Low power UART driver

This commit is contained in:
Timo Kröger 2020-12-23 16:18:29 +01:00
parent c97d5262f5
commit 6695bf0f21
5 changed files with 578 additions and 51 deletions

View File

@ -26,6 +26,7 @@ log = { version = "0.4.11", optional = true }
cortex-m-rt = "0.6.13"
cortex-m = { version = "0.6.4" }
embedded-hal = { version = "0.2.4" }
embedded-dma = { version = "0.1.2" }
nrf52810-pac = { version = "0.9.0", optional = true }
nrf52811-pac = { version = "0.9.1", optional = true }

View File

@ -57,5 +57,6 @@ pub mod interrupt;
#[cfg(feature = "52840")]
pub mod qspi;
pub mod rtc;
pub mod uarte;
pub use cortex_m_rt::interrupt;

418
embassy-nrf/src/uarte.rs Normal file
View File

@ -0,0 +1,418 @@
//! Async low power UARTE.
//!
//! The peripheral is automatically enabled and disabled as required to save power.
//! Lowest power consumption can only be guaranteed if the send receive futures
//! are dropped correctly (e.g. not using `mem::forget()`).
use core::future::Future;
use core::ops::Deref;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embassy::util::Signal;
use embedded_dma::{ReadBuffer, WriteBuffer};
use crate::fmt::{assert, *};
#[cfg(any(feature = "52833", feature = "52840"))]
use crate::hal::gpio::Port as GpioPort;
use crate::hal::pac;
use crate::hal::prelude::*;
use crate::hal::target_constants::EASY_DMA_SIZE;
use crate::interrupt;
use crate::interrupt::OwnedInterrupt;
pub use crate::hal::uarte::Pins;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
/// Interface to the UARTE peripheral
pub struct Uarte<T>
where
T: Instance,
{
instance: T,
irq: T::Interrupt,
pins: Pins,
}
pub struct State {
tx_done: Signal<()>,
rx_done: Signal<u32>,
}
// TODO: Remove when https://github.com/nrf-rs/nrf-hal/pull/276 has landed
#[cfg(any(feature = "52833", feature = "52840"))]
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl<T> Uarte<T>
where
T: Instance,
{
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
/// # Unsafe
///
/// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms)
/// on stack allocated buffers which which have been passed to [`send()`](Uarte::send)
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
uarte: T,
irq: T::Interrupt,
mut pins: Pins,
parity: Parity,
baudrate: Baudrate,
) -> Self {
assert!(uarte.enable.read().enable().is_disabled());
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pins.txd.port()));
w.connect().connected()
});
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
let w = unsafe { w.pin().bits(pin.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
let w = unsafe { w.pin().bits(pin.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
uarte.config.write(|w| w.parity().variant(parity));
// Enable interrupts
uarte.events_endtx.reset();
uarte.events_endrx.reset();
uarte
.intenset
.write(|w| w.endtx().set().txstopped().set().endrx().set().rxto().set());
// Register ISR
irq.set_handler(Self::on_irq);
irq.unpend();
irq.enable();
Uarte {
instance: uarte,
irq,
pins,
}
}
pub fn free(self) -> (T, T::Interrupt, Pins) {
(self.instance, self.irq, self.pins)
}
fn enable(&mut self) {
trace!("enable");
self.instance.enable.write(|w| w.enable().enabled());
}
/// Sends serial data.
///
/// `tx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
pub fn send<'a, B>(&'a mut self, tx_buffer: B) -> SendFuture<'a, T, B>
where
B: ReadBuffer<Word = u8>,
{
// Panic if TX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.tx_started());
self.enable();
SendFuture {
uarte: self,
buf: tx_buffer,
}
}
fn tx_started(&self) -> bool {
self.instance.events_txstarted.read().bits() != 0
}
/// Receives serial data.
///
/// The future is pending until the buffer is completely filled.
/// A common pattern is to use [`stop()`](ReceiveFuture::stop) to cancel
/// unfinished transfers after a timeout to prevent lockup when no more data
/// is incoming.
///
/// `rx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
pub fn receive<'a, B>(&'a mut self, rx_buffer: B) -> ReceiveFuture<'a, T, B>
where
B: WriteBuffer<Word = u8>,
{
// Panic if RX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.rx_started());
self.enable();
ReceiveFuture {
uarte: self,
buf: Some(rx_buffer),
}
}
fn rx_started(&self) -> bool {
self.instance.events_rxstarted.read().bits() != 0
}
unsafe fn on_irq() {
let uarte = &*pac::UARTE0::ptr();
let mut try_disable = false;
if uarte.events_endtx.read().bits() != 0 {
uarte.events_endtx.reset();
trace!("endtx");
compiler_fence(Ordering::SeqCst);
T::state().tx_done.signal(());
}
if uarte.events_txstopped.read().bits() != 0 {
uarte.events_txstopped.reset();
trace!("txstopped");
try_disable = true;
}
if uarte.events_endrx.read().bits() != 0 {
uarte.events_endrx.reset();
trace!("endrx");
let len = uarte.rxd.amount.read().bits();
compiler_fence(Ordering::SeqCst);
T::state().rx_done.signal(len);
}
if uarte.events_rxto.read().bits() != 0 {
uarte.events_rxto.reset();
trace!("rxto");
try_disable = true;
}
// Disable the peripheral if not active.
if try_disable
&& uarte.events_txstarted.read().bits() == 0
&& uarte.events_rxstarted.read().bits() == 0
{
trace!("disable");
uarte.enable.write(|w| w.enable().disabled());
}
}
}
/// Future for the [`Uarte::send()`] method.
pub struct SendFuture<'a, T, B>
where
T: Instance,
{
uarte: &'a Uarte<T>,
buf: B,
}
impl<'a, T, B> Drop for SendFuture<'a, T, B>
where
T: Instance,
{
fn drop(self: &mut Self) {
if self.uarte.tx_started() {
trace!("stoptx");
// Stop the transmitter to minimize the current consumption.
self.uarte.instance.events_txstarted.reset();
self.uarte
.instance
.tasks_stoptx
.write(|w| unsafe { w.bits(1) });
T::state().tx_done.blocking_wait();
}
}
}
impl<'a, T, B> Future for SendFuture<'a, T, B>
where
T: Instance,
B: ReadBuffer<Word = u8>,
{
type Output = ();
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
let Self { uarte, buf } = unsafe { self.get_unchecked_mut() };
if !uarte.tx_started() {
let uarte = &uarte.instance;
T::state().tx_done.reset();
let (ptr, len) = unsafe { buf.read_buffer() };
assert!(len <= EASY_DMA_SIZE);
// TODO: panic if buffer is not in SRAM
compiler_fence(Ordering::SeqCst);
uarte.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("starttx");
uarte.tasks_starttx.write(|w| unsafe { w.bits(1) });
}
T::state().tx_done.poll_wait(cx)
}
}
/// Future for the [`Uarte::receive()`] method.
pub struct ReceiveFuture<'a, T, B>
where
T: Instance,
{
uarte: &'a Uarte<T>,
buf: Option<B>,
}
impl<'a, T, B> Drop for ReceiveFuture<'a, T, B>
where
T: Instance,
{
fn drop(self: &mut Self) {
if self.uarte.rx_started() {
trace!("stoprx");
self.uarte.instance.events_rxstarted.reset();
self.uarte
.instance
.tasks_stoprx
.write(|w| unsafe { w.bits(1) });
T::state().rx_done.blocking_wait();
}
}
}
impl<'a, T, B> Future for ReceiveFuture<'a, T, B>
where
T: Instance,
B: WriteBuffer<Word = u8>,
{
type Output = B;
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<B> {
let Self { uarte, buf } = unsafe { self.get_unchecked_mut() };
if !uarte.rx_started() {
let uarte = &uarte.instance;
T::state().rx_done.reset();
let (ptr, len) = unsafe { buf.as_mut().unwrap().write_buffer() };
assert!(len <= EASY_DMA_SIZE);
compiler_fence(Ordering::SeqCst);
uarte.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("startrx");
uarte.tasks_startrx.write(|w| unsafe { w.bits(1) });
}
T::state()
.rx_done
.poll_wait(cx)
.map(|_| buf.take().unwrap())
}
}
/// Future for the [`receive()`] method.
impl<'a, T, B> ReceiveFuture<'a, T, B>
where
T: Instance,
{
/// Stops the ongoing reception and returns the number of bytes received.
pub async fn stop(mut self) -> (B, usize) {
let buf = self.buf.take().unwrap();
drop(self);
let len = T::state().rx_done.wait().await;
(buf, len as _)
}
}
mod private {
pub trait Sealed {}
}
pub trait Instance: Deref<Target = pac::uarte0::RegisterBlock> + Sized + private::Sealed {
type Interrupt: OwnedInterrupt;
#[doc(hidden)]
fn state() -> &'static State;
}
static UARTE0_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
impl private::Sealed for pac::UARTE0 {}
impl Instance for pac::UARTE0 {
type Interrupt = interrupt::UARTE0_UART0Interrupt;
fn state() -> &'static State {
&UARTE0_STATE
}
}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
static UARTE1_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl private::Sealed for pac::UARTE1 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Instance for pac::UARTE1 {
type Interrupt = interrupt::UARTE1Interrupt;
fn state() -> &'static State {
&UARTE1_STATE
}
}

View File

@ -0,0 +1,84 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use defmt::panic;
use futures::pin_mut;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::io::{AsyncBufRead, AsyncBufReadExt, AsyncWrite, AsyncWriteExt};
use embassy::util::Forever;
use embassy_nrf::buffered_uarte;
use embassy_nrf::interrupt;
#[task]
async fn run() {
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
let port0 = gpio::p0::Parts::new(p.P0);
let pins = buffered_uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
let irq = interrupt::take!(UARTE0_UART0);
let u = buffered_uarte::BufferedUarte::new(
p.UARTE0,
irq,
pins,
buffered_uarte::Parity::EXCLUDED,
buffered_uarte::Baudrate::BAUD115200,
);
pin_mut!(u);
info!("uarte initialized!");
unwrap!(u.write_all(b"Hello!\r\n").await);
info!("wrote hello in uart!");
// Simple demo, reading 8-char chunks and echoing them back reversed.
loop {
info!("reading...");
let mut buf = [0u8; 8];
unwrap!(u.read_exact(&mut buf).await);
info!("read done, got {:[u8]}", buf);
// Reverse buf
for i in 0..4 {
let tmp = buf[i];
buf[i] = buf[7 - i];
buf[7 - i] = tmp;
}
info!("writing...");
unwrap!(u.write_all(&buf).await);
info!("write done");
}
}
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev));
unwrap!(executor.spawn(run()));
loop {
executor.run();
cortex_m::asm::wfe();
}
}

View File

@ -8,22 +8,76 @@ use example_common::*;
use cortex_m_rt::entry;
use defmt::panic;
use futures::pin_mut;
use embassy::executor::{task, Executor};
use embassy::time::{Duration, Timer};
use embassy::util::Forever;
use embassy_nrf::{interrupt, pac, rtc, uarte};
use futures::future::{select, Either};
use nrf52840_hal::clocks;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::io::{AsyncBufRead, AsyncBufReadExt, AsyncWrite, AsyncWriteExt};
use embassy::util::Forever;
use embassy_nrf::buffered_uarte;
use embassy_nrf::interrupt;
#[task]
async fn run() {
async fn run(mut uart: uarte::Uarte<pac::UARTE0>) {
info!("uarte initialized!");
// Message must be in SRAM
let mut buf = [0; 8];
buf.copy_from_slice(b"Hello!\r\n");
uart.send(&buf).await;
info!("wrote hello in uart!");
info!("reading...");
loop {
let received = match select(
uart.receive(&mut buf),
Timer::after(Duration::from_millis(10)),
)
.await
{
Either::Left((buf, _)) => buf,
Either::Right((_, read)) => {
let (buf, n) = read.stop().await;
&buf[..n]
}
};
if received.len() > 0 {
info!("read done, got {:[u8]}", received);
// Echo back received data
uart.send(received).await;
}
}
}
static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new();
static ALARM: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
clocks::Clocks::new(p.CLOCK)
.enable_ext_hfosc()
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev));
// Init UART
let port0 = gpio::p0::Parts::new(p.P0);
let pins = buffered_uarte::Pins {
let pins = uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
@ -33,49 +87,18 @@ async fn run() {
rts: None,
};
let irq = interrupt::take!(UARTE0_UART0);
let u = buffered_uarte::BufferedUarte::new(
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let uart = unsafe {
uarte::Uarte::new(
p.UARTE0,
irq,
interrupt::take!(UARTE0_UART0),
pins,
buffered_uarte::Parity::EXCLUDED,
buffered_uarte::Baudrate::BAUD115200,
);
pin_mut!(u);
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
info!("uarte initialized!");
unwrap!(u.write_all(b"Hello!\r\n").await);
info!("wrote hello in uart!");
// Simple demo, reading 8-char chunks and echoing them back reversed.
loop {
info!("reading...");
let mut buf = [0u8; 8];
unwrap!(u.read_exact(&mut buf).await);
info!("read done, got {:[u8]}", buf);
// Reverse buf
for i in 0..4 {
let tmp = buf[i];
buf[i] = buf[7 - i];
buf[7 - i] = tmp;
}
info!("writing...");
unwrap!(u.write_all(&buf).await);
info!("write done");
}
}
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev));
unwrap!(executor.spawn(run()));
unwrap!(executor.spawn(run(uart)));
loop {
executor.run();