rp i2c: make blocking only for Mode=Blocking

This commit is contained in:
Jeremy Fitzhardinge 2022-09-27 23:44:14 -07:00
parent 8d38eacae4
commit 72b645b0c9

View File

@ -56,14 +56,115 @@ pub struct I2c<'d, T: Instance, M: Mode> {
impl<'d, T: Instance> I2c<'d, T, Blocking> { impl<'d, T: Instance> I2c<'d, T, Blocking> {
pub fn new_blocking( pub fn new_blocking(
_peri: impl Peripheral<P = T> + 'd, peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd, scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd, sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(scl, sda); into_ref!(scl, sda);
Self::new_inner(_peri, scl.map_into(), sda.map_into(), config) Self::new_inner(peri, scl.map_into(), sda.map_into(), config)
} }
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = buffer.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// NOTE(unsafe) We have &mut self
unsafe {
// wait until there is space in the FIFO to write the next byte
while p.ic_txflr().read().txflr() == FIFO_SIZE {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while p.ic_rxflr().read().rxflr() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
}
Ok(())
}
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, true)
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
}
} }
impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { impl<'d, T: Instance, M: Mode> I2c<'d, T, M> {
@ -217,111 +318,12 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> {
} }
} }
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = buffer.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// NOTE(unsafe) We have &mut self
unsafe {
// wait until there is space in the FIFO to write the next byte
while p.ic_txflr().read().txflr() == FIFO_SIZE {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while p.ic_rxflr().read().rxflr() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
}
Ok(())
}
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, true)
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
} }
mod eh02 { mod eh02 {
use super::*; use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, Blocking> {
type Error = Error; type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
@ -329,7 +331,7 @@ mod eh02 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, Blocking> {
type Error = Error; type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
@ -337,7 +339,7 @@ mod eh02 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, Blocking> {
type Error = Error; type Error = Error;
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
@ -370,7 +372,7 @@ mod eh1 {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> { impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, Blocking> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer) self.blocking_read(address, buffer)
} }