Add missing parts and Cleanup

This commit is contained in:
Christian Perez Llamas 2022-11-19 00:29:05 +01:00
parent 1ed260b105
commit 6b88057aef
2 changed files with 493 additions and 131 deletions

View File

@ -1,27 +1,27 @@
#![macro_use] #![macro_use]
//! I2S //! Support for I2S audio
use core::future::poll_fn; use core::future::poll_fn;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering}; use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll; use core::task::Poll;
use embassy_cortex_m::interrupt::{InterruptExt, Priority}; use embassy_cortex_m::interrupt::InterruptExt;
use embassy_hal_common::drop::OnDrop; use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{into_ref, PeripheralRef}; use embassy_hal_common::{into_ref, PeripheralRef};
use crate::gpio::{AnyPin, Pin as GpioPin}; use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::interrupt::Interrupt; use crate::interrupt::Interrupt;
use crate::pac::i2s::{RegisterBlock, CONFIG, PSEL}; use crate::pac::i2s::RegisterBlock;
use crate::Peripheral; use crate::Peripheral;
// TODO: Define those in lib.rs somewhere else // TODO: Define those in lib.rs somewhere else
//
// I2S EasyDMA MAXCNT bit length = 14 /// I2S EasyDMA MAXCNT bit length = 14
const MAX_DMA_MAXCNT: u32 = 1 << 14; const MAX_DMA_MAXCNT: u32 = 1 << 14;
// Limits for Easy DMA - it can only read from data ram /// Limits for Easy DMA - it can only read from data ram
pub const SRAM_LOWER: usize = 0x2000_0000; pub const SRAM_LOWER: usize = 0x2000_0000;
pub const SRAM_UPPER: usize = 0x3000_0000; pub const SRAM_UPPER: usize = 0x3000_0000;
@ -36,35 +36,144 @@ pub enum Error {
BufferLengthMisaligned, BufferLengthMisaligned,
} }
pub const MODE_MASTER_8000: Mode = Mode::Master { /// Approximate sample rates.
freq: MckFreq::_32MDiv125, ///
ratio: Ratio::_32x, /// Those are common sample rates that can not be configured without an small error.
}; // error = 0 ///
pub const MODE_MASTER_11025: Mode = Mode::Master { /// For custom master clock configuration, please refer to [Mode].
freq: MckFreq::_32MDiv15, #[derive(Clone, Copy)]
ratio: Ratio::_192x, pub enum ApproxSampleRate {
}; // error = 86 _11025,
pub const MODE_MASTER_16000: Mode = Mode::Master { _16000,
freq: MckFreq::_32MDiv21, _22050,
ratio: Ratio::_96x, _32000,
}; // error = 127 _44100,
pub const MODE_MASTER_22050: Mode = Mode::Master { _48000,
freq: MckFreq::_32MDiv15, }
ratio: Ratio::_96x,
}; // error = 172
pub const MODE_MASTER_32000: Mode = Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_48x,
}; // error = 254
pub const MODE_MASTER_44100: Mode = Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_48x,
}; // error = 344
pub const MODE_MASTER_48000: Mode = Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_32x,
}; // error = 381
impl From<ApproxSampleRate> for Mode {
fn from(value: ApproxSampleRate) -> Self {
match value {
// error = 86
ApproxSampleRate::_11025 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_192x,
},
// error = 127
ApproxSampleRate::_16000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_96x,
},
// error = 172
ApproxSampleRate::_22050 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_96x,
},
// error = 254
ApproxSampleRate::_32000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_48x,
},
// error = 344
ApproxSampleRate::_44100 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_48x,
},
// error = 381
ApproxSampleRate::_48000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_32x,
},
}
}
}
impl ApproxSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
/// Exact sample rates.
///
/// Those are non standard sample rates that can be configured without error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ExactSampleRate {
_8000,
_10582,
_12500,
_15625,
_15873,
_25000,
_31250,
_50000,
_62500,
_100000,
_125000,
}
impl ExactSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
impl From<ExactSampleRate> for Mode {
fn from(value: ExactSampleRate) -> Self {
match value {
ExactSampleRate::_8000 => Mode::Master {
freq: MckFreq::_32MDiv125,
ratio: Ratio::_32x,
},
ExactSampleRate::_10582 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_48x,
},
ExactSampleRate::_12500 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_256x,
},
ExactSampleRate::_15625 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_64x,
},
ExactSampleRate::_15873 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_32x,
},
ExactSampleRate::_25000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_128x,
},
ExactSampleRate::_31250 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_32x,
},
ExactSampleRate::_50000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_64x,
},
ExactSampleRate::_62500 => Mode::Master {
freq: MckFreq::_32MDiv16,
ratio: Ratio::_32x,
},
ExactSampleRate::_100000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_32x,
},
ExactSampleRate::_125000 => Mode::Master {
freq: MckFreq::_32MDiv8,
ratio: Ratio::_32x,
},
}
}
}
/// I2S configuration.
#[derive(Clone)] #[derive(Clone)]
#[non_exhaustive] #[non_exhaustive]
pub struct Config { pub struct Config {
@ -78,7 +187,7 @@ pub struct Config {
impl Default for Config { impl Default for Config {
fn default() -> Self { fn default() -> Self {
Self { Self {
mode: MODE_MASTER_32000, mode: ExactSampleRate::_31250.into(),
swidth: SampleWidth::_16bit, swidth: SampleWidth::_16bit,
align: Align::Left, align: Align::Left,
format: Format::I2S, format: Format::I2S,
@ -132,10 +241,12 @@ impl MckFreq {
256000, 256000,
]; ];
/// Return the value that needs to be written to the register.
pub fn to_register_value(&self) -> u32 { pub fn to_register_value(&self) -> u32 {
Self::REGISTER_VALUES[usize::from(*self)] Self::REGISTER_VALUES[usize::from(*self)]
} }
/// Return the master clock frequency.
pub fn to_frequency(&self) -> u32 { pub fn to_frequency(&self) -> u32 {
Self::FREQUENCIES[usize::from(*self)] Self::FREQUENCIES[usize::from(*self)]
} }
@ -147,7 +258,10 @@ impl From<MckFreq> for usize {
} }
} }
/// MCK / LRCK ratio. /// Master clock frequency ratio
///
/// Sample Rate = LRCK = MCK / Ratio
///
#[derive(Debug, Eq, PartialEq, Clone, Copy)] #[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Ratio { pub enum Ratio {
_32x, _32x,
@ -175,6 +289,7 @@ impl From<Ratio> for u8 {
} }
} }
/// Sample width.
#[derive(Debug, Eq, PartialEq, Clone, Copy)] #[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum SampleWidth { pub enum SampleWidth {
_8bit, _8bit,
@ -188,7 +303,7 @@ impl From<SampleWidth> for u8 {
} }
} }
/// Alignment of sample within a frame. /// Channel used for the most significant sample value in a frame.
#[derive(Debug, Eq, PartialEq, Clone, Copy)] #[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Align { pub enum Align {
Left, Left,
@ -220,11 +335,13 @@ impl From<Format> for bool {
} }
} }
/// Enable channels. /// Channels
#[derive(Debug, Eq, PartialEq, Clone, Copy)] #[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Channels { pub enum Channels {
Stereo, Stereo,
/// Mono left
Left, Left,
/// Mono right
Right, Right,
} }
@ -235,8 +352,6 @@ impl From<Channels> for u8 {
} }
/// Interface to the I2S peripheral using EasyDMA to offload the transmission and reception workload. /// Interface to the I2S peripheral using EasyDMA to offload the transmission and reception workload.
///
/// For more details about EasyDMA, consult the module documentation.
pub struct I2S<'d, T: Instance> { pub struct I2S<'d, T: Instance> {
_p: PeripheralRef<'d, T>, _p: PeripheralRef<'d, T>,
} }
@ -278,29 +393,32 @@ impl<'d, T: Instance> I2S<'d, T> {
) -> Self { ) -> Self {
into_ref!(i2s, irq, mck, sck, lrck, sdin, sdout); into_ref!(i2s, irq, mck, sck, lrck, sdin, sdout);
let r = T::regs(); Self::apply_config(&config);
Self::apply_config(&r.config, &config); Self::select_pins(mck, sck, lrck, sdin, sdout);
Self::select_pins(&r.psel, mck, sck, lrck, sdin, sdout); Self::setup_interrupt(irq);
Self::setup_interrupt(irq, r);
r.enable.write(|w| w.enable().enabled()); T::regs().enable.write(|w| w.enable().enabled());
Self { _p: i2s } Self { _p: i2s }
} }
/// I2S output only
pub fn output(self) -> Output<'d, T> { pub fn output(self) -> Output<'d, T> {
Output { _p: self._p } Output { _p: self._p }
} }
/// I2S input only
pub fn input(self) -> Input<'d, T> { pub fn input(self) -> Input<'d, T> {
Input { _p: self._p } Input { _p: self._p }
} }
/// I2S full duplex (input and output)
pub fn full_duplex(self) -> FullDuplex<'d, T> { pub fn full_duplex(self) -> FullDuplex<'d, T> {
FullDuplex { _p: self._p } FullDuplex { _p: self._p }
} }
fn apply_config(c: &CONFIG, config: &Config) { fn apply_config(config: &Config) {
let c = &T::regs().config;
match config.mode { match config.mode {
Mode::Master { freq, ratio } => { Mode::Master { freq, ratio } => {
c.mode.write(|w| w.mode().master()); c.mode.write(|w| w.mode().master());
@ -322,13 +440,14 @@ impl<'d, T: Instance> I2S<'d, T> {
} }
fn select_pins( fn select_pins(
psel: &PSEL,
mck: PeripheralRef<'d, AnyPin>, mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>, sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>, lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>, sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>, sdout: PeripheralRef<'d, AnyPin>,
) { ) {
let psel = &T::regs().psel;
psel.mck.write(|w| { psel.mck.write(|w| {
unsafe { w.bits(mck.psel_bits()) }; unsafe { w.bits(mck.psel_bits()) };
w.connect().connected() w.connect().connected()
@ -355,21 +474,23 @@ impl<'d, T: Instance> I2S<'d, T> {
}); });
} }
fn setup_interrupt(irq: PeripheralRef<'d, T::Interrupt>, r: &RegisterBlock) { fn setup_interrupt(irq: PeripheralRef<'d, T::Interrupt>) {
irq.set_handler(Self::on_interrupt); irq.set_handler(Self::on_interrupt);
// irq.set_priority(Priority::P1); // TODO review priorities
irq.unpend(); irq.unpend();
irq.enable(); irq.enable();
let device = Device::<T>::new(); let device = Device::<T>::new();
device.disable_tx_ptr_interrupt(); device.disable_tx_ptr_interrupt();
device.disable_rx_ptr_interrupt(); device.disable_rx_ptr_interrupt();
device.disable_stopped_interrupt();
device.reset_tx_ptr_event(); device.reset_tx_ptr_event();
device.reset_rx_ptr_event(); device.reset_rx_ptr_event();
device.reset_stopped_event();
device.enable_tx_ptr_interrupt(); device.enable_tx_ptr_interrupt();
device.enable_rx_ptr_interrupt(); device.enable_rx_ptr_interrupt();
device.enable_stopped_interrupt();
} }
fn on_interrupt(_: *mut ()) { fn on_interrupt(_: *mut ()) {
@ -387,41 +508,40 @@ impl<'d, T: Instance> I2S<'d, T> {
s.rx_waker.wake(); s.rx_waker.wake();
device.disable_rx_ptr_interrupt(); device.disable_rx_ptr_interrupt();
} }
if device.is_stopped() {
trace!("STOPPED INT");
s.stop_waker.wake();
device.disable_stopped_interrupt();
}
} }
}
pub struct Output<'d, T: Instance> { async fn stop() {
_p: PeripheralRef<'d, T>, compiler_fence(Ordering::SeqCst);
}
impl<'d, T: Instance> Output<'d, T> {
/// Starts I2S transfer.
#[inline(always)]
pub fn start<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
// TODO what to do if it is started already?
let device = Device::<T>::new(); let device = Device::<T>::new();
device.enable(); device.stop();
device.set_tx_buffer(buffer)?;
device.enable_tx();
device.start();
Ok(()) T::state().started.store(false, Ordering::Relaxed);
poll_fn(|cx| {
T::state().stop_waker.register(cx.waker());
if device.is_stopped() {
trace!("STOP: Ready");
device.reset_stopped_event();
Poll::Ready(())
} else {
trace!("STOP: Pending");
Poll::Pending
}
})
.await;
device.disable();
} }
/// Stops the I2S transfer and waits until it has stopped. async fn send<B>(buffer: B) -> Result<(), Error>
#[inline(always)]
pub async fn stop(&self) {
todo!()
}
/// Transmits the given `buffer`.
/// Buffer address must be 4 byte aligned and located in RAM.
#[allow(unused_mut)]
pub async fn send<B>(&mut self, buffer: B) -> Result<(), Error>
where where
B: Buffer, B: Buffer,
{ {
@ -454,24 +574,191 @@ impl<'d, T: Instance> Output<'d, T> {
Ok(()) Ok(())
} }
async fn receive<B>(buffer: B) -> Result<(), Error>
where
B: Buffer,
{
trace!("RECEIVE: {}", buffer.bytes_ptr() as u32);
let device = Device::<T>::new();
let drop = device.on_rx_drop();
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
T::state().rx_waker.register(cx.waker());
if device.is_rx_ptr_updated() {
trace!("RX POLL: Ready");
device.reset_rx_ptr_event();
device.enable_rx_ptr_interrupt();
Poll::Ready(())
} else {
trace!("RX POLL: Pending");
Poll::Pending
}
})
.await;
device.set_rx_buffer(buffer)?;
compiler_fence(Ordering::SeqCst);
drop.defuse();
Ok(())
}
} }
/// I2S output
pub struct Output<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Output<'d, T> {
/// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_tx();
device.set_tx_buffer(buffer)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer` for transmission in the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffer must not be written while being used by the DMA,
/// which takes two other `send`s being awaited.
#[allow(unused_mut)]
pub async fn send<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::send(buffer).await
}
}
/// I2S input
pub struct Input<'d, T: Instance> { pub struct Input<'d, T: Instance> {
_p: PeripheralRef<'d, T>, _p: PeripheralRef<'d, T>,
} }
impl<'d, T: Instance> Input<'d, T> { impl<'d, T: Instance> Input<'d, T> {
// TODO /// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_rx();
device.set_rx_buffer(buffer)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer` for reception from the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffer must not be read while being used by the DMA,
/// which takes two other `receive`s being awaited.
#[allow(unused_mut)]
pub async fn receive<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::receive(buffer).await
}
} }
/// I2S ful duplex (input & output)
pub struct FullDuplex<'d, T: Instance> { pub struct FullDuplex<'d, T: Instance> {
_p: PeripheralRef<'d, T>, _p: PeripheralRef<'d, T>,
} }
impl<'d, T: Instance> FullDuplex<'d, T> { impl<'d, T: Instance> FullDuplex<'d, T> {
// TODO /// Prepare the initial buffers and start the I2S transfer.
pub async fn start<B>(&self, buffer_out: B, buffer_in: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_tx();
device.enable_rx();
device.set_tx_buffer(buffer_out)?;
device.set_rx_buffer(buffer_in)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer_out` and `buffer_in` for transmission/reception from the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffers must not be written/read while being used by the DMA,
/// which takes two other `send_and_receive` operations being awaited.
#[allow(unused_mut)]
pub async fn send_and_receive<B>(&mut self, buffer_out: B, buffer_in: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::send(buffer_out).await?;
I2S::<T>::receive(buffer_in).await?;
Ok(())
}
} }
/// Helper encapsulating common I2S device operations.
struct Device<T>(&'static RegisterBlock, PhantomData<T>); struct Device<T>(&'static RegisterBlock, PhantomData<T>);
impl<T: Instance> Device<T> { impl<T: Instance> Device<T> {
@ -521,6 +808,34 @@ impl<T: Instance> Device<T> {
self.0.tasks_start.write(|w| unsafe { w.bits(1) }); self.0.tasks_start.write(|w| unsafe { w.bits(1) });
} }
#[inline(always)]
fn stop(&self) {
self.0.tasks_stop.write(|w| unsafe { w.bits(1) });
}
#[inline(always)]
fn is_stopped(&self) -> bool {
self.0.events_stopped.read().bits() != 0
}
#[inline(always)]
fn reset_stopped_event(&self) {
trace!("STOPPED EVENT: Reset");
self.0.events_stopped.reset();
}
#[inline(always)]
fn disable_stopped_interrupt(&self) {
trace!("STOPPED INTERRUPT: Disabled");
self.0.intenclr.write(|w| w.stopped().clear());
}
#[inline(always)]
fn enable_stopped_interrupt(&self) {
trace!("STOPPED INTERRUPT: Enabled");
self.0.intenset.write(|w| w.stopped().set());
}
#[inline] #[inline]
fn set_tx_buffer<B>(&self, buffer: B) -> Result<(), Error> fn set_tx_buffer<B>(&self, buffer: B) -> Result<(), Error>
where where
@ -606,6 +921,23 @@ impl<T: Instance> Device<T> {
}) })
} }
#[inline]
fn on_rx_drop(&self) -> OnDrop<fn()> {
OnDrop::new(move || {
trace!("RX DROP: Stopping");
let device = Device::<T>::new();
device.disable_rx_ptr_interrupt();
device.reset_rx_ptr_event();
device.disable_rx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_rx_ptr_updated() {}
trace!("RX DROP: Stopped");
})
}
fn validate_buffer<B>(buffer: B) -> Result<(u32, u32), Error> fn validate_buffer<B>(buffer: B) -> Result<(u32, u32), Error>
where where
B: Buffer, B: Buffer,
@ -632,6 +964,56 @@ impl<T: Instance> Device<T> {
} }
} }
/// Sample details
pub trait Sample: Sized + Copy + Default {
const WIDTH: usize;
const SCALE: Self;
}
impl Sample for i8 {
const WIDTH: usize = 8;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
impl Sample for i16 {
const WIDTH: usize = 16;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
impl Sample for i32 {
const WIDTH: usize = 24;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
/// A 4-bytes aligned [Buffer].
#[repr(align(4))]
pub struct AlignedBuffer<T: Sample, const N: usize>([T; N]);
impl<T: Sample, const N: usize> AlignedBuffer<T, N> {
pub fn new(array: [T; N]) -> Self {
Self(array)
}
}
impl<T: Sample, const N: usize> Default for AlignedBuffer<T, N> {
fn default() -> Self {
Self([T::default(); N])
}
}
impl<T: Sample, const N: usize> AsRef<[T]> for AlignedBuffer<T, N> {
fn as_ref(&self) -> &[T] {
self.0.as_slice()
}
}
impl<T: Sample, const N: usize> AsMut<[T]> for AlignedBuffer<T, N> {
fn as_mut(&mut self) -> &mut [T] {
self.0.as_mut_slice()
}
}
/// Common operations required for a buffer to be used by the DMA
pub trait Buffer: Sized { pub trait Buffer: Sized {
fn bytes_ptr(&self) -> *const u8; fn bytes_ptr(&self) -> *const u8;
fn bytes_len(&self) -> usize; fn bytes_len(&self) -> usize;
@ -674,22 +1056,25 @@ impl Buffer for &[i32] {
} }
pub(crate) mod sealed { pub(crate) mod sealed {
use core::sync::atomic::AtomicI32; use core::sync::atomic::AtomicBool;
use embassy_sync::waitqueue::AtomicWaker; use embassy_sync::waitqueue::AtomicWaker;
use super::*; /// Peripheral static state
pub struct State { pub struct State {
pub started: AtomicBool,
pub rx_waker: AtomicWaker, pub rx_waker: AtomicWaker,
pub tx_waker: AtomicWaker, pub tx_waker: AtomicWaker,
pub stop_waker: AtomicWaker,
} }
impl State { impl State {
pub const fn new() -> Self { pub const fn new() -> Self {
Self { Self {
started: AtomicBool::new(false),
rx_waker: AtomicWaker::new(), rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(), tx_waker: AtomicWaker::new(),
stop_waker: AtomicWaker::new(),
} }
} }
} }
@ -704,8 +1089,6 @@ pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt; type Interrupt: Interrupt;
} }
// TODO: Unsure why this macro is flagged as unused by CI when in fact it's used elsewhere?
#[allow(unused_macros)]
macro_rules! impl_i2s { macro_rules! impl_i2s {
($type:ident, $pac_type:ident, $irq:ident) => { ($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::i2s::sealed::Instance for peripherals::$type { impl crate::i2s::sealed::Instance for peripherals::$type {

View File

@ -4,59 +4,41 @@
use core::f32::consts::PI; use core::f32::consts::PI;
use defmt::{error, info, trace}; use defmt::{error, info};
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_nrf::gpio::{Input, Pin, Pull}; use embassy_nrf::i2s::{self, Sample as _};
use embassy_nrf::i2s::{Channels, MckFreq, Mode, Ratio, SampleWidth, MODE_MASTER_32000}; use embassy_nrf::interrupt;
use embassy_nrf::pac::ficr::info;
use embassy_nrf::{i2s, interrupt};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
#[repr(align(4))]
pub struct AlignedBuffer<T: ?Sized>(T);
impl<T> AsRef<T> for AlignedBuffer<T> {
fn as_ref(&self) -> &T {
&self.0
}
}
impl<T> AsMut<T> for AlignedBuffer<T> {
fn as_mut(&mut self) -> &mut T {
&mut self.0
}
}
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(_spawner: Spawner) {
let p = embassy_nrf::init(Default::default()); let p = embassy_nrf::init(Default::default());
let mut config = i2s::Config::default(); let mut config = i2s::Config::default();
config.mode = MODE_MASTER_32000; config.mode = i2s::ExactSampleRate::_50000.into();
// config.mode = Mode::Master { config.channels = i2s::Channels::Left;
// freq: MckFreq::_32MDiv10, config.swidth = i2s::SampleWidth::_16bit;
// ratio: Ratio::_256x,
// }; // 12500 Hz
config.channels = Channels::Left;
config.swidth = SampleWidth::_16bit;
let sample_rate = config.mode.sample_rate().expect("I2S Master"); let sample_rate = config.mode.sample_rate().expect("I2S Master");
let inv_sample_rate = 1.0 / sample_rate as f32; let inv_sample_rate = 1.0 / sample_rate as f32;
info!("Sample rate: {}", sample_rate); info!("Sample rate: {}", sample_rate);
// Wait for a button press // Wait for a button press
// use embassy_nrf::gpio::{Input, Pin, Pull};
// let mut btn1 = Input::new(p.P1_00.degrade(), Pull::Up); // let mut btn1 = Input::new(p.P1_00.degrade(), Pull::Up);
// btn1.wait_for_low().await; // btn1.wait_for_low().await;
let irq = interrupt::take!(I2S); let irq = interrupt::take!(I2S);
let mut i2s = i2s::I2S::new(p.I2S, irq, p.P0_28, p.P0_29, p.P0_31, p.P0_11, p.P0_30, config).output(); let mut i2s = i2s::I2S::new(p.I2S, irq, p.P0_28, p.P0_29, p.P0_31, p.P0_27, p.P0_30, config)
.output();
type Sample = i16; type Sample = i16;
const MAX_UNIPOLAR_VALUE: Sample = (1 << 15) as Sample; const NUM_SAMPLES: usize = 6000;
const NUM_SAMPLES: usize = 2000;
let mut buffers: [AlignedBuffer<[Sample; NUM_SAMPLES]>; 3] = [ let mut buffers: [i2s::AlignedBuffer<Sample, NUM_SAMPLES>; 3] = [
AlignedBuffer([0; NUM_SAMPLES]), i2s::AlignedBuffer::default(),
AlignedBuffer([0; NUM_SAMPLES]), i2s::AlignedBuffer::default(),
AlignedBuffer([0; NUM_SAMPLES]), i2s::AlignedBuffer::default(),
]; ];
let mut carrier = SineOsc::new(); let mut carrier = SineOsc::new();
@ -66,32 +48,29 @@ async fn main(_spawner: Spawner) {
freq_mod.set_amplitude(1.0); freq_mod.set_amplitude(1.0);
let mut amp_mod = SineOsc::new(); let mut amp_mod = SineOsc::new();
amp_mod.set_frequency(4.0, inv_sample_rate); amp_mod.set_frequency(16.0, inv_sample_rate);
amp_mod.set_amplitude(0.5); amp_mod.set_amplitude(0.5);
let mut generate = |buf: &mut [Sample]| { let mut generate = |buf: &mut [Sample]| {
let ptr = buf as *const [Sample] as *const Sample as u32; for sample in &mut buf.chunks_mut(1) {
trace!("GEN: {}", ptr);
for sample in &mut buf.as_mut().chunks_mut(1) {
let signal = carrier.generate();
let freq_modulation = bipolar_to_unipolar(freq_mod.generate()); let freq_modulation = bipolar_to_unipolar(freq_mod.generate());
carrier.set_frequency(220.0 + 220.0 * freq_modulation, inv_sample_rate); carrier.set_frequency(220.0 + 440.0 * freq_modulation, inv_sample_rate);
let amp_modulation = bipolar_to_unipolar(amp_mod.generate()); let amp_modulation = bipolar_to_unipolar(amp_mod.generate());
carrier.set_amplitude(amp_modulation); carrier.set_amplitude(amp_modulation);
let value = (MAX_UNIPOLAR_VALUE as f32 * signal) as Sample; let signal = carrier.generate();
let value = (Sample::SCALE as f32 * signal) as Sample;
sample[0] = value; sample[0] = value;
} }
}; };
generate(buffers[0].as_mut().as_mut_slice()); generate(buffers[0].as_mut());
generate(buffers[1].as_mut().as_mut_slice()); generate(buffers[1].as_mut());
i2s.start(buffers[0].as_ref().as_slice()).expect("I2S Start"); i2s.start(buffers[0].as_ref()).await.expect("I2S Start");
let mut index = 1; let mut index = 1;
loop { loop {
if let Err(err) = i2s.send(buffers[index].as_ref().as_slice()).await { if let Err(err) = i2s.send(buffers[index].as_ref()).await {
error!("{}", err); error!("{}", err);
} }
@ -99,7 +78,7 @@ async fn main(_spawner: Spawner) {
if index >= 3 { if index >= 3 {
index = 0; index = 0;
} }
generate(buffers[index].as_mut().as_mut_slice()); generate(buffers[index].as_mut());
} }
} }