Merge branch 'i2c_timeout2_v2' into i2c_timeout2

This commit is contained in:
chemicstry 2022-10-24 21:50:29 +03:00
commit 9ad7e85288
2 changed files with 182 additions and 63 deletions

View File

@ -147,14 +147,23 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
unsafe fn master_read(address: u8, length: usize, stop: Stop, reload: bool, restart: bool) { unsafe fn master_read(
address: u8,
length: usize,
stop: Stop,
reload: bool,
restart: bool,
check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> {
assert!(length < 256); assert!(length < 256);
if !restart { if !restart {
// Wait for any previous address sequence to end // Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus // automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq) // cycle (ie. up to 0.5/freq)
while T::regs().cr2().read().start() {} while T::regs().cr2().read().start() {
check_timeout()?;
}
} }
// Set START and prepare to receive bytes into // Set START and prepare to receive bytes into
@ -176,15 +185,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_autoend(stop.autoend()); w.set_autoend(stop.autoend());
w.set_reload(reload); w.set_reload(reload);
}); });
Ok(())
} }
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool) { unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
assert!(length < 256); assert!(length < 256);
// Wait for any previous address sequence to end // Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus // automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq) // cycle (ie. up to 0.5/freq)
while T::regs().cr2().read().start() {} while T::regs().cr2().read().start() {
check_timeout()?;
}
let reload = if reload { let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED i2c::vals::Reload::NOTCOMPLETED
@ -204,12 +217,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_autoend(stop.autoend()); w.set_autoend(stop.autoend());
w.set_reload(reload); w.set_reload(reload);
}); });
Ok(())
} }
unsafe fn master_continue(length: usize, reload: bool) { unsafe fn master_continue(length: usize, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
assert!(length < 256 && length > 0); assert!(length < 256 && length > 0);
while !T::regs().isr().read().tcr() {} while !T::regs().isr().read().tcr() {
check_timeout()?;
}
let reload = if reload { let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED i2c::vals::Reload::NOTCOMPLETED
@ -221,6 +238,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_nbytes(length as u8); w.set_nbytes(length as u8);
w.set_reload(reload); w.set_reload(reload);
}); });
Ok(())
} }
fn flush_txdr(&self) { fn flush_txdr(&self) {
@ -243,7 +262,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
//} //}
} }
fn wait_txe(&self) -> Result<(), Error> { fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop { loop {
unsafe { unsafe {
let isr = T::regs().isr().read(); let isr = T::regs().isr().read();
@ -261,10 +280,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack); return Err(Error::Nack);
} }
} }
check_timeout()?;
} }
} }
fn wait_rxne(&self) -> Result<(), Error> { fn wait_rxne(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop { loop {
unsafe { unsafe {
let isr = T::regs().isr().read(); let isr = T::regs().isr().read();
@ -282,10 +303,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack); return Err(Error::Nack);
} }
} }
check_timeout()?;
} }
} }
fn wait_tc(&self) -> Result<(), Error> { fn wait_tc(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop { loop {
unsafe { unsafe {
let isr = T::regs().isr().read(); let isr = T::regs().isr().read();
@ -303,10 +326,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack); return Err(Error::Nack);
} }
} }
check_timeout()?;
} }
} }
fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error> { fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
let completed_chunks = buffer.len() / 255; let completed_chunks = buffer.len() / 255;
let total_chunks = if completed_chunks * 255 == buffer.len() { let total_chunks = if completed_chunks * 255 == buffer.len() {
completed_chunks completed_chunks
@ -322,20 +347,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Stop::Automatic, Stop::Automatic,
last_chunk_idx != 0, last_chunk_idx != 0,
restart, restart,
); &check_timeout
)?;
} }
for (number, chunk) in buffer.chunks_mut(255).enumerate() { for (number, chunk) in buffer.chunks_mut(255).enumerate() {
if number != 0 { if number != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx); Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
} }
} }
for byte in chunk { for byte in chunk {
// Wait until we have received something // Wait until we have received something
self.wait_rxne()?; self.wait_rxne(&check_timeout)?;
unsafe { unsafe {
*byte = T::regs().rxdr().read().rxdata(); *byte = T::regs().rxdr().read().rxdata();
@ -345,7 +371,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool) -> Result<(), Error> { fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
let completed_chunks = bytes.len() / 255; let completed_chunks = bytes.len() / 255;
let total_chunks = if completed_chunks * 255 == bytes.len() { let total_chunks = if completed_chunks * 255 == bytes.len() {
completed_chunks completed_chunks
@ -359,14 +385,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// ST SAD+W // ST SAD+W
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0); Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0, &check_timeout)?;
} }
for (number, chunk) in bytes.chunks(255).enumerate() { for (number, chunk) in bytes.chunks(255).enumerate() {
if number != 0 { if number != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx); Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
} }
} }
@ -374,7 +400,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we are allowed to send data // Wait until we are allowed to send data
// (START has been ACKed or last byte when // (START has been ACKed or last byte when
// through) // through)
self.wait_txe()?; self.wait_txe(&check_timeout)?;
unsafe { unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte)); T::regs().txdr().write(|w| w.set_txdata(*byte));
@ -382,7 +408,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
// Wait until the write finishes // Wait until the write finishes
self.wait_tc()?; self.wait_tc(&check_timeout)?;
if send_stop { if send_stop {
self.master_stop(); self.master_stop();
@ -396,6 +422,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
bytes: &[u8], bytes: &[u8],
first_slice: bool, first_slice: bool,
last_slice: bool, last_slice: bool,
check_timeout: impl Fn() -> Result<(), Error>
) -> Result<(), Error> ) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
@ -447,11 +474,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
total_len.min(255), total_len.min(255),
Stop::Software, Stop::Software,
(total_chunks != 1) || !last_slice, (total_chunks != 1) || !last_slice,
); &check_timeout
)?;
} }
} else { } else {
unsafe { unsafe {
Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice); Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice, &check_timeout)?;
T::regs().cr1().modify(|w| w.set_tcie(true)); T::regs().cr1().modify(|w| w.set_tcie(true));
} }
} }
@ -461,32 +489,34 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed); let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
if chunks_transferred == total_chunks { if chunks_transferred == total_chunks {
return Poll::Ready(()); return Poll::Ready(Ok(()));
} else if chunks_transferred != 0 { } else if chunks_transferred != 0 {
remaining_len = remaining_len.saturating_sub(255); remaining_len = remaining_len.saturating_sub(255);
let last_piece = (chunks_transferred + 1 == total_chunks) && last_slice; let last_piece = (chunks_transferred + 1 == total_chunks) && last_slice;
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers // NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
unsafe { unsafe {
Self::master_continue(remaining_len.min(255), !last_piece); if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true)); T::regs().cr1().modify(|w| w.set_tcie(true));
} }
} }
Poll::Pending Poll::Pending
}) })
.await; .await?;
dma_transfer.await; dma_transfer.await;
if last_slice { if last_slice {
// This should be done already // This should be done already
self.wait_tc()?; self.wait_tc(&check_timeout)?;
self.master_stop(); self.master_stop();
} }
Ok(()) Ok(())
} }
async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error> async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where where
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
{ {
@ -527,7 +557,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers // NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe { unsafe {
Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart); Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart, &check_timeout)?;
} }
poll_fn(|cx| { poll_fn(|cx| {
@ -535,25 +565,27 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed); let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
if chunks_transferred == total_chunks { if chunks_transferred == total_chunks {
return Poll::Ready(()); return Poll::Ready(Ok(()));
} else if chunks_transferred != 0 { } else if chunks_transferred != 0 {
remaining_len = remaining_len.saturating_sub(255); remaining_len = remaining_len.saturating_sub(255);
let last_piece = chunks_transferred + 1 == total_chunks; let last_piece = chunks_transferred + 1 == total_chunks;
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers // NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe { unsafe {
Self::master_continue(remaining_len.min(255), !last_piece); if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e))
}
T::regs().cr1().modify(|w| w.set_tcie(true)); T::regs().cr1().modify(|w| w.set_tcie(true));
} }
} }
Poll::Pending Poll::Pending
}) })
.await; .await?;
dma_transfer.await; dma_transfer.await;
// This should be done already // This should be done already
self.wait_tc()?; self.wait_tc(&check_timeout)?;
self.master_stop(); self.master_stop();
Ok(()) Ok(())
} }
@ -561,18 +593,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// ========================= // =========================
// Async public API // Async public API
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> pub async fn write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
if bytes.is_empty() { if bytes.is_empty() {
self.write_internal(address, bytes, true) self.write_internal(address, bytes, true, &check_timeout)
} else { } else {
self.write_dma_internal(address, bytes, true, true).await self.write_dma_internal(address, bytes, true, true, &check_timeout).await
} }
} }
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_timeout(address, bytes, || Ok(())).await
}
pub async fn write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
@ -587,63 +626,97 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let next = iter.next(); let next = iter.next();
let is_last = next.is_none(); let is_last = next.is_none();
self.write_dma_internal(address, c, first, is_last).await?; self.write_dma_internal(address, c, first, is_last, &check_timeout).await?;
first = false; first = false;
current = next; current = next;
} }
Ok(()) Ok(())
} }
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_vectored_timeout(address, bytes, || Ok(())).await
}
pub async fn read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where where
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
{ {
if buffer.is_empty() { if buffer.is_empty() {
self.read_internal(address, buffer, false) self.read_internal(address, buffer, false, &check_timeout)
} else { } else {
self.read_dma_internal(address, buffer, false).await self.read_dma_internal(address, buffer, false, &check_timeout).await
} }
} }
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
self.read_timeout(address, buffer, || Ok(())).await
}
pub async fn write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
if bytes.is_empty() {
self.write_internal(address, bytes, false, &check_timeout)?;
} else {
self.write_dma_internal(address, bytes, true, true, &check_timeout).await?;
}
if buffer.is_empty() {
self.read_internal(address, buffer, true, &check_timeout)?;
} else {
self.read_dma_internal(address, buffer, true, &check_timeout).await?;
}
Ok(())
}
pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error>
where where
TXDMA: super::TxDma<T>, TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>, RXDMA: super::RxDma<T>,
{ {
if bytes.is_empty() { self.write_read_timeout(address, bytes, buffer, || Ok(())).await
self.write_internal(address, bytes, false)?;
} else {
self.write_dma_internal(address, bytes, true, true).await?;
}
if buffer.is_empty() {
self.read_internal(address, buffer, true)?;
} else {
self.read_dma_internal(address, buffer, true).await?;
}
Ok(())
} }
// ========================= // =========================
// Blocking public API // Blocking public API
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.read_internal(address, buffer, false) self.read_internal(address, buffer, false, &check_timeout)
// Automatic Stop // Automatic Stop
} }
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(address, buffer, || Ok(()))
}
pub fn blocking_write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.write_internal(address, bytes, true, &check_timeout)
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
self.write_internal(address, bytes, true) self.blocking_write_timeout(address, bytes, || Ok(()))
} }
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.write_internal(address, bytes, false)?; self.write_internal(address, bytes, false, &check_timeout)?;
self.read_internal(address, buffer, true) self.read_internal(address, buffer, true, &check_timeout)
// Automatic Stop // Automatic Stop
} }
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> { pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(address, bytes, buffer, || Ok(()))
}
pub fn blocking_write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
if bytes.is_empty() { if bytes.is_empty() {
return Err(Error::ZeroLengthTransfer); return Err(Error::ZeroLengthTransfer);
} }
@ -657,7 +730,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
first_length.min(255), first_length.min(255),
Stop::Software, Stop::Software,
(first_length > 255) || (last_slice_index != 0), (first_length > 255) || (last_slice_index != 0),
); &check_timeout
)?;
} }
for (idx, slice) in bytes.iter().enumerate() { for (idx, slice) in bytes.iter().enumerate() {
@ -673,7 +747,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if idx != 0 { if idx != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255)); Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255), &check_timeout)?;
} }
} }
@ -681,7 +755,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if number != 0 { if number != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index)); Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index), &check_timeout)?;
} }
} }
@ -689,7 +763,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we are allowed to send data // Wait until we are allowed to send data
// (START has been ACKed or last byte when // (START has been ACKed or last byte when
// through) // through)
self.wait_txe()?; self.wait_txe(&check_timeout)?;
// Put byte on the wire // Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte)); //self.i2c.txdr.write(|w| w.txdata().bits(*byte));
@ -700,11 +774,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
// Wait until the write finishes // Wait until the write finishes
self.wait_tc()?; self.wait_tc(&check_timeout)?;
self.master_stop(); self.master_stop();
Ok(()) Ok(())
} }
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
self.blocking_write_vectored_timeout(address, bytes, || Ok(()))
}
} }
mod eh02 { mod eh02 {

View File

@ -0,0 +1,41 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::{Error, I2c, TimeoutI2c};
use embassy_stm32::interrupt;
use embassy_stm32::time::Hertz;
use embassy_time::Duration;
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
#[embassy_executor::main]
async fn main(_spawner: Spawner) -> ! {
info!("Hello world!");
let p = embassy_stm32::init(Default::default());
let irq = interrupt::take!(I2C2_EV);
let mut i2c = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
irq,
p.DMA1_CH4,
p.DMA1_CH5,
Hertz(100_000),
Default::default(),
);
let mut timeout_i2c = TimeoutI2c::new(&mut i2c, Duration::from_millis(1000));
let mut data = [0u8; 1];
match timeout_i2c.blocking_write_read(ADDRESS, &[WHOAMI], &mut data) {
Ok(()) => info!("Whoami: {}", data[0]),
Err(Error::Timeout) => error!("Operation timed out"),
Err(e) => error!("I2c Error: {:?}", e),
}
}