||||
}
|
||||
}
|
||||
}
|
||||
fn master_write_byte(&mut self, b: u8) -> Result<(), Error> {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.master_write(b),
|
||||
None => {
|
||||
self.error_count += 1;
|
||||
Err(Error::NoTransaction)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
/// Starts listening for slave transactions
|
||||
pub fn slave_start_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(true);
|
||||
reg.set_txie(true);
|
||||
reg.set_addrie(true);
|
||||
reg.set_rxie(true);
|
||||
reg.set_nackie(true);
|
||||
reg.set_stopie(true);
|
||||
reg.set_errie(true);
|
||||
reg.set_tcie(true);
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset_transactions();
|
||||
state_m.prepare_write();
|
||||
state_m.slave_mode = true;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
// slave stop listening for slave transactions and switch back to master role
|
||||
pub fn slave_stop_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(false);
|
||||
reg.set_txie(false);
|
||||
reg.set_addrie(false);
|
||||
reg.set_rxie(false);
|
||||
reg.set_nackie(false);
|
||||
reg.set_stopie(false);
|
||||
reg.set_errie(false);
|
||||
reg.set_tcie(false);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset_transactions();
|
||||
state_m.slave_mode = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn set_address_1(&self, address7: u8) -> Result<(), Error> {
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let adress_u16 = address7 as u16;
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(adress_u16 << 1);
|
||||
reg.set_oa1mode(i2c::vals::Addmode::BIT7);
|
||||
reg.set_oa1en(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.address1 = adress_u16;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
pub fn slave_sbc(&self, sbc_enabled: bool) {
|
||||
// enable acknowlidge control
|
||||
T::regs().cr1().modify(|w| w.set_sbc(sbc_enabled));
|
||||
}
|
||||
pub fn slave_prepare_read(&self, buffer: &[u8], address: AddressIndex) -> Result<(), Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
if state_m.transactions[address as usize + 1].is_some() {
|
||||
state_m.error_count += 1;
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
_ = state_m.transactions[address as usize + 1].insert(SlaveTransaction::new_read(buffer, address));
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn slave_reset(&self) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset();
|
||||
});
|
||||
}
|
||||
// will return the error count, and reset the error count
|
||||
pub fn slave_error_count(&self) -> usize {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.error_count_reset()
|
||||
})
|
||||
}
|
||||
pub fn slave_prepare_write(&self) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
});
|
||||
}
|
||||
|
||||
/// wait until a slave transaction is finished, and return tuple address, direction, data size and error
|
||||
pub async fn slave_transaction(&self) -> SlaveTransaction {
|
||||
let result = CHANNEL_OUT.receive().await;
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
});
|
||||
result
|
||||
}
|
||||
|
||||
pub(crate) fn slave_interupt_handler(state_m: &mut SlaveState, regs: &i2c::I2c) {
|
||||
// ============================================ slave interrupt state_m machine
|
||||
let isr = regs.isr().read();
|
||||
|
||||
if isr.berr() {
|
||||
regs.icr().modify(|w| {
|
||||
w.set_berrcf(true);
|
||||
});
|
||||
state_m.set_error(Error::Bus);
|
||||
} else if isr.arlo() {
|
||||
state_m.set_error(Error::Arbitration);
|
||||
regs.icr().write(|w| w.set_arlocf(true));
|
||||
} else if isr.nackf() {
|
||||
regs.icr().write(|w| w.set_nackcf(true));
|
||||
} else if isr.txis() {
|
||||
// send the next byte to the master, or NACK in case of error, then end transaction
|
||||
let b = match state_m.master_read_byte() {
|
||||
Ok(b) => b,
|
||||
Err(e) => {
|
||||
// An extra interrupt after the last byte is sent seems to be generated always
|
||||
// Do not generate an error in this (overrun) case
|
||||
match e {
|
||||
Error::Overrun => (),
|
||||
_ => {
|
||||
state_m.set_error(e);
|
||||
}
|
||||
}
|
||||
0xFF
|
||||
}
|
||||
};
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
} else if isr.rxne() {
|
||||
let b = regs.rxdr().read().rxdata();
|
||||
// byte is received from master. Store in buffer. In case of error send NACK, then end transaction
|
||||
match state_m.master_write_byte(b) {
|
||||
Ok(()) => (),
|
||||
Err(e) => {
|
||||
state_m.set_error(e);
|
||||
}
|
||||
}
|
||||
} else if isr.stopf() {
|
||||
// take the ownership out of the i2c device driver and transfer it to the queue
|
||||
// note that in case the queue is full, the transaction is silently dropped
|
||||
// the error count is increased in this case
|
||||
let transaction = state_m.take_transaction();
|
||||
match transaction {
|
||||
Some(t) => {
|
||||
if let Err(_) = CHANNEL_OUT.try_send(t) {
|
||||
state_m.error_count += 1;
|
||||
}
|
||||
}
|
||||
_ => state_m.error_count += 1,
|
||||
};
|
||||
// Clear the stop condition flag
|
||||
regs.icr().write(|w| w.set_stopcf(true));
|
||||
} else if isr.tcr() {
|
||||
// This condition Will only happen when reload == 1 and sbr == 1 (slave) and nbytes was written.
|
||||
// Send a NACK, set nbytes to clear tcr flag
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nack(true);
|
||||
});
|
||||
// Make one extra loop here to wait on the stop condition
|
||||
} else if isr.addr() {
|
||||
// handle the slave is addressed case, first step in the transaction
|
||||
let taddress = isr.addcode();
|
||||
let tdir = if isr.dir() as u8 == 0 { Dir::WRITE } else { Dir::READ };
|
||||
let tsize = state_m.start_transaction(taddress, tdir);
|
||||
|
||||
if tdir == Dir::READ {
|
||||
// flush i2c tx register
|
||||
regs.isr().write(|w| w.set_txe(true));
|
||||
|
||||
// Set the nbytes START and prepare to receive bytes into `buffer`.
|
||||
// Set the actual number of bytes to transfer
|
||||
// error case that n = 0 cannot be handled by i2c, we need to send at least 1 byte.
|
||||
let (b, size) = match state_m.master_read_byte() {
|
||||
Ok(b) => (b, tsize),
|
||||
_ => (0xFF, 1),
|
||||
};
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(size as u8);
|
||||
// during sending nbytes automatically send a ACK, stretch clock after last byte
|
||||
w.set_reload(i2c::vals::Reload::COMPLETED);
|
||||
});
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
// restore sbc after a master_write_read transaction
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
} else {
|
||||
// Set the nbytes to the maximum buffer size and wait for the bytes from the master
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(SLAVE_BUFFER_SIZE as u8);
|
||||
w.set_reload(i2c::vals::Reload::COMPLETED)
|
||||
});
|
||||
// flush the rx data register
|
||||
if regs.isr().read().rxne() {
|
||||
_ = regs.rxdr().read().rxdata();
|
||||
}
|
||||
}
|
||||
// end address phase, release clock stretching
|
||||
regs.icr().write(|w| w.set_addrcf(true));
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user