Remove the non-specific thread-mode executor
This commit is contained in:
parent
4c4b12c307
commit
986a63ebb8
@ -1,15 +1,24 @@
|
||||
#[cfg(feature = "executor-thread")]
|
||||
pub use thread::*;
|
||||
const THREAD_PENDER: usize = usize::MAX;
|
||||
|
||||
use crate::raw::PenderContext;
|
||||
#[export_name = "__pender"]
|
||||
#[cfg(any(feature = "executor-thread", feature = "executor-interrupt"))]
|
||||
fn __pender(context: crate::raw::PenderContext) {
|
||||
unsafe {
|
||||
// Safety: `context` is either `usize::MAX` created by `Executor::run`, or a valid interrupt
|
||||
// request number given to `InterruptExecutor::start`.
|
||||
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
let context: usize = core::mem::transmute(context);
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// `irq` must be a valid interrupt request number
|
||||
unsafe fn nvic_pend(irq: u16) {
|
||||
#[cfg(feature = "executor-thread")]
|
||||
if context == THREAD_PENDER {
|
||||
core::arch::asm!("sev");
|
||||
return;
|
||||
}
|
||||
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
{
|
||||
use cortex_m::interrupt::InterruptNumber;
|
||||
use cortex_m::peripheral::NVIC;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct Irq(u16);
|
||||
@ -19,104 +28,209 @@ unsafe fn nvic_pend(irq: u16) {
|
||||
}
|
||||
}
|
||||
|
||||
let irq = Irq(irq);
|
||||
let irq = Irq(context as u16);
|
||||
|
||||
// STIR is faster, but is only available in v7 and higher.
|
||||
#[cfg(not(armv6m))]
|
||||
{
|
||||
let mut nvic: cortex_m::peripheral::NVIC = unsafe { core::mem::transmute(()) };
|
||||
let mut nvic: NVIC = core::mem::transmute(());
|
||||
nvic.request(irq);
|
||||
}
|
||||
|
||||
#[cfg(armv6m)]
|
||||
cortex_m::peripheral::NVIC::pend(irq);
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "executor-thread", feature = "executor-interrupt"))]
|
||||
#[export_name = "__pender"]
|
||||
fn __pender(context: PenderContext) {
|
||||
unsafe {
|
||||
let context: usize = core::mem::transmute(context);
|
||||
// Safety: `context` is either `usize::MAX` created by `Executor::run`, or a valid interrupt
|
||||
// request number given to `InterruptExecutor::start`.
|
||||
if context as usize == usize::MAX {
|
||||
core::arch::asm!("sev")
|
||||
} else {
|
||||
nvic_pend(context as u16)
|
||||
NVIC::pend(irq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "executor-thread", not(feature = "executor-interrupt")))]
|
||||
#[export_name = "__pender"]
|
||||
fn __pender(_context: PenderContext) {
|
||||
unsafe { core::arch::asm!("sev") }
|
||||
}
|
||||
|
||||
#[cfg(all(not(feature = "executor-thread"), feature = "executor-interrupt"))]
|
||||
#[export_name = "__pender"]
|
||||
fn __pender(context: PenderContext) {
|
||||
unsafe {
|
||||
let context: usize = core::mem::transmute(context);
|
||||
// Safety: `context` is the same value we passed to `InterruptExecutor::start`, which must
|
||||
// be a valid interrupt request number.
|
||||
nvic_pend(context as u16)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "executor-thread")]
|
||||
pub use thread::*;
|
||||
#[cfg(feature = "executor-thread")]
|
||||
mod thread {
|
||||
use core::arch::asm;
|
||||
use core::marker::PhantomData;
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
pub use embassy_macros::main_cortex_m as main;
|
||||
|
||||
use crate::raw::PenderContext;
|
||||
use crate::thread::ThreadContext;
|
||||
use crate::arch::THREAD_PENDER;
|
||||
use crate::{raw, Spawner};
|
||||
|
||||
/// TODO
|
||||
// Name pending
|
||||
#[derive(Default)] // Default enables Executor::new
|
||||
pub struct Context;
|
||||
|
||||
impl ThreadContext for Context {
|
||||
fn context(&self) -> PenderContext {
|
||||
unsafe { core::mem::transmute(usize::MAX) }
|
||||
/// Thread mode executor, using WFE/SEV.
|
||||
///
|
||||
/// This is the simplest and most common kind of executor. It runs on
|
||||
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
|
||||
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
|
||||
/// is executed, to make the `WFE` exit from sleep and poll the task.
|
||||
///
|
||||
/// This executor allows for ultra low power consumption for chips where `WFE`
|
||||
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
|
||||
/// you may use [`raw::Executor`] directly to program custom behavior.
|
||||
pub struct Executor {
|
||||
inner: raw::Executor,
|
||||
not_send: PhantomData<*mut ()>,
|
||||
}
|
||||
|
||||
fn wait(&mut self) {
|
||||
unsafe { core::arch::asm!("wfe") }
|
||||
impl Executor {
|
||||
/// Create a new Executor.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
inner: raw::Executor::new(unsafe { core::mem::transmute(THREAD_PENDER) }),
|
||||
not_send: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Type alias for backwards compatibility
|
||||
pub type Executor = crate::thread::ThreadModeExecutor<Context>;
|
||||
/// Run the executor.
|
||||
///
|
||||
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
|
||||
/// this executor. Use it to spawn the initial task(s). After `init` returns,
|
||||
/// the executor starts running the tasks.
|
||||
///
|
||||
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
|
||||
/// for example by passing it as an argument to the initial tasks.
|
||||
///
|
||||
/// This function requires `&'static mut self`. This means you have to store the
|
||||
/// Executor instance in a place where it'll live forever and grants you mutable
|
||||
/// access. There's a few ways to do this:
|
||||
///
|
||||
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
|
||||
/// - a `static mut` (unsafe)
|
||||
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
|
||||
///
|
||||
/// This function never returns.
|
||||
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
|
||||
init(self.inner.spawner());
|
||||
|
||||
loop {
|
||||
unsafe {
|
||||
self.inner.poll();
|
||||
asm!("wfe");
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
pub use interrupt::*;
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
mod interrupt {
|
||||
use core::cell::UnsafeCell;
|
||||
use core::mem::MaybeUninit;
|
||||
|
||||
use atomic_polyfill::{AtomicBool, Ordering};
|
||||
use cortex_m::interrupt::InterruptNumber;
|
||||
use cortex_m::peripheral::NVIC;
|
||||
|
||||
use crate::interrupt::InterruptContext;
|
||||
use crate::raw::PenderContext;
|
||||
use crate::raw;
|
||||
|
||||
impl<T> InterruptContext for T
|
||||
where
|
||||
T: InterruptNumber,
|
||||
/// Interrupt mode executor.
|
||||
///
|
||||
/// This executor runs tasks in interrupt mode. The interrupt handler is set up
|
||||
/// to poll tasks, and when a task is woken the interrupt is pended from software.
|
||||
///
|
||||
/// This allows running async tasks at a priority higher than thread mode. One
|
||||
/// use case is to leave thread mode free for non-async tasks. Another use case is
|
||||
/// to run multiple executors: one in thread mode for low priority tasks and another in
|
||||
/// interrupt mode for higher priority tasks. Higher priority tasks will preempt lower
|
||||
/// priority ones.
|
||||
///
|
||||
/// It is even possible to run multiple interrupt mode executors at different priorities,
|
||||
/// by assigning different priorities to the interrupts. For an example on how to do this,
|
||||
/// See the 'multiprio' example for 'embassy-nrf'.
|
||||
///
|
||||
/// To use it, you have to pick an interrupt that won't be used by the hardware.
|
||||
/// Some chips reserve some interrupts for this purpose, sometimes named "software interrupts" (SWI).
|
||||
/// If this is not the case, you may use an interrupt from any unused peripheral.
|
||||
///
|
||||
/// It is somewhat more complex to use, it's recommended to use the thread-mode
|
||||
/// [`Executor`] instead, if it works for your use case.
|
||||
pub struct InterruptExecutor {
|
||||
started: AtomicBool,
|
||||
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
|
||||
}
|
||||
|
||||
unsafe impl Send for InterruptExecutor {}
|
||||
unsafe impl Sync for InterruptExecutor {}
|
||||
|
||||
impl InterruptExecutor {
|
||||
/// Create a new, not started `InterruptExecutor`.
|
||||
#[inline]
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
started: AtomicBool::new(false),
|
||||
executor: UnsafeCell::new(MaybeUninit::uninit()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Executor interrupt callback.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// You MUST call this from the interrupt handler, and from nowhere else.
|
||||
pub unsafe fn on_interrupt(&'static self) {
|
||||
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
|
||||
executor.poll();
|
||||
}
|
||||
|
||||
/// Start the executor.
|
||||
///
|
||||
/// This initializes the executor, enables the interrupt, and returns.
|
||||
/// The executor keeps running in the background through the interrupt.
|
||||
///
|
||||
/// This returns a [`SendSpawner`] you can use to spawn tasks on it. A [`SendSpawner`]
|
||||
/// is returned instead of a [`Spawner`](embassy_executor::Spawner) because the executor effectively runs in a
|
||||
/// different "thread" (the interrupt), so spawning tasks on it is effectively
|
||||
/// sending them.
|
||||
///
|
||||
/// To obtain a [`Spawner`](embassy_executor::Spawner) for this executor, use [`Spawner::for_current_executor()`](embassy_executor::Spawner::for_current_executor()) from
|
||||
/// a task running in it.
|
||||
///
|
||||
/// # Interrupt requirements
|
||||
///
|
||||
/// You must write the interrupt handler yourself, and make it call [`on_interrupt()`](Self::on_interrupt).
|
||||
///
|
||||
/// This method already enables (unmasks) the interrupt, you must NOT do it yourself.
|
||||
///
|
||||
/// You must set the interrupt priority before calling this method. You MUST NOT
|
||||
/// do it after.
|
||||
///
|
||||
pub fn start(&'static self, irq: impl InterruptNumber) -> crate::SendSpawner {
|
||||
if self
|
||||
.started
|
||||
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
|
||||
.is_err()
|
||||
{
|
||||
fn context(&self) -> PenderContext {
|
||||
unsafe { core::mem::transmute(self.number() as usize) }
|
||||
panic!("InterruptExecutor::start() called multiple times on the same executor.");
|
||||
}
|
||||
|
||||
fn enable(&self) {
|
||||
unsafe { NVIC::unmask(*self) }
|
||||
}
|
||||
unsafe {
|
||||
let context = core::mem::transmute(irq.number() as usize);
|
||||
(&mut *self.executor.get())
|
||||
.as_mut_ptr()
|
||||
.write(raw::Executor::new(context))
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Type alias for backwards compatibility
|
||||
pub type InterruptExecutor = crate::interrupt::InterruptModeExecutor;
|
||||
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
|
||||
|
||||
unsafe { NVIC::unmask(irq) }
|
||||
|
||||
executor.spawner().make_send()
|
||||
}
|
||||
|
||||
/// Get a SendSpawner for this executor
|
||||
///
|
||||
/// This returns a [`SendSpawner`] you can use to spawn tasks on this
|
||||
/// executor.
|
||||
///
|
||||
/// This MUST only be called on an executor that has already been spawned.
|
||||
/// The function will panic otherwise.
|
||||
pub fn spawner(&'static self) -> crate::SendSpawner {
|
||||
if !self.started.load(Ordering::Acquire) {
|
||||
panic!("InterruptExecutor::spawner() called on uninitialized executor.");
|
||||
}
|
||||
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
|
||||
executor.spawner().make_send()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,35 +5,63 @@ compile_error!("`executor-interrupt` is not supported with `arch-riscv32`.");
|
||||
pub use thread::*;
|
||||
#[cfg(feature = "executor-thread")]
|
||||
mod thread {
|
||||
use core::marker::PhantomData;
|
||||
use core::sync::atomic::{AtomicBool, Ordering};
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
pub use embassy_macros::main_riscv as main;
|
||||
|
||||
use crate::raw::PenderContext;
|
||||
use crate::thread::ThreadContext;
|
||||
use crate::{raw, Spawner};
|
||||
|
||||
/// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV
|
||||
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
|
||||
|
||||
#[export_name = "__pender"]
|
||||
fn __thread_mode_pender(_context: PenderContext) {
|
||||
fn __thread_mode_pender(_context: crate::raw::PenderContext) {
|
||||
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Name pending
|
||||
#[derive(Default)] // Default enables Executor::new
|
||||
pub struct Context;
|
||||
|
||||
impl ThreadContext for Context {
|
||||
fn context(&self) -> PenderContext {
|
||||
unsafe { core::mem::transmute(0) }
|
||||
/// RISCV32 Executor
|
||||
pub struct Executor {
|
||||
inner: raw::Executor,
|
||||
not_send: PhantomData<*mut ()>,
|
||||
}
|
||||
|
||||
fn wait(&mut self) {
|
||||
// We do not care about race conditions between the load and store operations,
|
||||
// interrupts will only set this value to true.
|
||||
impl Executor {
|
||||
/// Create a new Executor.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
inner: raw::Executor::new(unsafe { core::mem::transmute(0) }),
|
||||
not_send: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Run the executor.
|
||||
///
|
||||
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
|
||||
/// this executor. Use it to spawn the initial task(s). After `init` returns,
|
||||
/// the executor starts running the tasks.
|
||||
///
|
||||
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
|
||||
/// for example by passing it as an argument to the initial tasks.
|
||||
///
|
||||
/// This function requires `&'static mut self`. This means you have to store the
|
||||
/// Executor instance in a place where it'll live forever and grants you mutable
|
||||
/// access. There's a few ways to do this:
|
||||
///
|
||||
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
|
||||
/// - a `static mut` (unsafe)
|
||||
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
|
||||
///
|
||||
/// This function never returns.
|
||||
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
|
||||
init(self.inner.spawner());
|
||||
|
||||
loop {
|
||||
unsafe {
|
||||
self.inner.poll();
|
||||
// we do not care about race conditions between the load and store operations, interrupts
|
||||
//will only set this value to true.
|
||||
critical_section::with(|_| {
|
||||
// if there is work to do, loop back to polling
|
||||
// TODO can we relax this?
|
||||
@ -42,16 +70,12 @@ mod thread {
|
||||
}
|
||||
// if not, wait for interrupt
|
||||
else {
|
||||
unsafe {
|
||||
core::arch::asm!("wfi");
|
||||
}
|
||||
}
|
||||
});
|
||||
// if an interrupt occurred while waiting, it will be serviced here
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Type alias for backwards compatibility
|
||||
pub type Executor = crate::thread::ThreadModeExecutor<Context>;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,42 +5,64 @@ compile_error!("`executor-interrupt` is not supported with `arch-std`.");
|
||||
pub use thread::*;
|
||||
#[cfg(feature = "executor-thread")]
|
||||
mod thread {
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::{Condvar, Mutex};
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
pub use embassy_macros::main_std as main;
|
||||
|
||||
use crate::raw::PenderContext;
|
||||
use crate::thread::ThreadContext;
|
||||
use crate::{raw, Spawner};
|
||||
|
||||
/// TODO
|
||||
// Name pending
|
||||
pub struct Context {
|
||||
#[export_name = "__pender"]
|
||||
fn __pender(context: crate::raw::PenderContext) {
|
||||
let signaler: &'static Signaler = unsafe { std::mem::transmute(context) };
|
||||
signaler.signal()
|
||||
}
|
||||
|
||||
/// Single-threaded std-based executor.
|
||||
pub struct Executor {
|
||||
inner: raw::Executor,
|
||||
not_send: PhantomData<*mut ()>,
|
||||
signaler: &'static Signaler,
|
||||
}
|
||||
|
||||
impl Default for Context {
|
||||
fn default() -> Self {
|
||||
impl Executor {
|
||||
/// Create a new Executor.
|
||||
pub fn new() -> Self {
|
||||
let signaler = &*Box::leak(Box::new(Signaler::new()));
|
||||
Self {
|
||||
signaler: &*Box::leak(Box::new(Signaler::new())),
|
||||
}
|
||||
inner: raw::Executor::new(unsafe { std::mem::transmute(signaler) }),
|
||||
not_send: PhantomData,
|
||||
signaler,
|
||||
}
|
||||
}
|
||||
|
||||
impl ThreadContext for Context {
|
||||
fn context(&self) -> PenderContext {
|
||||
unsafe { core::mem::transmute(self.signaler) }
|
||||
}
|
||||
/// Run the executor.
|
||||
///
|
||||
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
|
||||
/// this executor. Use it to spawn the initial task(s). After `init` returns,
|
||||
/// the executor starts running the tasks.
|
||||
///
|
||||
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
|
||||
/// for example by passing it as an argument to the initial tasks.
|
||||
///
|
||||
/// This function requires `&'static mut self`. This means you have to store the
|
||||
/// Executor instance in a place where it'll live forever and grants you mutable
|
||||
/// access. There's a few ways to do this:
|
||||
///
|
||||
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
|
||||
/// - a `static mut` (unsafe)
|
||||
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
|
||||
///
|
||||
/// This function never returns.
|
||||
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
|
||||
init(self.inner.spawner());
|
||||
|
||||
fn wait(&mut self) {
|
||||
loop {
|
||||
unsafe { self.inner.poll() };
|
||||
self.signaler.wait()
|
||||
}
|
||||
}
|
||||
|
||||
#[export_name = "__pender"]
|
||||
fn __pender(context: PenderContext) {
|
||||
let signaler: &'static Signaler = unsafe { std::mem::transmute(context) };
|
||||
signaler.signal()
|
||||
}
|
||||
|
||||
struct Signaler {
|
||||
@ -70,8 +92,4 @@ mod thread {
|
||||
self.condvar.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Type alias for backwards compatibility
|
||||
pub type Executor = crate::thread::ThreadModeExecutor<Context>;
|
||||
}
|
||||
|
@ -8,37 +8,64 @@ mod thread {
|
||||
use core::marker::PhantomData;
|
||||
use core::sync::atomic::{AtomicBool, Ordering};
|
||||
|
||||
use crate::raw::PenderContext;
|
||||
use crate::thread::ThreadContext;
|
||||
use crate::{raw, Spawner};
|
||||
|
||||
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa
|
||||
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
|
||||
|
||||
#[export_name = "__thread_mode_pender"]
|
||||
fn __thread_mode_pender(_context: PenderContext) {
|
||||
fn __thread_mode_pender(_context: crate::raw::PenderContext) {
|
||||
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Name pending
|
||||
#[derive(Default)] // Default enables Executor::new
|
||||
pub struct Context;
|
||||
|
||||
impl ThreadContext for Context {
|
||||
fn context(&self) -> PenderContext {
|
||||
unsafe { core::mem::transmute(0) }
|
||||
/// Xtensa Executor
|
||||
pub struct Executor {
|
||||
inner: raw::Executor,
|
||||
not_send: PhantomData<*mut ()>,
|
||||
}
|
||||
|
||||
fn wait(&mut self) {
|
||||
impl Executor {
|
||||
/// Create a new Executor.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
inner: raw::Executor::new(unsafe { core::mem::transmute(0) }),
|
||||
not_send: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Run the executor.
|
||||
///
|
||||
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
|
||||
/// this executor. Use it to spawn the initial task(s). After `init` returns,
|
||||
/// the executor starts running the tasks.
|
||||
///
|
||||
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
|
||||
/// for example by passing it as an argument to the initial tasks.
|
||||
///
|
||||
/// This function requires `&'static mut self`. This means you have to store the
|
||||
/// Executor instance in a place where it'll live forever and grants you mutable
|
||||
/// access. There's a few ways to do this:
|
||||
///
|
||||
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
|
||||
/// - a `static mut` (unsafe)
|
||||
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
|
||||
///
|
||||
/// This function never returns.
|
||||
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
|
||||
init(self.inner.spawner());
|
||||
|
||||
loop {
|
||||
unsafe {
|
||||
self.inner.poll();
|
||||
|
||||
// Manual critical section implementation that only masks interrupts handlers.
|
||||
// We must not acquire the cross-core on dual-core systems because that would
|
||||
// prevent the other core from doing useful work while this core is sleeping.
|
||||
let token: critical_section::RawRestoreState;
|
||||
core::arch::asm!("rsil {0}, 5", out(reg) token);
|
||||
|
||||
// we do not care about race conditions between the load and store operations,
|
||||
// interrupts will only set this value to true.
|
||||
// we do not care about race conditions between the load and store operations, interrupts
|
||||
// will only set this value to true.
|
||||
// if there is work to do, loop back to polling
|
||||
if SIGNAL_WORK_THREAD_MODE.load(Ordering::SeqCst) {
|
||||
SIGNAL_WORK_THREAD_MODE.store(false, Ordering::SeqCst);
|
||||
@ -56,8 +83,5 @@ mod thread {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO
|
||||
// Type alias for backwards compatibility
|
||||
pub type Executor = crate::thread::ThreadModeExecutor<Context>;
|
||||
}
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ pub trait InterruptContext {
|
||||
/// If this is not the case, you may use an interrupt from any unused peripheral.
|
||||
///
|
||||
/// It is somewhat more complex to use, it's recommended to use the
|
||||
/// [`crate::thread::ThreadModeExecutor`] instead, if it works for your use case.
|
||||
/// thread-mode executor instead, if it works for your use case.
|
||||
pub struct InterruptModeExecutor {
|
||||
started: AtomicBool,
|
||||
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
|
||||
|
@ -39,8 +39,8 @@ pub mod raw;
|
||||
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
pub mod interrupt;
|
||||
#[cfg(feature = "executor-thread")]
|
||||
pub mod thread;
|
||||
#[cfg(feature = "executor-interrupt")]
|
||||
pub use interrupt::*;
|
||||
|
||||
mod spawner;
|
||||
pub use spawner::*;
|
||||
|
@ -1,87 +0,0 @@
|
||||
//! Thread-mode executor.
|
||||
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use crate::raw::{self, PenderContext};
|
||||
use crate::Spawner;
|
||||
|
||||
/// Architecture-specific interface for a thread-mode executor. This trait describes what the
|
||||
/// executor should do when idle, and what data should be passed to its pender.
|
||||
// TODO: Name pending
|
||||
pub trait ThreadContext: Sized {
|
||||
/// A pointer-sized piece of data that is passed to the pender function.
|
||||
///
|
||||
/// For example, on multi-core systems, this can be used to store the ID of the core that
|
||||
/// should be woken up.
|
||||
fn context(&self) -> PenderContext;
|
||||
|
||||
/// Waits for the executor to be waken.
|
||||
///
|
||||
/// While it is valid for this function can be empty, it is recommended to use a WFE instruction
|
||||
/// or equivalent to let the CPU sleep.
|
||||
fn wait(&mut self);
|
||||
}
|
||||
|
||||
/// Thread mode executor, using WFE/SEV.
|
||||
///
|
||||
/// This is the simplest and most common kind of executor. It runs on
|
||||
/// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction
|
||||
/// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction
|
||||
/// is executed, to make the `WFE` exit from sleep and poll the task.
|
||||
///
|
||||
/// This executor allows for ultra low power consumption for chips where `WFE`
|
||||
/// triggers low-power sleep without extra steps. If your chip requires extra steps,
|
||||
/// you may use [`raw::Executor`] directly to program custom behavior.
|
||||
pub struct ThreadModeExecutor<C: ThreadContext> {
|
||||
inner: raw::Executor,
|
||||
context: C,
|
||||
not_send: PhantomData<*mut ()>,
|
||||
}
|
||||
|
||||
impl<C: ThreadContext> ThreadModeExecutor<C> {
|
||||
/// Create a new Executor.
|
||||
pub fn new() -> Self
|
||||
where
|
||||
C: Default,
|
||||
{
|
||||
Self::with_context(C::default())
|
||||
}
|
||||
|
||||
/// Create a new Executor using the given thread context.
|
||||
pub fn with_context(context: C) -> Self {
|
||||
Self {
|
||||
inner: raw::Executor::new(context.context()),
|
||||
context,
|
||||
not_send: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Run the executor.
|
||||
///
|
||||
/// The `init` closure is called with a [`Spawner`] that spawns tasks on
|
||||
/// this executor. Use it to spawn the initial task(s). After `init` returns,
|
||||
/// the executor starts running the tasks.
|
||||
///
|
||||
/// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`),
|
||||
/// for example by passing it as an argument to the initial tasks.
|
||||
///
|
||||
/// This function requires `&'static mut self`. This means you have to store the
|
||||
/// Executor instance in a place where it'll live forever and grants you mutable
|
||||
/// access. There's a few ways to do this:
|
||||
///
|
||||
/// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe)
|
||||
/// - a `static mut` (unsafe)
|
||||
/// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe)
|
||||
///
|
||||
/// This function never returns.
|
||||
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
|
||||
init(self.inner.spawner());
|
||||
|
||||
loop {
|
||||
unsafe {
|
||||
self.inner.poll();
|
||||
self.context.wait();
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user