rp/uart: use lockfree ringbuffer.

This gets rid of another PeripheralMutex usage.
This commit is contained in:
Dario Nieuwenhuis 2022-11-07 00:27:21 +01:00
parent fa37452359
commit 7b838d0336
6 changed files with 758 additions and 386 deletions

View File

@ -0,0 +1,331 @@
use core::slice;
use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
/// Atomic reusable ringbuffer
///
/// This ringbuffer implementation is designed to be stored in a `static`,
/// therefore all methods take `&self` and not `&mut self`.
///
/// It is "reusable": when created it has no backing buffer, you can give it
/// one with `init` and take it back with `deinit`, and init it again in the
/// future if needed. This is very non-idiomatic, but helps a lot when storing
/// it in a `static`.
///
/// One concurrent writer and one concurrent reader are supported, even at
/// different execution priorities (like main and irq).
pub struct RingBuffer {
buf: AtomicPtr<u8>,
len: AtomicUsize,
start: AtomicUsize,
end: AtomicUsize,
}
pub struct Reader<'a>(&'a RingBuffer);
pub struct Writer<'a>(&'a RingBuffer);
impl RingBuffer {
/// Create a new empty ringbuffer.
pub const fn new() -> Self {
Self {
buf: AtomicPtr::new(core::ptr::null_mut()),
len: AtomicUsize::new(0),
start: AtomicUsize::new(0),
end: AtomicUsize::new(0),
}
}
/// Initialize the ring buffer with a buffer.
///
/// # Safety
/// - The buffer (`buf .. buf+len`) must be valid memory until `deinit` is called.
/// - Must not be called concurrently with any other methods.
pub unsafe fn init(&self, buf: *mut u8, len: usize) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.buf.store(buf, Ordering::Relaxed);
self.len.store(len, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Deinitialize the ringbuffer.
///
/// After calling this, the ringbuffer becomes empty, as if it was
/// just created with `new()`.
///
/// # Safety
/// - Must not be called concurrently with any other methods.
pub unsafe fn deinit(&self) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.len.store(0, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Create a reader.
///
/// # Safety
///
/// Only one reader can exist at a time.
pub unsafe fn reader(&self) -> Reader<'_> {
Reader(self)
}
/// Create a writer.
///
/// # Safety
///
/// Only one writer can exist at a time.
pub unsafe fn writer(&self) -> Writer<'_> {
Writer(self)
}
pub fn is_full(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
self.wrap(end + 1) == start
}
pub fn is_empty(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
start == end
}
fn wrap(&self, n: usize) -> usize {
let len = self.len.load(Ordering::Relaxed);
assert!(n <= len);
if n == len {
0
} else {
n
}
}
}
impl<'a> Writer<'a> {
/// Push data into the buffer in-place.
///
/// The closure `f` is called with a free part of the buffer, it must write
/// some data to it and return the amount of bytes written.
pub fn push(&mut self, f: impl FnOnce(&mut [u8]) -> usize) -> usize {
let (p, n) = self.push_buf();
let buf = unsafe { slice::from_raw_parts_mut(p, n) };
let n = f(buf);
self.push_done(n);
n
}
/// Push one data byte.
///
/// Returns true if pushed succesfully.
pub fn push_one(&mut self, val: u8) -> bool {
let n = self.push(|f| match f {
[] => 0,
[x, ..] => {
*x = val;
1
}
});
n != 0
}
/// Get a buffer where data can be pushed to.
///
/// Write data to the start of the buffer, then call `push_done` with
/// however many bytes you've pushed.
///
/// The buffer is suitable to DMA to.
///
/// If the ringbuf is full, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Writer` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn push_buf(&mut self) -> (*mut u8, usize) {
// Ordering: popping writes `start` last, so we read `start` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
let start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let end = self.0.end.load(Ordering::Relaxed);
let n = if start <= end {
len - end - (start == 0) as usize
} else {
start - end - 1
};
trace!(" ringbuf: push_buf {:?}..{:?}", end, end + n);
(unsafe { buf.add(end) }, n)
}
pub fn push_done(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
let end = self.0.end.load(Ordering::Relaxed);
// Ordering: write `end` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as writing
// the actual data in the buffer) can be reordered down past it, which
// will guarantee the reader sees them after reading from `end`.
self.0.end.store(self.0.wrap(end + n), Ordering::Release);
}
}
impl<'a> Reader<'a> {
/// Pop data from the buffer in-place.
///
/// The closure `f` is called with the next data, it must process
/// some data from it and return the amount of bytes processed.
pub fn pop(&mut self, f: impl FnOnce(&[u8]) -> usize) -> usize {
let (p, n) = self.pop_buf();
let buf = unsafe { slice::from_raw_parts(p, n) };
let n = f(buf);
self.pop_done(n);
n
}
/// Pop one data byte.
///
/// Returns true if popped succesfully.
pub fn pop_one(&mut self) -> Option<u8> {
let mut res = None;
self.pop(|f| match f {
&[] => 0,
&[x, ..] => {
res = Some(x);
1
}
});
res
}
/// Get a buffer where data can be popped from.
///
/// Read data from the start of the buffer, then call `pop_done` with
/// however many bytes you've processed.
///
/// The buffer is suitable to DMA from.
///
/// If the ringbuf is empty, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Reader` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn pop_buf(&mut self) -> (*mut u8, usize) {
// Ordering: pushing writes `end` last, so we read `end` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
// This is needed to guarantee we "see" the data written by the writer.
let end = self.0.end.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let start = self.0.start.load(Ordering::Relaxed);
let n = if end < start { len - start } else { end - start };
trace!(" ringbuf: pop_buf {:?}..{:?}", start, start + n);
(unsafe { buf.add(start) }, n)
}
pub fn pop_done(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
let start = self.0.start.load(Ordering::Relaxed);
// Ordering: write `start` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as reading
// the actual data) can be reordered down past it. This is necessary
// because writing to `start` is effectively freeing the read part of the
// buffer, which "gives permission" to the writer to write to it again.
// Therefore, all buffer accesses must be completed before this.
self.0.start.store(self.0.wrap(start + n), Ordering::Release);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn push_pop() {
let mut b = [0; 4];
let rb = RingBuffer::new();
unsafe {
rb.init(b.as_mut_ptr(), 4);
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.writer().push(|buf| {
// If capacity is 4, we can fill it up to 3.
assert_eq!(3, buf.len());
buf[0] = 1;
buf[1] = 2;
buf[2] = 3;
3
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.writer().push(|buf| {
// If it's full, we can push 0 bytes.
assert_eq!(0, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
assert_eq!(1, buf[0]);
1
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
assert_eq!(2, buf[0]);
assert_eq!(3, buf[1]);
2
});
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(0, buf.len());
0
});
rb.writer().push(|buf| {
assert_eq!(1, buf.len());
buf[0] = 10;
1
});
rb.writer().push(|buf| {
assert_eq!(2, buf.len());
buf[0] = 11;
buf[1] = 12;
2
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
}
}
}

View File

@ -4,6 +4,7 @@
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
pub mod atomic_ring_buffer;
pub mod drop;
mod macros;
mod peripheral;

View File

@ -13,7 +13,7 @@ flavors = [
]
[features]
defmt = ["dep:defmt", "embassy-usb-driver?/defmt"]
defmt = ["dep:defmt", "embassy-usb-driver?/defmt", "embassy-hal-common/defmt"]
# Reexport the PAC for the currently enabled chip at `embassy_rp::pac`.
# This is unstable because semver-minor (non-breaking) releases of embassy-rp may major-bump (breaking) the PAC version.

View File

@ -1,331 +1,416 @@
use core::future::poll_fn;
use core::task::{Poll, Waker};
use core::future::{poll_fn, Future};
use core::slice;
use core::task::Poll;
use atomic_polyfill::{compiler_fence, Ordering};
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_hal_common::ring_buffer::RingBuffer;
use embassy_sync::waitqueue::WakerRegistration;
use embassy_cortex_m::interrupt::{Interrupt, InterruptExt};
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State<'d, T: Instance>(StateStorage<FullStateInner<'d, T>>);
impl<'d, T: Instance> State<'d, T> {
pub struct State {
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self {
Self(StateStorage::new())
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
}
pub struct RxState<'d, T: Instance>(StateStorage<RxStateInner<'d, T>>);
impl<'d, T: Instance> RxState<'d, T> {
pub const fn new() -> Self {
Self(StateStorage::new())
}
}
pub struct TxState<'d, T: Instance>(StateStorage<TxStateInner<'d, T>>);
impl<'d, T: Instance> TxState<'d, T> {
pub const fn new() -> Self {
Self(StateStorage::new())
}
}
struct RxStateInner<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
waker: WakerRegistration,
buf: RingBuffer<'d>,
}
struct TxStateInner<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
waker: WakerRegistration,
buf: RingBuffer<'d>,
}
struct FullStateInner<'d, T: Instance> {
rx: RxStateInner<'d, T>,
tx: TxStateInner<'d, T>,
}
unsafe impl<'d, T: Instance> Send for RxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for RxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Send for TxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for TxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Send for FullStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for FullStateInner<'d, T> {}
pub struct BufferedUart<'d, T: Instance> {
inner: PeripheralMutex<'d, FullStateInner<'d, T>>,
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartRx<'d, T: Instance> {
inner: PeripheralMutex<'d, RxStateInner<'d, T>>,
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartTx<'d, T: Instance> {
inner: PeripheralMutex<'d, TxStateInner<'d, T>>,
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: Instance> Unpin for BufferedUartRx<'d, T> {}
impl<'d, T: Instance> Unpin for BufferedUartTx<'d, T> {}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new<M: Mode>(
state: &'d mut State<'d, T>,
_uart: Uart<'d, T, M>,
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) -> BufferedUart<'d, T> {
into_ref!(irq);
config: Config,
) -> Self {
into_ref!(tx, rx);
Self::new_inner(
irq,
tx.map_into(),
rx.map_into(),
None,
None,
tx_buffer,
rx_buffer,
config,
)
}
pub fn new_with_rtscts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
Self::new_inner(
irq,
tx.map_into(),
rx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
tx_buffer,
rx_buffer,
config,
)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut tx: PeripheralRef<'d, AnyPin>,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
let state = T::state();
let regs = T::regs();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
r.uartimsc().modify(|w| {
regs.uartimsc().modify(|w| {
w.set_rxim(true);
w.set_rtim(true);
w.set_txim(true);
});
}
Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || FullStateInner {
tx: TxStateInner {
phantom: PhantomData,
waker: WakerRegistration::new(),
buf: RingBuffer::new(tx_buffer),
},
rx: RxStateInner {
phantom: PhantomData,
waker: WakerRegistration::new(),
buf: RingBuffer::new(rx_buffer),
},
}),
}
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self { phantom: PhantomData }
}
}
impl<'d, T: Instance> BufferedUartRx<'d, T> {
pub fn new<M: Mode>(
state: &'d mut RxState<'d, T>,
_uart: UartRx<'d, T, M>,
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rx_buffer: &'d mut [u8],
) -> BufferedUartRx<'d, T> {
into_ref!(irq);
config: Config,
) -> Self {
into_ref!(rx);
Self::new_inner(irq, rx.map_into(), None, rx_buffer, config)
}
pub fn new_with_rts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(rx, rts);
Self::new_inner(irq, rx.map_into(), Some(rts.map_into()), rx_buffer, config)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
None,
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
None,
config,
);
let state = T::state();
let regs = T::regs();
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
r.uartimsc().modify(|w| {
regs.uartimsc().modify(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || RxStateInner {
phantom: PhantomData,
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
buf: RingBuffer::new(rx_buffer),
waker: WakerRegistration::new(),
}),
Self { phantom: PhantomData }
}
fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(n))
})
}
fn fill_buf<'a>() -> impl Future<Output = Result<&'a [u8], Error>> {
poll_fn(move |cx| {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
}
fn consume(amt: usize) {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
rx_reader.pop_done(amt)
}
}
impl<'d, T: Instance> BufferedUartTx<'d, T> {
pub fn new<M: Mode>(
state: &'d mut TxState<'d, T>,
_uart: UartTx<'d, T, M>,
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
) -> BufferedUartTx<'d, T> {
into_ref!(irq);
config: Config,
) -> Self {
into_ref!(tx);
Self::new_inner(irq, tx.map_into(), None, tx_buffer, config)
}
pub fn new_with_cts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, cts);
Self::new_inner(irq, tx.map_into(), Some(cts.map_into()), tx_buffer, config)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut tx: PeripheralRef<'d, AnyPin>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
Some(tx.reborrow()),
None,
None,
cts.as_mut().map(|x| x.reborrow()),
config,
);
let state = T::state();
let regs = T::regs();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
r.uartimsc().modify(|w| {
regs.uartimsc().modify(|w| {
w.set_txim(true);
});
}
Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || TxStateInner {
phantom: PhantomData,
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
buf: RingBuffer::new(tx_buffer),
waker: WakerRegistration::new(),
}),
Self { phantom: PhantomData }
}
fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let state = T::state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n == 0 {
state.tx_waker.register(cx.waker());
return Poll::Pending;
} else {
unsafe { T::Interrupt::steal() }.pend();
}
Poll::Ready(Ok(n))
})
}
fn flush() -> impl Future<Output = Result<(), Error>> {
poll_fn(move |cx| {
let state = T::state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
}
}
impl<'d, T: Instance> PeripheralState for FullStateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.rx.on_interrupt();
self.tx.on_interrupt();
}
}
impl<'d, T: Instance> RxStateInner<'d, T>
where
Self: 'd,
{
fn read(&mut self, buf: &mut [u8], waker: &Waker) -> (Poll<Result<usize, Error>>, bool) {
// We have data ready in buffer? Return it.
let mut do_pend = false;
let data = self.buf.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if self.buf.is_full() {
do_pend = true;
}
self.buf.pop(len);
return (Poll::Ready(Ok(len)), do_pend);
}
self.waker.register(waker);
(Poll::Pending, do_pend)
}
fn fill_buf<'a>(&mut self, waker: &Waker) -> Poll<Result<&'a [u8], Error>> {
// We have data ready in buffer? Return it.
let buf = self.buf.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
self.waker.register(waker);
Poll::Pending
}
fn consume(&mut self, amt: usize) -> bool {
let full = self.buf.is_full();
self.buf.pop(amt);
full
}
}
impl<'d, T: Instance> PeripheralState for RxStateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
let r = T::regs();
impl<'d, T: Instance> Drop for BufferedUart<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
state.tx_buf.deinit();
state.rx_buf.deinit();
}
}
}
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
state.tx_buf.deinit();
state.rx_buf.deinit();
}
}
}
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
state.tx_buf.deinit();
state.rx_buf.deinit();
}
}
}
pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
trace!("on_interrupt");
let r = T::regs();
let s = T::state();
unsafe {
// RX
let ris = r.uartris().read();
// Clear interrupt flags
r.uarticr().modify(|w| {
r.uarticr().write(|w| {
w.set_rxic(true);
w.set_rtic(true);
});
if ris.peris() {
warn!("Parity error");
r.uarticr().modify(|w| {
r.uarticr().write(|w| {
w.set_peic(true);
});
}
if ris.feris() {
warn!("Framing error");
r.uarticr().modify(|w| {
r.uarticr().write(|w| {
w.set_feic(true);
});
}
if ris.beris() {
warn!("Break error");
r.uarticr().modify(|w| {
r.uarticr().write(|w| {
w.set_beic(true);
});
}
if ris.oeris() {
warn!("Overrun error");
r.uarticr().modify(|w| {
r.uarticr().write(|w| {
w.set_oeic(true);
});
}
let mut rx_writer = s.rx_buf.writer();
if !r.uartfr().read().rxfe() {
let buf = self.buf.push_buf();
if !buf.is_empty() {
buf[0] = r.uartdr().read().data();
self.buf.push(1);
} else {
let val = r.uartdr().read().data();
if !rx_writer.push_one(val) {
warn!("RX buffer full, discard received byte");
}
if self.buf.is_full() {
self.waker.wake();
}
s.rx_waker.wake();
}
if ris.rtris() {
self.waker.wake();
};
}
}
}
impl<'d, T: Instance> TxStateInner<'d, T>
where
Self: 'd,
{
fn write(&mut self, buf: &[u8], waker: &Waker) -> (Poll<Result<usize, Error>>, bool) {
let empty = self.buf.is_empty();
let tx_buf = self.buf.push_buf();
if tx_buf.is_empty() {
self.waker.register(waker);
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
self.buf.push(n);
(Poll::Ready(Ok(n)), empty)
}
fn flush(&mut self, waker: &Waker) -> Poll<Result<(), Error>> {
if !self.buf.is_empty() {
self.waker.register(waker);
return Poll::Pending;
}
Poll::Ready(Ok(()))
}
}
impl<'d, T: Instance> PeripheralState for TxStateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
let r = T::regs();
unsafe {
let buf = self.buf.pop_buf();
if !buf.is_empty() {
// TX
let mut tx_reader = s.tx_buf.reader();
if let Some(val) = tx_reader.pop_one() {
r.uartimsc().modify(|w| {
w.set_txim(true);
});
r.uartdr().write(|w| w.set_data(buf[0].into()));
self.buf.pop(1);
self.waker.wake();
r.uartdr().write(|w| w.set_data(val));
s.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.uartimsc().modify(|w| {
@ -334,7 +419,6 @@ where
}
}
}
}
impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind {
@ -356,108 +440,52 @@ impl<'d, T: Instance> embedded_io::Io for BufferedUartTx<'d, T> {
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
poll_fn(move |cx| {
let (res, do_pend) = self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.rx.read(buf, cx.waker())
});
if do_pend {
self.inner.pend();
}
res
})
.await
BufferedUartRx::<'d, T>::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
poll_fn(move |cx| {
let (res, do_pend) = self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.read(buf, cx.waker())
});
if do_pend {
self.inner.pend();
}
res
})
.await
Self::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
poll_fn(move |cx| {
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.rx.fill_buf(cx.waker())
})
})
.await
BufferedUartRx::<'d, T>::fill_buf().await
}
fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| state.rx.consume(amt));
if signal {
self.inner.pend();
}
BufferedUartRx::<'d, T>::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
poll_fn(move |cx| {
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.fill_buf(cx.waker())
})
})
.await
Self::fill_buf().await
}
fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| state.consume(amt));
if signal {
self.inner.pend();
}
Self::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
poll_fn(move |cx| {
let (poll, empty) = self.inner.with(|state| state.tx.write(buf, cx.waker()));
if empty {
self.inner.pend();
}
poll
})
.await
BufferedUartTx::<'d, T>::write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
poll_fn(move |cx| self.inner.with(|state| state.tx.flush(cx.waker()))).await
BufferedUartTx::<'d, T>::flush().await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
poll_fn(move |cx| {
let (poll, empty) = self.inner.with(|state| state.write(buf, cx.waker()));
if empty {
self.inner.pend();
}
poll
})
.await
Self::write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
poll_fn(move |cx| self.inner.with(|state| state.flush(cx.waker()))).await
Self::flush().await
}
}

View File

@ -7,6 +7,11 @@ use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};
#[cfg(feature = "nightly")]
mod buffered;
#[cfg(feature = "nightly")]
pub use buffered::{BufferedUart, BufferedUartRx, BufferedUartTx};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DataBits {
DataBits5,
@ -196,7 +201,7 @@ impl<'d, T: Instance> Uart<'d, T, Blocking> {
config: Config,
) -> Self {
into_ref!(tx, rx);
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, None, None, config)
Self::new_inner(uart, tx.map_into(), rx.map_into(), None, None, None, None, config)
}
/// Create a new UART with hardware flow control (RTS/CTS)
@ -211,8 +216,8 @@ impl<'d, T: Instance> Uart<'d, T, Blocking> {
into_ref!(tx, rx, cts, rts);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
rx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
None,
@ -235,8 +240,8 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
into_ref!(tx, rx, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
rx.map_into(),
None,
None,
Some(tx_dma.map_into()),
@ -259,8 +264,8 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
rx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
Some(tx_dma.map_into()),
@ -273,41 +278,52 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
fn new_inner(
_uart: impl Peripheral<P = T> + 'd,
tx: PeripheralRef<'d, AnyPin>,
rx: PeripheralRef<'d, AnyPin>,
rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>,
mut tx: PeripheralRef<'d, AnyPin>,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config,
) -> Self {
into_ref!(_uart);
Self::init(
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
unsafe {
Self {
tx: UartTx::new(tx_dma),
rx: UartRx::new(rx_dma),
}
}
fn init(
tx: Option<PeripheralRef<'_, AnyPin>>,
rx: Option<PeripheralRef<'_, AnyPin>>,
rts: Option<PeripheralRef<'_, AnyPin>>,
cts: Option<PeripheralRef<'_, AnyPin>>,
config: Config,
) {
let r = T::regs();
tx.io().ctrl().write(|w| w.set_funcsel(2));
rx.io().ctrl().write(|w| w.set_funcsel(2));
tx.pad_ctrl().write(|w| {
w.set_ie(true);
});
rx.pad_ctrl().write(|w| {
w.set_ie(true);
});
unsafe {
if let Some(pin) = &tx {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &rx {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &cts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| {
w.set_ie(true);
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
if let Some(pin) = &rts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| {
w.set_ie(true);
});
pin.pad_ctrl().write(|w| w.set_ie(true));
}
let clk_base = crate::clocks::clk_peri_freq();
@ -359,11 +375,6 @@ impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
w.set_rtsen(rts.is_some());
});
}
Self {
tx: UartTx::new(tx_dma),
rx: UartRx::new(rx_dma),
}
}
}
@ -611,11 +622,6 @@ mod eha {
}
}
#[cfg(feature = "nightly")]
mod buffered;
#[cfg(feature = "nightly")]
pub use buffered::*;
mod sealed {
use super::*;
@ -628,6 +634,9 @@ mod sealed {
type Interrupt: crate::interrupt::Interrupt;
fn regs() -> pac::uart::Uart;
#[cfg(feature = "nightly")]
fn state() -> &'static buffered::State;
}
pub trait TxPin<T: Instance> {}
pub trait RxPin<T: Instance> {}
@ -663,6 +672,12 @@ macro_rules! impl_instance {
fn regs() -> pac::uart::Uart {
pac::$inst
}
#[cfg(feature = "nightly")]
fn state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
}
impl Instance for peripherals::$inst {}
};

View File

@ -5,7 +5,7 @@
use defmt::{assert_eq, *};
use embassy_executor::Spawner;
use embassy_rp::interrupt;
use embassy_rp::uart::{BufferedUart, Config, State, Uart};
use embassy_rp::uart::{BufferedUart, Config};
use embedded_io::asynch::{Read, Write};
use {defmt_rtt as _, panic_probe as _};
@ -17,25 +17,22 @@ async fn main(_spawner: Spawner) {
let (tx, rx, uart) = (p.PIN_0, p.PIN_1, p.UART0);
let config = Config::default();
let uart = Uart::new_blocking(uart, tx, rx, config);
let irq = interrupt::take!(UART0_IRQ);
let tx_buf = &mut [0u8; 16];
let rx_buf = &mut [0u8; 16];
let mut state = State::new();
let mut uart = BufferedUart::new(&mut state, uart, irq, tx_buf, rx_buf);
let mut uart = BufferedUart::new(uart, irq, tx, rx, tx_buf, rx_buf, config);
// Make sure we send more bytes than fits in the FIFO, to test the actual
// bufferedUart.
let data = [
1_u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32,
1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31,
];
uart.write_all(&data).await.unwrap();
info!("Done writing");
let mut buf = [0; 32];
let mut buf = [0; 31];
uart.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, data);