rp: update rp-pac.

This commit is contained in:
Dario Nieuwenhuis
2023-06-16 01:32:18 +02:00
parent 64e3310e64
commit 837ebe405f
22 changed files with 1239 additions and 1493 deletions

View File

@ -73,16 +73,14 @@ pub(crate) fn init_buffers<'d, T: Instance + 'd>(
// we clear it after it happens. The downside is that the we manually have
// to pend the ISR when we want data transmission to start.
let regs = T::regs();
unsafe {
regs.uartimsc().write(|w| {
w.set_rxim(true);
w.set_rtim(true);
w.set_txim(true);
});
regs.uartimsc().write(|w| {
w.set_rxim(true);
w.set_rtim(true);
w.set_txim(true);
});
T::Interrupt::unpend();
T::Interrupt::enable();
};
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
}
impl<'d, T: Instance> BufferedUart<'d, T> {
@ -247,12 +245,10 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full or errors were detected.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
Poll::Ready(result)
}
@ -299,12 +295,10 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full or errors were detected.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
}
@ -414,7 +408,7 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
}
pub fn busy(&self) -> bool {
unsafe { T::regs().uartfr().read().busy() }
T::regs().uartfr().read().busy()
}
/// Assert a break condition after waiting for the transmit buffers to empty,
@ -426,42 +420,35 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
/// for the transmit fifo to empty, which may take a while on slow links.
pub async fn send_break(&mut self, bits: u32) {
let regs = T::regs();
let bits = bits.max(unsafe {
let bits = bits.max({
let lcr = regs.uartlcr_h().read();
let width = lcr.wlen() as u32 + 5;
let parity = lcr.pen() as u32;
let stops = 1 + lcr.stp2() as u32;
2 * (1 + width + parity + stops)
});
let divx64 = unsafe {
((regs.uartibrd().read().baud_divint() as u32) << 6) + regs.uartfbrd().read().baud_divfrac() as u32
} as u64;
let divx64 = (((regs.uartibrd().read().baud_divint() as u32) << 6)
+ regs.uartfbrd().read().baud_divfrac() as u32) as u64;
let div_clk = clk_peri_freq() as u64 * 64;
let wait_usecs = (1_000_000 * bits as u64 * divx64 * 16 + div_clk - 1) / div_clk;
Self::flush().await.unwrap();
while self.busy() {}
unsafe {
regs.uartlcr_h().write_set(|w| w.set_brk(true));
}
regs.uartlcr_h().write_set(|w| w.set_brk(true));
Timer::after(Duration::from_micros(wait_usecs)).await;
unsafe {
regs.uartlcr_h().write_clear(|w| w.set_brk(true));
}
regs.uartlcr_h().write_clear(|w| w.set_brk(true));
}
}
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.rx_buf.deinit();
unsafe { state.rx_buf.deinit() }
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::disable();
}
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
@ -469,14 +456,12 @@ impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.tx_buf.deinit();
unsafe { state.tx_buf.deinit() }
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::disable();
}
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
@ -494,94 +479,92 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for BufferedInterr
let s = T::buffered_state();
unsafe {
// Clear TX and error interrupt flags
// RX interrupt flags are cleared by reading from the FIFO.
let ris = r.uartris().read();
r.uarticr().write(|w| {
w.set_txic(ris.txris());
w.set_feic(ris.feris());
w.set_peic(ris.peris());
w.set_beic(ris.beris());
w.set_oeic(ris.oeris());
});
// Clear TX and error interrupt flags
// RX interrupt flags are cleared by reading from the FIFO.
let ris = r.uartris().read();
r.uarticr().write(|w| {
w.set_txic(ris.txris());
w.set_feic(ris.feris());
w.set_peic(ris.peris());
w.set_beic(ris.beris());
w.set_oeic(ris.oeris());
});
trace!("on_interrupt ris={:#X}", ris.0);
trace!("on_interrupt ris={:#X}", ris.0);
// Errors
if ris.feris() {
warn!("Framing error");
}
if ris.peris() {
warn!("Parity error");
}
if ris.beris() {
warn!("Break error");
}
if ris.oeris() {
warn!("Overrun error");
}
// RX
let mut rx_writer = s.rx_buf.writer();
let rx_buf = rx_writer.push_slice();
let mut n_read = 0;
let mut error = false;
for rx_byte in rx_buf {
if r.uartfr().read().rxfe() {
break;
}
let dr = r.uartdr().read();
if (dr.0 >> 8) != 0 {
s.rx_error.fetch_or((dr.0 >> 8) as u8, Ordering::Relaxed);
error = true;
// only fill the buffer with valid characters. the current character is fine
// if the error is an overrun, but if we add it to the buffer we'll report
// the overrun one character too late. drop it instead and pretend we were
// a bit slower at draining the rx fifo than we actually were.
// this is consistent with blocking uart error reporting.
break;
}
*rx_byte = dr.data();
n_read += 1;
}
if n_read > 0 {
rx_writer.push_done(n_read);
s.rx_waker.wake();
} else if error {
s.rx_waker.wake();
}
// Disable any further RX interrupts when the buffer becomes full or
// errors have occurred. This lets us buffer additional errors in the
// fifo without needing more error storage locations, and most applications
// will want to do a full reset of their uart state anyway once an error
// has happened.
if s.rx_buf.is_full() || error {
r.uartimsc().write_clear(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
// TX
let mut tx_reader = s.tx_buf.reader();
let tx_buf = tx_reader.pop_slice();
let mut n_written = 0;
for tx_byte in tx_buf.iter_mut() {
if r.uartfr().read().txff() {
break;
}
r.uartdr().write(|w| w.set_data(*tx_byte));
n_written += 1;
}
if n_written > 0 {
tx_reader.pop_done(n_written);
s.tx_waker.wake();
}
// The TX interrupt only triggers once when the FIFO threshold is
// crossed. No need to disable it when the buffer becomes empty
// as it does re-trigger anymore once we have cleared it.
// Errors
if ris.feris() {
warn!("Framing error");
}
if ris.peris() {
warn!("Parity error");
}
if ris.beris() {
warn!("Break error");
}
if ris.oeris() {
warn!("Overrun error");
}
// RX
let mut rx_writer = unsafe { s.rx_buf.writer() };
let rx_buf = rx_writer.push_slice();
let mut n_read = 0;
let mut error = false;
for rx_byte in rx_buf {
if r.uartfr().read().rxfe() {
break;
}
let dr = r.uartdr().read();
if (dr.0 >> 8) != 0 {
s.rx_error.fetch_or((dr.0 >> 8) as u8, Ordering::Relaxed);
error = true;
// only fill the buffer with valid characters. the current character is fine
// if the error is an overrun, but if we add it to the buffer we'll report
// the overrun one character too late. drop it instead and pretend we were
// a bit slower at draining the rx fifo than we actually were.
// this is consistent with blocking uart error reporting.
break;
}
*rx_byte = dr.data();
n_read += 1;
}
if n_read > 0 {
rx_writer.push_done(n_read);
s.rx_waker.wake();
} else if error {
s.rx_waker.wake();
}
// Disable any further RX interrupts when the buffer becomes full or
// errors have occurred. This lets us buffer additional errors in the
// fifo without needing more error storage locations, and most applications
// will want to do a full reset of their uart state anyway once an error
// has happened.
if s.rx_buf.is_full() || error {
r.uartimsc().write_clear(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
// TX
let mut tx_reader = unsafe { s.tx_buf.reader() };
let tx_buf = tx_reader.pop_slice();
let mut n_written = 0;
for tx_byte in tx_buf.iter_mut() {
if r.uartfr().read().txff() {
break;
}
r.uartdr().write(|w| w.set_data(*tx_byte));
n_written += 1;
}
if n_written > 0 {
tx_reader.pop_done(n_written);
s.tx_waker.wake();
}
// The TX interrupt only triggers once when the FIFO threshold is
// crossed. No need to disable it when the buffer becomes empty
// as it does re-trigger anymore once we have cleared it.
}
}
@ -695,24 +678,22 @@ mod eh02 {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read();
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
}
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
}
}
}