2c slave based on transactions and a channel
This commit is contained in:
parent
ba9f5111d5
commit
601d769e71
@ -1,6 +1,6 @@
|
||||
#![macro_use]
|
||||
|
||||
use stm32_metapac::i2c::vals::Oamsk;
|
||||
use stm32_metapac::i2c;
|
||||
|
||||
use crate::interrupt;
|
||||
|
||||
@ -9,6 +9,8 @@ use crate::interrupt;
|
||||
mod _version;
|
||||
pub use _version::*;
|
||||
|
||||
mod v2slave;
|
||||
|
||||
use crate::peripherals;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
@ -22,13 +24,7 @@ pub enum Error {
|
||||
Overrun,
|
||||
ZeroLengthTransfer,
|
||||
BufferSize,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
#[repr(usize)]
|
||||
pub enum AddressType {
|
||||
Address1 = 0,
|
||||
Address2,
|
||||
NoTransaction,
|
||||
}
|
||||
|
||||
#[repr(u8)]
|
||||
@ -45,19 +41,25 @@ pub enum Address2Mask {
|
||||
}
|
||||
impl Address2Mask {
|
||||
#[inline(always)]
|
||||
pub const fn to_vals_impl(self) -> Oamsk {
|
||||
pub const fn to_vals_impl(self) -> i2c::vals::Oamsk {
|
||||
match self {
|
||||
Address2Mask::NOMASK => Oamsk::NOMASK,
|
||||
Address2Mask::MASK1 => Oamsk::MASK1,
|
||||
Address2Mask::MASK2 => Oamsk::MASK2,
|
||||
Address2Mask::MASK3 => Oamsk::MASK3,
|
||||
Address2Mask::MASK4 => Oamsk::MASK4,
|
||||
Address2Mask::MASK5 => Oamsk::MASK5,
|
||||
Address2Mask::MASK6 => Oamsk::MASK6,
|
||||
Address2Mask::MASK7 => Oamsk::MASK7,
|
||||
Address2Mask::NOMASK => i2c::vals::Oamsk::NOMASK,
|
||||
Address2Mask::MASK1 => i2c::vals::Oamsk::MASK1,
|
||||
Address2Mask::MASK2 => i2c::vals::Oamsk::MASK2,
|
||||
Address2Mask::MASK3 => i2c::vals::Oamsk::MASK3,
|
||||
Address2Mask::MASK4 => i2c::vals::Oamsk::MASK4,
|
||||
Address2Mask::MASK5 => i2c::vals::Oamsk::MASK5,
|
||||
Address2Mask::MASK6 => i2c::vals::Oamsk::MASK6,
|
||||
Address2Mask::MASK7 => i2c::vals::Oamsk::MASK7,
|
||||
}
|
||||
}
|
||||
}
|
||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||
#[repr(usize)]
|
||||
pub enum AddressIndex {
|
||||
Address1 = 0,
|
||||
Address2 = 2,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
|
||||
pub enum Dir {
|
||||
|
@ -15,14 +15,14 @@ use embassy_sync::waitqueue::AtomicWaker;
|
||||
use embassy_time::{Duration, Instant};
|
||||
#[cfg(feature = "time")]
|
||||
use futures::task::Poll;
|
||||
use stm32_metapac::i2c::vals;
|
||||
|
||||
use super::v2slave::SlaveState;
|
||||
use crate::dma::NoDma;
|
||||
#[cfg(feature = "time")]
|
||||
use crate::dma::Transfer;
|
||||
use crate::gpio::sealed::AFType;
|
||||
use crate::gpio::Pull;
|
||||
use crate::i2c::{Address2Mask, AddressType, Dir, Error, Instance, SclPin, SdaPin};
|
||||
use crate::i2c::{Address2Mask, Error, Instance, SclPin, SdaPin};
|
||||
use crate::interrupt::typelevel::Interrupt;
|
||||
use crate::pac::i2c;
|
||||
use crate::time::Hertz;
|
||||
@ -35,105 +35,13 @@ pub struct InterruptHandler<T: Instance> {
|
||||
|
||||
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
|
||||
unsafe fn on_interrupt() {
|
||||
let regs = T::regs();
|
||||
let isr = regs.isr().read();
|
||||
|
||||
T::state().mutex.lock(|f| {
|
||||
let regs = T::regs();
|
||||
let mut state_m = f.borrow_mut();
|
||||
if state_m.slave_mode {
|
||||
// ============================================ slave interrupt state_m machine
|
||||
if isr.berr() {
|
||||
regs.icr().modify(|w| {
|
||||
w.set_berrcf(true);
|
||||
});
|
||||
state_m.result = Some(Error::Bus);
|
||||
} else if isr.arlo() {
|
||||
state_m.result = Some(Error::Arbitration);
|
||||
regs.icr().write(|w| w.set_arlocf(true));
|
||||
} else if isr.nackf() {
|
||||
regs.icr().write(|w| w.set_nackcf(true));
|
||||
} else if isr.txis() {
|
||||
// send the next byte to the master, or NACK in case of error, then end transaction
|
||||
let b = match state_m.read_byte() {
|
||||
Ok(b) => b,
|
||||
Err(e) => {
|
||||
// An extra interrupt after the last byte is sent seems to be generated always
|
||||
// Do not generate an error in this (overrun) case
|
||||
match e {
|
||||
Error::Overrun => (),
|
||||
_ => state_m.result = Some(e),
|
||||
}
|
||||
0xFF
|
||||
}
|
||||
};
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
} else if isr.rxne() {
|
||||
let b = regs.rxdr().read().rxdata();
|
||||
// byte is received from master. Store in buffer. In case of error send NACK, then end transaction
|
||||
match state_m.write_byte(b) {
|
||||
Ok(()) => (),
|
||||
Err(e) => {
|
||||
state_m.result = Some(e);
|
||||
}
|
||||
}
|
||||
} else if isr.stopf() {
|
||||
// Clear the stop condition flag
|
||||
state_m.ready = true;
|
||||
// make a copy of the current state as result of the transaction
|
||||
state_m.transaction_result =
|
||||
(state_m.current_address, state_m.dir, state_m.get_size(), state_m.result);
|
||||
T::state().waker.wake();
|
||||
regs.icr().write(|w| w.set_stopcf(true));
|
||||
} else if isr.tcr() {
|
||||
// This condition Will only happen when reload == 1 and sbr == 1 (slave) and nbytes was written.
|
||||
// Send a NACK, set nbytes to clear tcr flag
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nack(true);
|
||||
});
|
||||
// Make one extra loop here to wait on the stop condition
|
||||
} else if isr.addr() {
|
||||
// handle the slave is addressed case, first step in the transaction
|
||||
state_m.current_address = isr.addcode();
|
||||
state_m.dir = if isr.dir() as u8 == 0 { Dir::WRITE } else { Dir::READ };
|
||||
state_m.result = None;
|
||||
|
||||
if state_m.dir == Dir::READ {
|
||||
// flush i2c tx register
|
||||
regs.isr().write(|w| w.set_txe(true));
|
||||
|
||||
// Set the nbytes START and prepare to receive bytes into `buffer`.
|
||||
// Set the actual number of bytes to transfer
|
||||
// error case that n = 0 cannot be handled by i2c, we need to send at least 1 byte.
|
||||
let (b, size) = match state_m.read_byte() {
|
||||
Ok(b) => (b, state_m.get_size()),
|
||||
_ => (0xFF, 1),
|
||||
};
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(size);
|
||||
// during sending nbytes automatically send a ACK, stretch clock after last byte
|
||||
w.set_reload(vals::Reload::COMPLETED);
|
||||
});
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
// restore sbc after a master_write_read transaction
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
} else {
|
||||
// Set the nbytes to the maximum buffer size and wait for the bytes from the master
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(BUFFER_SIZE as u8);
|
||||
w.set_reload(vals::Reload::COMPLETED)
|
||||
});
|
||||
// flush the rx data register
|
||||
if regs.isr().read().rxne() {
|
||||
_ = regs.rxdr().read().rxdata();
|
||||
}
|
||||
}
|
||||
// end address phase, release clock stretching
|
||||
regs.icr().write(|w| w.set_addrcf(true));
|
||||
}
|
||||
// ============================================ end slave interrupt state machine
|
||||
I2c::<'_, T, NoDma, NoDma>::slave_interupt_handler(&mut state_m, ®s)
|
||||
} else {
|
||||
let isr = regs.isr().read();
|
||||
if isr.tcr() || isr.tc() {
|
||||
T::state().waker.wake();
|
||||
}
|
||||
@ -142,6 +50,7 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandl
|
||||
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
|
||||
// the interrupt
|
||||
critical_section::with(|_| {
|
||||
let regs = T::regs();
|
||||
regs.cr1().modify(|w| w.set_tcie(false));
|
||||
});
|
||||
}
|
||||
@ -196,147 +105,18 @@ impl Default for Config {
|
||||
}
|
||||
|
||||
pub struct State {
|
||||
waker: AtomicWaker,
|
||||
mutex: Mutex<CriticalSectionRawMutex, RefCell<I2cStateMachine>>,
|
||||
pub(crate) waker: AtomicWaker,
|
||||
pub(crate) mutex: Mutex<CriticalSectionRawMutex, RefCell<SlaveState>>,
|
||||
}
|
||||
|
||||
impl State {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
waker: AtomicWaker::new(),
|
||||
mutex: Mutex::new(RefCell::new(I2cStateMachine::new())),
|
||||
mutex: Mutex::new(RefCell::new(SlaveState::new())),
|
||||
}
|
||||
}
|
||||
}
|
||||
struct I2cStateMachine {
|
||||
buffers: [[I2cBuffer; 2]; 2],
|
||||
result: Option<Error>,
|
||||
slave_mode: bool,
|
||||
address1: u16,
|
||||
ready: bool,
|
||||
current_address: u8,
|
||||
dir: Dir,
|
||||
// at the end of the transaction make a copy of the result
|
||||
// to prevent corruption if a new transaction starts immediatly
|
||||
transaction_result: (u8, Dir, u8, Option<Error>),
|
||||
}
|
||||
impl I2cStateMachine {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
// first dimension: address type, main or generic, second dimension read or write
|
||||
buffers: [
|
||||
[I2cBuffer::new(), I2cBuffer::new()],
|
||||
[I2cBuffer::new(), I2cBuffer::new()],
|
||||
],
|
||||
result: None,
|
||||
slave_mode: false,
|
||||
address1: 0,
|
||||
current_address: 0,
|
||||
dir: Dir::READ,
|
||||
ready: false,
|
||||
transaction_result: (0, Dir::READ, 0, None),
|
||||
}
|
||||
}
|
||||
fn read_byte(&mut self) -> Result<u8, Error> {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][Dir::READ as usize].master_read()
|
||||
}
|
||||
fn write_byte(&mut self, b: u8) -> Result<(), Error> {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][Dir::WRITE as usize].master_write(b)
|
||||
}
|
||||
fn get_size(&self) -> u8 {
|
||||
let adress_type = if self.address1 == self.current_address as u16 {
|
||||
AddressType::Address1
|
||||
} else {
|
||||
AddressType::Address2
|
||||
};
|
||||
self.buffers[adress_type as usize][self.dir as usize].size
|
||||
}
|
||||
}
|
||||
const BUFFER_SIZE: usize = 64;
|
||||
|
||||
struct I2cBuffer {
|
||||
buffer: [u8; BUFFER_SIZE],
|
||||
index: usize,
|
||||
size: u8, // only used for the master read slave write scenario
|
||||
}
|
||||
|
||||
impl I2cBuffer {
|
||||
const fn new() -> Self {
|
||||
I2cBuffer {
|
||||
buffer: [0; BUFFER_SIZE],
|
||||
index: 0,
|
||||
size: 0,
|
||||
}
|
||||
}
|
||||
fn reset(&mut self) {
|
||||
self.index = 0;
|
||||
self.size = 0;
|
||||
for i in 0..self.buffer.len() {
|
||||
self.buffer[i] = 0xFF;
|
||||
}
|
||||
}
|
||||
/// master read slave write scenario. Master can read until self.size bytes
|
||||
/// If no data available (self.size == 0)
|
||||
fn master_read(&mut self) -> Result<u8, Error> {
|
||||
if self.size == 0 {
|
||||
return Err(Error::ZeroLengthTransfer);
|
||||
};
|
||||
if self.index < self.size as usize {
|
||||
let b = self.buffer[self.index];
|
||||
self.index += 1;
|
||||
Ok(b)
|
||||
} else {
|
||||
Err(Error::Overrun) // too many bytes asked
|
||||
}
|
||||
}
|
||||
/// master write slave read scenario. Master can write until buffer full
|
||||
fn master_write(&mut self, b: u8) -> Result<(), Error> {
|
||||
if self.index < BUFFER_SIZE {
|
||||
self.buffer[self.index] = b;
|
||||
self.index += 1;
|
||||
self.size = self.index as u8;
|
||||
Ok(())
|
||||
} else {
|
||||
Err(Error::Overrun)
|
||||
}
|
||||
}
|
||||
// read data into this buffer (master read, slave write)
|
||||
fn from_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
||||
let len = buffer.len();
|
||||
if len > self.buffer.len() {
|
||||
return Err(Error::Overrun);
|
||||
};
|
||||
for i in 0..len {
|
||||
self.buffer[i] = buffer[i];
|
||||
}
|
||||
self.size = len as u8;
|
||||
self.index = 0;
|
||||
Ok(())
|
||||
}
|
||||
// read data from this buffer, and leave empty at the end (master write, slave read)
|
||||
// Buffer parameter must be of the size of the recieved bytes, otherwise a BufferSize error is returned
|
||||
fn to_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
||||
if buffer.len() != self.size as usize {
|
||||
return Err(Error::BufferSize);
|
||||
}
|
||||
for i in 0..buffer.len() {
|
||||
buffer[i] = self.buffer[i];
|
||||
}
|
||||
self.size = 0;
|
||||
self.index = 0;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
|
||||
_peri: PeripheralRef<'d, T>,
|
||||
@ -405,9 +185,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let (mode, address) = if config.address_11bits {
|
||||
(vals::Addmode::BIT10, config.slave_address_1)
|
||||
(i2c::vals::Addmode::BIT10, config.slave_address_1)
|
||||
} else {
|
||||
(vals::Addmode::BIT7, config.slave_address_1 << 1)
|
||||
(i2c::vals::Addmode::BIT7, config.slave_address_1 << 1)
|
||||
};
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(address);
|
||||
@ -1040,115 +820,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Ok(())
|
||||
}
|
||||
// =========================
|
||||
// async Slave implementation
|
||||
/// Starts listening for slave transactions
|
||||
pub fn slave_start_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(true);
|
||||
reg.set_txie(true);
|
||||
reg.set_addrie(true);
|
||||
reg.set_rxie(true);
|
||||
reg.set_nackie(true);
|
||||
reg.set_stopie(true);
|
||||
reg.set_errie(true);
|
||||
reg.set_tcie(true);
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
for i in 0..1 {
|
||||
for j in 0..1 {
|
||||
state_m.buffers[i][j].reset();
|
||||
}
|
||||
}
|
||||
state_m.slave_mode = true;
|
||||
state_m.ready = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
// slave stop listening for slave transactions and switch back to master role
|
||||
pub fn slave_stop_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(false);
|
||||
reg.set_txie(false);
|
||||
reg.set_addrie(false);
|
||||
reg.set_rxie(false);
|
||||
reg.set_nackie(false);
|
||||
reg.set_stopie(false);
|
||||
reg.set_errie(false);
|
||||
reg.set_tcie(false);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.slave_mode = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn set_address_1(&self, address7: u8) -> Result<(), Error> {
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let adress_u16 = address7 as u16;
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(adress_u16 << 1);
|
||||
reg.set_oa1mode(vals::Addmode::BIT7);
|
||||
reg.set_oa1en(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.address1 = adress_u16;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
pub fn slave_sbc(&self, sbc_enabled: bool) {
|
||||
// enable acknowlidge control
|
||||
T::regs().cr1().modify(|w| w.set_sbc(sbc_enabled));
|
||||
}
|
||||
/// Prepare write data to master (master_read_slave_write) before transaction starts
|
||||
/// Will return buffersize error in case the incoming buffer is too big
|
||||
pub fn slave_write_buffer(&self, buffer: &[u8], address_type: AddressType) -> Result<(), super::Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][Dir::READ as usize];
|
||||
buf.from_buffer(buffer)
|
||||
})
|
||||
}
|
||||
pub fn slave_reset_buffer(&self, dir: Dir, address_type: AddressType) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][dir as usize];
|
||||
buf.reset();
|
||||
})
|
||||
}
|
||||
|
||||
/// Read data from master (master_write_slave_read) after transaction is finished
|
||||
/// Will fail if the size of the incoming buffer is smaller than the received bytes
|
||||
pub fn slave_read_buffer(&self, buffer: &mut [u8], address_type: AddressType) -> Result<(), super::Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
let buf = &mut state_m.buffers[address_type as usize][Dir::WRITE as usize];
|
||||
buf.to_buffer(buffer)
|
||||
})
|
||||
}
|
||||
/// wait until a slave transaction is finished, and return tuple address, direction, data size and error
|
||||
pub async fn slave_transaction(&self) -> (u8, Dir, u8, Option<Error>) {
|
||||
// async wait until addressed
|
||||
poll_fn(|cx| {
|
||||
T::state().waker.register(cx.waker());
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
if state_m.ready {
|
||||
state_m.ready = false;
|
||||
return Poll::Ready(state_m.transaction_result);
|
||||
} else {
|
||||
return Poll::Pending;
|
||||
}
|
||||
})
|
||||
})
|
||||
.await
|
||||
}
|
||||
// =========================
|
||||
// Blocking public API
|
||||
|
||||
#[cfg(feature = "time")]
|
||||
|
462
embassy-stm32/src/i2c/v2slave.rs
Normal file
462
embassy-stm32/src/i2c/v2slave.rs
Normal file
@ -0,0 +1,462 @@
|
||||
use core::result::Result;
|
||||
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::channel::Channel;
|
||||
use stm32_metapac::i2c;
|
||||
|
||||
use super::{AddressIndex, I2c, Instance};
|
||||
use crate::i2c::{Dir, Error};
|
||||
// Declare a CHANNEL for all other tasks to communicate with this driver
|
||||
static CHANNEL_OUT: Channel<CriticalSectionRawMutex, SlaveTransaction, SLAVE_QUEUE_DEPTH> = Channel::new();
|
||||
|
||||
pub type I2cBuffer = [u8; SLAVE_BUFFER_SIZE];
|
||||
pub const SLAVE_BUFFER_SIZE: usize = 64;
|
||||
const SLAVE_QUEUE_DEPTH: usize = 5;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
#[repr(usize)]
|
||||
pub enum BufferIndex {
|
||||
MasterWriteAddress1 = 0,
|
||||
MasterReadAddress1,
|
||||
MasterWriteAddress2,
|
||||
MasterReadAddress2,
|
||||
}
|
||||
|
||||
pub struct SlaveTransaction {
|
||||
buffer: I2cBuffer,
|
||||
buffer_index: BufferIndex,
|
||||
size: u16,
|
||||
index: usize,
|
||||
address: u16,
|
||||
result: Option<Error>,
|
||||
}
|
||||
impl SlaveTransaction {
|
||||
fn new_write(address: AddressIndex) -> Self {
|
||||
SlaveTransaction {
|
||||
buffer: [0; SLAVE_BUFFER_SIZE],
|
||||
buffer_index: if address == AddressIndex::Address1 {
|
||||
BufferIndex::MasterWriteAddress1
|
||||
} else {
|
||||
BufferIndex::MasterWriteAddress2
|
||||
},
|
||||
size: 0,
|
||||
index: 0,
|
||||
address: 0,
|
||||
result: None,
|
||||
}
|
||||
}
|
||||
fn new_read(in_buffer: &[u8], address: AddressIndex) -> Self {
|
||||
let mut buffer = [0; SLAVE_BUFFER_SIZE];
|
||||
let size = if in_buffer.len() < SLAVE_BUFFER_SIZE {
|
||||
in_buffer.len()
|
||||
} else {
|
||||
SLAVE_BUFFER_SIZE
|
||||
};
|
||||
for i in 0..size {
|
||||
buffer[i] = in_buffer[i];
|
||||
}
|
||||
SlaveTransaction {
|
||||
buffer,
|
||||
buffer_index: if address == AddressIndex::Address1 {
|
||||
BufferIndex::MasterReadAddress1
|
||||
} else {
|
||||
BufferIndex::MasterReadAddress2
|
||||
},
|
||||
size: size as u16,
|
||||
index: 0,
|
||||
address: 0,
|
||||
result: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn result(&self) -> Option<Error> {
|
||||
self.result
|
||||
}
|
||||
pub fn address(&self) -> u16 {
|
||||
self.address
|
||||
}
|
||||
pub fn size(&self) -> u16 {
|
||||
self.size
|
||||
}
|
||||
pub fn index(&self) -> usize {
|
||||
self.index
|
||||
}
|
||||
// return a slice of the buffer with the correct transaction size
|
||||
pub fn buffer(&self) -> &[u8] {
|
||||
&self.buffer[0..self.size as usize]
|
||||
}
|
||||
pub fn dir(&self) -> Dir {
|
||||
match self.buffer_index {
|
||||
BufferIndex::MasterReadAddress1 => Dir::READ,
|
||||
BufferIndex::MasterReadAddress2 => Dir::READ,
|
||||
BufferIndex::MasterWriteAddress1 => Dir::WRITE,
|
||||
BufferIndex::MasterWriteAddress2 => Dir::WRITE,
|
||||
}
|
||||
}
|
||||
/// master read slave write scenario. Master can read until self.size bytes
|
||||
/// If no data available (self.size == 0)
|
||||
fn master_read(&mut self) -> Result<u8, Error> {
|
||||
if self.size == 0 {
|
||||
return Err(Error::ZeroLengthTransfer);
|
||||
};
|
||||
if self.index < self.size as usize {
|
||||
let b = self.buffer[self.index];
|
||||
self.index += 1;
|
||||
Ok(b)
|
||||
} else {
|
||||
self.index += 1;
|
||||
Err(Error::Overrun) // too many bytes asked
|
||||
}
|
||||
}
|
||||
/// master write slave read scenario. Master can write until buffer full
|
||||
fn master_write(&mut self, b: u8) -> Result<(), Error> {
|
||||
if self.index < SLAVE_BUFFER_SIZE {
|
||||
self.buffer[self.index] = b;
|
||||
self.index += 1;
|
||||
self.size = self.index as u16;
|
||||
Ok(())
|
||||
} else {
|
||||
self.index += 1;
|
||||
Err(Error::Overrun)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct SlaveState {
|
||||
transactions: [Option<SlaveTransaction>; 4],
|
||||
pub(crate) slave_mode: bool,
|
||||
pub(crate) address1: u16,
|
||||
transaction_index: BufferIndex,
|
||||
error_count: usize,
|
||||
}
|
||||
|
||||
impl SlaveState {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
transactions: [None, None, None, None],
|
||||
slave_mode: false,
|
||||
address1: 0,
|
||||
transaction_index: BufferIndex::MasterWriteAddress1,
|
||||
error_count: 0,
|
||||
}
|
||||
}
|
||||
fn reset(&mut self) {
|
||||
self.error_count = 0;
|
||||
self.reset_transactions();
|
||||
}
|
||||
fn reset_transactions(&mut self) {
|
||||
self.reset_transaction(BufferIndex::MasterReadAddress1);
|
||||
self.reset_transaction(BufferIndex::MasterReadAddress2);
|
||||
self.reset_transaction(BufferIndex::MasterWriteAddress1);
|
||||
self.reset_transaction(BufferIndex::MasterWriteAddress2);
|
||||
self.prepare_write();
|
||||
}
|
||||
fn reset_transaction(&mut self, index: BufferIndex) {
|
||||
_ = self.transactions[index as usize].take();
|
||||
}
|
||||
fn take_transaction(&mut self) -> Option<SlaveTransaction> {
|
||||
self.transactions[self.transaction_index as usize].take()
|
||||
}
|
||||
fn prepare_write(&mut self) {
|
||||
if self.transactions[0].is_none() {
|
||||
_ = self.transactions[0].insert(SlaveTransaction::new_write(AddressIndex::Address1));
|
||||
}
|
||||
if self.transactions[2].is_none() {
|
||||
_ = self.transactions[2].insert(SlaveTransaction::new_write(AddressIndex::Address2));
|
||||
}
|
||||
}
|
||||
// start the transaction. Select the current transaction index based on address and dir
|
||||
// Return the size of the current transaction
|
||||
fn start_transaction(&mut self, address: u8, dir: Dir) -> u16 {
|
||||
let address16 = address as u16;
|
||||
let mut address_index = AddressIndex::Address1;
|
||||
self.transaction_index = if address16 == self.address1 {
|
||||
match dir {
|
||||
Dir::WRITE => BufferIndex::MasterWriteAddress1,
|
||||
Dir::READ => BufferIndex::MasterReadAddress1,
|
||||
}
|
||||
} else {
|
||||
address_index = AddressIndex::Address2;
|
||||
match dir {
|
||||
Dir::WRITE => BufferIndex::MasterWriteAddress2,
|
||||
Dir::READ => BufferIndex::MasterReadAddress2,
|
||||
}
|
||||
};
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
if transaction.is_none() {
|
||||
// transactions should be prepared outside interrupt context.
|
||||
// this is fallback code
|
||||
match dir {
|
||||
Dir::WRITE => {
|
||||
// suboptimal, but not an error. Buffers are created in interrupt context,
|
||||
// where it should be done in user context
|
||||
let t = SlaveTransaction::new_write(address_index);
|
||||
_ = transaction.insert(t);
|
||||
}
|
||||
Dir::READ => {
|
||||
// this is a real error. Master wants to read but there is no transaction
|
||||
// Create a dummy transaction here to contain the error
|
||||
let buf = [0xff; 1];
|
||||
let mut t = SlaveTransaction::new_read(&buf, address_index);
|
||||
t.result = Some(Error::NoTransaction);
|
||||
_ = transaction.insert(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
// return the size of the transaction
|
||||
match transaction {
|
||||
Some(t) => {
|
||||
t.address = address16;
|
||||
t.size()
|
||||
}
|
||||
None => 0,
|
||||
}
|
||||
}
|
||||
pub fn address1(&self) -> u16 {
|
||||
self.address1
|
||||
}
|
||||
// return the error count, then reset
|
||||
fn error_count_reset(&mut self) -> usize {
|
||||
let result = self.error_count;
|
||||
self.error_count = 0;
|
||||
result
|
||||
}
|
||||
fn set_error(&mut self, error: Error) {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.result = Some(error),
|
||||
None => (),
|
||||
}
|
||||
}
|
||||
fn master_read_byte(&mut self) -> Result<u8, Error> {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.master_read(),
|
||||
None => {
|
||||
self.error_count += 1;
|
||||
Err(Error::NoTransaction)
|
||||
}
|
||||
}
|
||||
}
|
||||
fn master_write_byte(&mut self, b: u8) -> Result<(), Error> {
|
||||
let transaction = &mut self.transactions[self.transaction_index as usize];
|
||||
match transaction {
|
||||
Some(t) => t.master_write(b),
|
||||
None => {
|
||||
self.error_count += 1;
|
||||
Err(Error::NoTransaction)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
/// Starts listening for slave transactions
|
||||
pub fn slave_start_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(true);
|
||||
reg.set_txie(true);
|
||||
reg.set_addrie(true);
|
||||
reg.set_rxie(true);
|
||||
reg.set_nackie(true);
|
||||
reg.set_stopie(true);
|
||||
reg.set_errie(true);
|
||||
reg.set_tcie(true);
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset_transactions();
|
||||
state_m.prepare_write();
|
||||
state_m.slave_mode = true;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
// slave stop listening for slave transactions and switch back to master role
|
||||
pub fn slave_stop_listen(&self) -> Result<(), super::Error> {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_addrie(false);
|
||||
reg.set_txie(false);
|
||||
reg.set_addrie(false);
|
||||
reg.set_rxie(false);
|
||||
reg.set_nackie(false);
|
||||
reg.set_stopie(false);
|
||||
reg.set_errie(false);
|
||||
reg.set_tcie(false);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset_transactions();
|
||||
state_m.slave_mode = false;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn set_address_1(&self, address7: u8) -> Result<(), Error> {
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1en(false);
|
||||
});
|
||||
let adress_u16 = address7 as u16;
|
||||
T::regs().oar1().write(|reg| {
|
||||
reg.set_oa1(adress_u16 << 1);
|
||||
reg.set_oa1mode(i2c::vals::Addmode::BIT7);
|
||||
reg.set_oa1en(true);
|
||||
});
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.address1 = adress_u16;
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
pub fn slave_sbc(&self, sbc_enabled: bool) {
|
||||
// enable acknowlidge control
|
||||
T::regs().cr1().modify(|w| w.set_sbc(sbc_enabled));
|
||||
}
|
||||
pub fn slave_prepare_read(&self, buffer: &[u8], address: AddressIndex) -> Result<(), Error> {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
if state_m.transactions[address as usize + 1].is_some() {
|
||||
state_m.error_count += 1;
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
_ = state_m.transactions[address as usize + 1].insert(SlaveTransaction::new_read(buffer, address));
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn slave_reset(&self) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.reset();
|
||||
});
|
||||
}
|
||||
// will return the error count, and reset the error count
|
||||
pub fn slave_error_count(&self) -> usize {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.error_count_reset()
|
||||
})
|
||||
}
|
||||
pub fn slave_prepare_write(&self) {
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
});
|
||||
}
|
||||
|
||||
/// wait until a slave transaction is finished, and return tuple address, direction, data size and error
|
||||
pub async fn slave_transaction(&self) -> SlaveTransaction {
|
||||
let result = CHANNEL_OUT.receive().await;
|
||||
T::state().mutex.lock(|f| {
|
||||
let mut state_m = f.borrow_mut();
|
||||
state_m.prepare_write();
|
||||
});
|
||||
result
|
||||
}
|
||||
|
||||
pub(crate) fn slave_interupt_handler(state_m: &mut SlaveState, regs: &i2c::I2c) {
|
||||
// ============================================ slave interrupt state_m machine
|
||||
let isr = regs.isr().read();
|
||||
|
||||
if isr.berr() {
|
||||
regs.icr().modify(|w| {
|
||||
w.set_berrcf(true);
|
||||
});
|
||||
state_m.set_error(Error::Bus);
|
||||
} else if isr.arlo() {
|
||||
state_m.set_error(Error::Arbitration);
|
||||
regs.icr().write(|w| w.set_arlocf(true));
|
||||
} else if isr.nackf() {
|
||||
regs.icr().write(|w| w.set_nackcf(true));
|
||||
} else if isr.txis() {
|
||||
// send the next byte to the master, or NACK in case of error, then end transaction
|
||||
let b = match state_m.master_read_byte() {
|
||||
Ok(b) => b,
|
||||
Err(e) => {
|
||||
// An extra interrupt after the last byte is sent seems to be generated always
|
||||
// Do not generate an error in this (overrun) case
|
||||
match e {
|
||||
Error::Overrun => (),
|
||||
_ => {
|
||||
state_m.set_error(e);
|
||||
}
|
||||
}
|
||||
0xFF
|
||||
}
|
||||
};
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
} else if isr.rxne() {
|
||||
let b = regs.rxdr().read().rxdata();
|
||||
// byte is received from master. Store in buffer. In case of error send NACK, then end transaction
|
||||
match state_m.master_write_byte(b) {
|
||||
Ok(()) => (),
|
||||
Err(e) => {
|
||||
state_m.set_error(e);
|
||||
}
|
||||
}
|
||||
} else if isr.stopf() {
|
||||
// take the ownership out of the i2c device driver and transfer it to the queue
|
||||
// note that in case the queue is full, the transaction is silently dropped
|
||||
// the error count is increased in this case
|
||||
let transaction = state_m.take_transaction();
|
||||
match transaction {
|
||||
Some(t) => {
|
||||
if let Err(_) = CHANNEL_OUT.try_send(t) {
|
||||
state_m.error_count += 1;
|
||||
}
|
||||
}
|
||||
_ => state_m.error_count += 1,
|
||||
};
|
||||
// Clear the stop condition flag
|
||||
regs.icr().write(|w| w.set_stopcf(true));
|
||||
} else if isr.tcr() {
|
||||
// This condition Will only happen when reload == 1 and sbr == 1 (slave) and nbytes was written.
|
||||
// Send a NACK, set nbytes to clear tcr flag
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nack(true);
|
||||
});
|
||||
// Make one extra loop here to wait on the stop condition
|
||||
} else if isr.addr() {
|
||||
// handle the slave is addressed case, first step in the transaction
|
||||
let taddress = isr.addcode();
|
||||
let tdir = if isr.dir() as u8 == 0 { Dir::WRITE } else { Dir::READ };
|
||||
let tsize = state_m.start_transaction(taddress, tdir);
|
||||
|
||||
if tdir == Dir::READ {
|
||||
// flush i2c tx register
|
||||
regs.isr().write(|w| w.set_txe(true));
|
||||
|
||||
// Set the nbytes START and prepare to receive bytes into `buffer`.
|
||||
// Set the actual number of bytes to transfer
|
||||
// error case that n = 0 cannot be handled by i2c, we need to send at least 1 byte.
|
||||
let (b, size) = match state_m.master_read_byte() {
|
||||
Ok(b) => (b, tsize),
|
||||
_ => (0xFF, 1),
|
||||
};
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(size as u8);
|
||||
// during sending nbytes automatically send a ACK, stretch clock after last byte
|
||||
w.set_reload(i2c::vals::Reload::COMPLETED);
|
||||
});
|
||||
regs.txdr().write(|w| w.set_txdata(b));
|
||||
// restore sbc after a master_write_read transaction
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_sbc(true);
|
||||
});
|
||||
} else {
|
||||
// Set the nbytes to the maximum buffer size and wait for the bytes from the master
|
||||
regs.cr2().modify(|w| {
|
||||
w.set_nbytes(SLAVE_BUFFER_SIZE as u8);
|
||||
w.set_reload(i2c::vals::Reload::COMPLETED)
|
||||
});
|
||||
// flush the rx data register
|
||||
if regs.isr().read().rxne() {
|
||||
_ = regs.rxdr().read().rxdata();
|
||||
}
|
||||
}
|
||||
// end address phase, release clock stretching
|
||||
regs.icr().write(|w| w.set_addrcf(true));
|
||||
}
|
||||
}
|
||||
}
|
@ -126,16 +126,11 @@ async fn main(spawner: Spawner) {
|
||||
|
||||
// 0x43 edge case master write exact 65 bytes: 1 too many must fail on master and slave
|
||||
match i2c.blocking_write(0x43, &buf_65) {
|
||||
Ok(_) => writeln!(&mut writer, "Test 0x43 Failed. Expected a Nack\r").unwrap(),
|
||||
Ok(_) => writeln!(&mut writer, "Test passed.\r").unwrap(),
|
||||
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out\r").unwrap(),
|
||||
Err(err) => writeln!(
|
||||
&mut writer,
|
||||
"Test 0x43 passed: Got error NACK du to buffer of 1 too big {:?}\r",
|
||||
err
|
||||
)
|
||||
.unwrap(),
|
||||
Err(err) => writeln!(&mut writer, "Test 0x43 failed: Error: {:?}\r", err).unwrap(),
|
||||
};
|
||||
|
||||
/* skip test for now
|
||||
// 0x44 master write read combined transaction write 20 bytes, then read 20 bytes
|
||||
match i2c.blocking_write_read(0x44, &buf_20, &mut buf_20a) {
|
||||
Ok(_) => {
|
||||
@ -150,19 +145,19 @@ async fn main(spawner: Spawner) {
|
||||
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out\r").unwrap(),
|
||||
Err(err) => writeln!(&mut writer, "Test 0x44 error: {:?}\r", err).unwrap(),
|
||||
};
|
||||
*/
|
||||
// master read. Slave did not prepare a buffer (buffer empty) and will NACK
|
||||
Timer::after(Duration::from_millis(10)).await;
|
||||
match i2c.blocking_read(0x48, &mut buf_20) {
|
||||
Ok(_) => {
|
||||
writeln!(&mut writer, "Test 0x48 failed. Read expected to fail!\r").unwrap();
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Test 0x48 passed.Master cannot detect this is an error case!\r"
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out\r").unwrap(),
|
||||
Err(err) => writeln!(
|
||||
&mut writer,
|
||||
"Test 0x48 Ok. First time, slave did not yet prepare a buffer Error: {:?}\r",
|
||||
err
|
||||
)
|
||||
.unwrap(),
|
||||
Err(err) => writeln!(&mut writer, "Test 0x48 failed. Error:{:?}\r", err).unwrap(),
|
||||
};
|
||||
Timer::after(Duration::from_millis(10)).await;
|
||||
|
||||
@ -180,11 +175,11 @@ async fn main(spawner: Spawner) {
|
||||
// master read 64 bytes, but the slave did prepair only 20 Should fail with NACK
|
||||
match i2c.blocking_read(0x4A, &mut buf_64) {
|
||||
Ok(_) => {
|
||||
writeln!(&mut writer, "Test 0x4A failed. Expected was a NACK error\r").unwrap();
|
||||
writeln!(&mut writer, "Test 0x4A passed. Master cannot detect this error case\r").unwrap();
|
||||
print_buffer(&mut writer, &buf_64);
|
||||
}
|
||||
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out\r").unwrap(),
|
||||
Err(err) => writeln!(&mut writer, "Test 0x4A passed. Expected to fail. Error: {:?}\r", err).unwrap(),
|
||||
Err(err) => writeln!(&mut writer, "Test 0x4A failed. Error: {:?}\r", err).unwrap(),
|
||||
};
|
||||
Timer::after(Duration::from_millis(10)).await;
|
||||
match i2c.blocking_read(0x4B, &mut buf_64) {
|
||||
@ -209,12 +204,12 @@ async fn main(spawner: Spawner) {
|
||||
};
|
||||
|
||||
// 0x4F Master does read 2 bytes with the result of the slave
|
||||
let mut result: [u8; 2] = [0, 0];
|
||||
let mut result: [u8; 3] = [0, 0, 0];
|
||||
match i2c.blocking_read(0x4F, &mut result) {
|
||||
Ok(_) => writeln!(
|
||||
&mut writer,
|
||||
"Result of the whole test as reported by the slave count/errors: {}/{}\r",
|
||||
result[0], result[1]
|
||||
"Test result: count {} errors {} i2c errors:{}\r",
|
||||
result[0], result[1], result[2]
|
||||
)
|
||||
.unwrap(),
|
||||
Err(Error::Timeout) => writeln!(&mut writer, "Operation timed out\r").unwrap(),
|
||||
|
@ -9,7 +9,7 @@ use core::fmt::{self, Write};
|
||||
use embassy_executor::Spawner;
|
||||
use embassy_stm32::dma::NoDma;
|
||||
use embassy_stm32::gpio::{Level, Output, Speed};
|
||||
use embassy_stm32::i2c::{Address2Mask, Dir, Error, I2c};
|
||||
use embassy_stm32::i2c::{Address2Mask, Dir, I2c};
|
||||
use embassy_stm32::time::Hertz;
|
||||
use embassy_stm32::usart::UartTx;
|
||||
use embassy_stm32::{bind_interrupts, i2c, peripherals, usart};
|
||||
@ -116,11 +116,8 @@ async fn main(spawner: Spawner) {
|
||||
let mut buf_20a = [0; 20];
|
||||
let mut buf_2 = [0; 2];
|
||||
let mut errors = 0;
|
||||
let mut address = 0;
|
||||
let mut dir = Dir::READ;
|
||||
let mut tcount = 0;
|
||||
let mut counter = 0;
|
||||
let mut result: Option<Error> = None;
|
||||
|
||||
spawner.spawn(system_ticker(led)).unwrap();
|
||||
|
||||
@ -130,10 +127,6 @@ async fn main(spawner: Spawner) {
|
||||
counter += 1;
|
||||
writeln!(&mut writer, "Loop: {}\r", counter).unwrap();
|
||||
|
||||
// clear master write buffers for sure
|
||||
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::Address2);
|
||||
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::Address1);
|
||||
|
||||
for i in 0..buf_20.len() {
|
||||
buf_20[i] = 0x20 + (i as u8)
|
||||
}
|
||||
@ -146,79 +139,83 @@ async fn main(spawner: Spawner) {
|
||||
// content for test 0x10
|
||||
buf_2[0] = 0xFF;
|
||||
buf_2[1] = 0x04;
|
||||
_ = i2c.slave_write_buffer(&mut buf_2, i2c::AddressType::Address1);
|
||||
_ = i2c.slave_prepare_read(&mut buf_2, i2c::AddressIndex::Address1);
|
||||
|
||||
writeln!(&mut writer, "Waiting for master activity\r").unwrap();
|
||||
|
||||
let (address, dir, size, result) = i2c.slave_transaction().await;
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Address: x{:2x} dir: {:?} size: x{:2x}, Result:{:?}\r",
|
||||
address, dir as u8, size, result
|
||||
)
|
||||
.unwrap();
|
||||
let t = i2c.slave_transaction().await;
|
||||
let dir = t.dir();
|
||||
tcount += 1;
|
||||
// preparations for the next round
|
||||
match address {
|
||||
0x42 => {
|
||||
// prepare for test 0x44: master write read. 20a is send to the master
|
||||
_ = i2c.slave_write_buffer(&mut buf_20a, i2c::AddressType::Address2);
|
||||
i2c.slave_sbc(false);
|
||||
}
|
||||
match t.address() {
|
||||
0x43 => {
|
||||
/*
|
||||
// prepare for test 0x44: master write read. 20a is send to the master
|
||||
_ = i2c.slave_write_buffer(&mut buf_20a, i2c::AddressType::Address2);
|
||||
for i in 0..buf_20a.len() {
|
||||
buf_20a[i] = 0x44 + (i as u8)
|
||||
}
|
||||
_ = i2c.slave_prepare_read(&mut buf_20a, i2c::AddressIndex::Address2);
|
||||
i2c.slave_sbc(false);
|
||||
}
|
||||
0x44 => {
|
||||
// prepare for test 0x48: slave does have no buffer to read
|
||||
i2c.slave_reset_buffer(i2c::AddressType::Address2);
|
||||
*/
|
||||
}
|
||||
0x48 => {
|
||||
// 0x48 master read slave write slave did not yet prepare a buffer, master will fail
|
||||
// prepare buffer for test 0x49
|
||||
for i in 0..buf_20.len() {
|
||||
buf_20[i] = 0x48 + (i as u8)
|
||||
buf_20[i] = 0x49 + (i as u8)
|
||||
}
|
||||
_ = i2c.slave_write_buffer(&buf_20, i2c::AddressType::Address2);
|
||||
_ = i2c.slave_prepare_read(&buf_20, i2c::AddressIndex::Address2);
|
||||
}
|
||||
0x49 => {
|
||||
// prepare buffer for test 0x4A
|
||||
for i in 0..buf_20.len() {
|
||||
buf_20[i] = 0x49 + (i as u8)
|
||||
}
|
||||
match i2c.slave_write_buffer(&buf_20, i2c::AddressType::Address2) {
|
||||
Err(_) => writeln!(&mut writer, "Buffer error\r").unwrap(),
|
||||
_ => (),
|
||||
buf_20[i] = 0x4A + (i as u8)
|
||||
}
|
||||
_ = i2c.slave_prepare_read(&buf_20, i2c::AddressIndex::Address2);
|
||||
}
|
||||
0x4A => {
|
||||
// prepare buffer for test 0x4B
|
||||
for i in 0..buf_64.len() {
|
||||
buf_64[i] = 0x4A + (i as u8)
|
||||
buf_64[i] = 0x4B + (i as u8)
|
||||
}
|
||||
match i2c.slave_write_buffer(&buf_64, i2c::AddressType::Address2) {
|
||||
match i2c.slave_prepare_read(&buf_64, i2c::AddressIndex::Address2) {
|
||||
Err(_) => writeln!(&mut writer, "Buffer error\r").unwrap(),
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
0x4B => {
|
||||
// prepare for test 0x4F
|
||||
let result: [u8; 2] = [tcount, errors];
|
||||
_ = i2c.slave_write_buffer(&result, i2c::AddressType::Address2);
|
||||
let err = i2c.slave_error_count() as u8;
|
||||
let result: [u8; 3] = [tcount, errors, err];
|
||||
_ = i2c.slave_prepare_read(&result, i2c::AddressIndex::Address2);
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Count: {} test errors {} i2 errors: {}\r",
|
||||
tcount, errors, err
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
// printing does cost a lot of time, and can interfere with the test if too verbose
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"A:x{:2x} d:{:?} s:{:2x}, act:{:2x} r:{:?}\r",
|
||||
t.address(),
|
||||
dir as u8,
|
||||
t.size(),
|
||||
t.index(),
|
||||
t.result()
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
match address {
|
||||
match t.address() {
|
||||
0x41 => {
|
||||
writeln!(&mut writer, "Evaluate test 0x41: Good case master write 20 bytes\r").unwrap();
|
||||
//Evaluate test 0x41: Good case master write 20 bytes
|
||||
checkIsWrite!(writer, dir);
|
||||
_ = i2c.slave_read_buffer(&mut buf_20, i2c::AddressType::Address2);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x41 passed\r").unwrap();
|
||||
print_buffer(&mut writer, &buf_20);
|
||||
print_buffer(&mut writer, t.buffer());
|
||||
}
|
||||
Some(err) => {
|
||||
errors += 1;
|
||||
@ -227,17 +224,12 @@ async fn main(spawner: Spawner) {
|
||||
};
|
||||
}
|
||||
0x42 => {
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Evaluate test 0x42: edge case master write exact 64 bytes: must succeed on master and slave\r"
|
||||
)
|
||||
.unwrap();
|
||||
//Evaluate test 0x42: edge case master write exact 64 bytes: must succeed on master and slave
|
||||
checkIsWrite!(writer, dir);
|
||||
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::Address2);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x42 passed. send 64 bytes\r").unwrap();
|
||||
print_buffer(&mut writer, &buf_64);
|
||||
print_buffer(&mut writer, t.buffer());
|
||||
}
|
||||
Some(err) => {
|
||||
errors += 1;
|
||||
@ -246,34 +238,28 @@ async fn main(spawner: Spawner) {
|
||||
};
|
||||
}
|
||||
0x43 => {
|
||||
writeln!(&mut writer, "Evaluate test 0x43.edge case master write exact 65 bytes: 1 too many must fail on master and slave\r").unwrap();
|
||||
//"Evaluate test 0x43.edge case master write exact 65 bytes: 1 too many must fail on master and slave
|
||||
checkIsWrite!(writer, dir);
|
||||
_ = i2c.slave_read_buffer(&mut buf_64, i2c::AddressType::Address2);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
errors += 1;
|
||||
writeln!(&mut writer, "Test 0x43 failed. Expected BufferFull error Got Ok\r").unwrap()
|
||||
writeln!(&mut writer, "Test 0x43 failed. Expected Overrun error Got Ok\r").unwrap()
|
||||
}
|
||||
Some(err) => writeln!(
|
||||
&mut writer,
|
||||
"Test 0x43 passed. Expected error: BufferFull. Error: {:?}\r",
|
||||
"Test 0x43 passed. Expected error: Overrun. Error: {:?}\r",
|
||||
err
|
||||
)
|
||||
.unwrap(),
|
||||
};
|
||||
}
|
||||
0x44 => {
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Evaluate test 0x44: master write read combined transaction write 20 bytes, then read 20 bytes \r"
|
||||
)
|
||||
.unwrap();
|
||||
// Evaluate test 0x44: master write read combined transaction write 20 bytes, then read 20 bytes
|
||||
checkIsRead!(writer, dir);
|
||||
_ = i2c.slave_read_buffer(&mut buf_20, i2c::AddressType::Address2);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x44 passed\r").unwrap();
|
||||
print_buffer(&mut writer, &buf_20)
|
||||
print_buffer(&mut writer, t.buffer())
|
||||
}
|
||||
Some(err) => {
|
||||
errors += 1;
|
||||
@ -283,13 +269,8 @@ async fn main(spawner: Spawner) {
|
||||
}
|
||||
0x48 => {
|
||||
// 0x48 master read slave write slave did not yet prepare a buffer, master will fail
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Evaluate test 0x48. master read. Slave did not prepare a buffer (buffer empty) and will NACK\r"
|
||||
)
|
||||
.unwrap();
|
||||
checkIsRead!(writer, dir);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x48 failed. Expected to fail: \r").unwrap();
|
||||
errors += 1;
|
||||
@ -298,9 +279,9 @@ async fn main(spawner: Spawner) {
|
||||
};
|
||||
}
|
||||
0x49 => {
|
||||
writeln!(&mut writer, "Evaluate test 0x49. master read 20 bytes good case.\r").unwrap();
|
||||
//"Evaluate test 0x49. master read 20 bytes good case.
|
||||
checkIsRead!(writer, dir);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test passed").unwrap();
|
||||
}
|
||||
@ -312,21 +293,21 @@ async fn main(spawner: Spawner) {
|
||||
}
|
||||
0x4A => {
|
||||
// 0x4A master read slave write bad case: master expects 64 does slave does prepare 20 characters
|
||||
writeln!(&mut writer, "Evaluate test 0x4A.master read 64 bytes, but the slave did prepair only 20 Should fail with NACK\r").unwrap();
|
||||
checkIsRead!(writer, dir);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
errors += 1;
|
||||
writeln!(&mut writer, "Test 0x4A failed . Expected an error").unwrap();
|
||||
writeln!(&mut writer, "Test 0x4A Passed.").unwrap();
|
||||
}
|
||||
Some(err) => {
|
||||
errors += 1;
|
||||
writeln!(&mut writer, "Test failed. Error: {:?}\r", err).unwrap()
|
||||
}
|
||||
Some(err) => writeln!(&mut writer, "Test 0x4A passed. Expected error: {:?}\r", err).unwrap(),
|
||||
}
|
||||
}
|
||||
0x4B => {
|
||||
// Master-read-slave-write Master expects 64 bytes, Should be ok
|
||||
writeln!(&mut writer, "Evaluate test 0x4B. Master read 64 bytes good case.\r").unwrap();
|
||||
checkIsRead!(writer, dir);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x4B passed\r").unwrap();
|
||||
}
|
||||
@ -338,9 +319,7 @@ async fn main(spawner: Spawner) {
|
||||
}
|
||||
0x4F => {
|
||||
// Master-read-slave-write 2 bytes with test summary Should be ok.
|
||||
checkIsRead!(writer, dir);
|
||||
writeln!(&mut writer, "Evaluate test 0x4F. Send test summary\r").unwrap();
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x4F Result send to master\r").unwrap();
|
||||
}
|
||||
@ -355,34 +334,24 @@ async fn main(spawner: Spawner) {
|
||||
tcount, errors
|
||||
)
|
||||
.unwrap();
|
||||
writeln!(&mut writer, "-----\r").unwrap();
|
||||
writeln!(&mut writer, "------------------\r").unwrap();
|
||||
tcount = 0;
|
||||
errors = 0;
|
||||
}
|
||||
0x4 => {
|
||||
// Arbitration lost test Master does read 2 bytes on address 0x10
|
||||
// Arbitration lost test Master does read 2 bytes on t.address() 0x10
|
||||
// this slave will send 0xFF04, the other slave will send 0xFF03
|
||||
// This slave should generate a arbitration lost if the other slave is online
|
||||
writeln!(&mut writer, "Evaluate test 0x10: slave arbitration lost.\r").unwrap();
|
||||
checkIsRead!(writer, dir);
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x10 should fail if a second slave with testcase i2c_salve_arbitration.rs is connected.\r").unwrap();
|
||||
errors += 1;
|
||||
}
|
||||
Some(err) => writeln!(&mut writer, "Test 0x10 passed. Error: {:?}\r", err).unwrap(),
|
||||
};
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Test finished. nr tests/nr errors: {}/{}!\r",
|
||||
tcount, errors
|
||||
)
|
||||
.unwrap();
|
||||
writeln!(&mut writer, "-----\r").unwrap();
|
||||
tcount = 0;
|
||||
errors = 0;
|
||||
}
|
||||
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
|
@ -9,8 +9,8 @@ use core::fmt::{self, Write};
|
||||
|
||||
use embassy_executor::Spawner;
|
||||
use embassy_stm32::dma::NoDma;
|
||||
use embassy_stm32::gpio::{Level, Output, Speed};
|
||||
use embassy_stm32::i2c::{Address2Mask, Dir, Error, I2c};
|
||||
// use embassy_stm32::gpio::{Level, Output, Speed};
|
||||
use embassy_stm32::i2c::{I2c, AddressIndex};
|
||||
use embassy_stm32::time::Hertz;
|
||||
use embassy_stm32::usart::UartTx;
|
||||
use embassy_stm32::{bind_interrupts, i2c, peripherals, usart};
|
||||
@ -37,9 +37,8 @@ impl fmt::Write for SerialWriter {
|
||||
}
|
||||
|
||||
#[embassy_executor::main]
|
||||
async fn main(spawner: Spawner) {
|
||||
async fn main(_spawner: Spawner) {
|
||||
let p = embassy_stm32::init(Default::default());
|
||||
let led = Output::new(p.PA5, Level::High, Speed::Low);
|
||||
|
||||
let uart = usart::Uart::new(
|
||||
p.USART1,
|
||||
@ -80,10 +79,7 @@ async fn main(spawner: Spawner) {
|
||||
let i2c = I2c::new(p.I2C1, p.PB8, p.PB9, Irqs, NoDma, NoDma, Hertz(100_000), config);
|
||||
|
||||
let mut buf_2 = [0; 2];
|
||||
let mut address = 0;
|
||||
let mut dir = Dir::READ;
|
||||
let mut counter = 0;
|
||||
let mut result: Option<Error> = None;
|
||||
|
||||
// start of the actual test
|
||||
i2c.slave_start_listen().unwrap();
|
||||
@ -94,25 +90,28 @@ async fn main(spawner: Spawner) {
|
||||
// content for test 0x10
|
||||
buf_2[0] = 0xFF;
|
||||
buf_2[1] = 0x03;
|
||||
_ = i2c.slave_write_buffer(&mut buf_2, i2c::AddressType::Address1);
|
||||
_ = i2c.slave_prepare_read(&mut buf_2, AddressIndex::Address1);
|
||||
|
||||
writeln!(&mut writer, "Waiting for master activity\r").unwrap();
|
||||
|
||||
let (address, dir, size, result) = i2c.slave_transaction().await;
|
||||
let t = i2c.slave_transaction().await;
|
||||
writeln!(
|
||||
&mut writer,
|
||||
"Address: x{:2x} dir: {:?} size: x{:2x}, Result:{:?}\r",
|
||||
address, dir as u8, size, result
|
||||
t.address(),
|
||||
t.dir() as u8,
|
||||
t.size(),
|
||||
t.result()
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
match address {
|
||||
match t.address() {
|
||||
0x10 => {
|
||||
// Arbitration lost test Master does read 2 bytes on address 0x10
|
||||
// this slave will send 0xFF03, the other slave will send 0xFF04
|
||||
// This slave should win , so no error here
|
||||
writeln!(&mut writer, "Evaluate arbitration lost test 0x10.\r\n").unwrap();
|
||||
match result {
|
||||
match t.result() {
|
||||
None => {
|
||||
writeln!(&mut writer, "Test 0x10 Passed\n\r").unwrap();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user