914: (embassy-rp): Add I2C master implementation r=Dirbaio a=MathiasKoch

This PR adds both blocking and DMA based async implementations of I2C master.

Both E-H 0.2 & E-H 1.0 abstractions are implemented as well.

### Questions & concerns:
- Do we need an I2C interrupt handler (for transfer done, abort & error handling?) (async only)
- Do we need to add some automatic attempt at unblocking an I2C bus in case of failures (see ref: 7ebfd553f3/src/i2c_dma.c (L116-L142))
- Should I add `vectored_{read, write}` implementations?

Co-authored-by: Mathias <mk@blackbird.online>
Co-authored-by: Mathias Koch <mk@blackbird.online>
This commit is contained in:
bors[bot] 2022-09-27 20:09:53 +00:00 committed by GitHub
commit 9bb43ffe9a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 565 additions and 0 deletions

556
embassy-rp/src/i2c.rs Normal file
View File

@ -0,0 +1,556 @@
use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef};
use pac::i2c;
use crate::dma::AnyChannel;
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};
/// I2C error abort reason
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AbortReason {
/// A bus operation was not acknowledged, e.g. due to the addressed device
/// not being available on the bus or the device not being ready to process
/// requests at the moment
NoAcknowledge,
/// The arbitration was lost, e.g. electrical problems with the clock signal
ArbitrationLoss,
Other(u32),
}
/// I2C error
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// I2C abort with error
Abort(AbortReason),
/// User passed in a read buffer that was 0 length
InvalidReadBufferLength,
/// User passed in a write buffer that was 0 length
InvalidWriteBufferLength,
/// Target i2c address is out of range
AddressOutOfRange(u16),
/// Target i2c address is reserved
AddressReserved(u16),
}
#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
pub frequency: u32,
}
impl Default for Config {
fn default() -> Self {
Self { frequency: 100_000 }
}
}
const FIFO_SIZE: u8 = 16;
pub struct I2c<'d, T: Instance, M: Mode> {
_tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
_rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
_dma_buf: [u16; 256],
phantom: PhantomData<(&'d mut T, M)>,
}
impl<'d, T: Instance> I2c<'d, T, Blocking> {
pub fn new_blocking(
_peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(scl, sda);
Self::new_inner(_peri, scl.map_into(), sda.map_into(), None, None, config)
}
}
impl<'d, T: Instance, M: Mode> I2c<'d, T, M> {
fn new_inner(
_peri: impl Peripheral<P = T> + 'd,
scl: PeripheralRef<'d, AnyPin>,
sda: PeripheralRef<'d, AnyPin>,
_tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
_rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config,
) -> Self {
into_ref!(_peri);
assert!(config.frequency <= 1_000_000);
assert!(config.frequency > 0);
let p = T::regs();
unsafe {
p.ic_enable().write(|w| w.set_enable(false));
// Select controller mode & speed
p.ic_con().modify(|w| {
// Always use "fast" mode (<= 400 kHz, works fine for standard
// mode too)
w.set_speed(i2c::vals::Speed::FAST);
w.set_master_mode(true);
w.set_ic_slave_disable(true);
w.set_ic_restart_en(true);
w.set_tx_empty_ctrl(true);
});
// Set FIFO watermarks to 1 to make things simpler. This is encoded
// by a register value of 0.
p.ic_tx_tl().write(|w| w.set_tx_tl(0));
p.ic_rx_tl().write(|w| w.set_rx_tl(0));
// Configure SCL & SDA pins
scl.io().ctrl().write(|w| w.set_funcsel(3));
sda.io().ctrl().write(|w| w.set_funcsel(3));
scl.pad_ctrl().write(|w| {
w.set_schmitt(true);
w.set_ie(true);
w.set_od(false);
w.set_pue(true);
w.set_pde(false);
});
sda.pad_ctrl().write(|w| {
w.set_schmitt(true);
w.set_ie(true);
w.set_od(false);
w.set_pue(true);
w.set_pde(false);
});
// Configure baudrate
// There are some subtleties to I2C timing which we are completely
// ignoring here See:
// https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
let clk_base = crate::clocks::clk_peri_freq();
let period = (clk_base + config.frequency / 2) / config.frequency;
let lcnt = period * 3 / 5; // spend 3/5 (60%) of the period low
let hcnt = period - lcnt; // and 2/5 (40%) of the period high
// Check for out-of-range divisors:
assert!(hcnt <= 0xffff);
assert!(lcnt <= 0xffff);
assert!(hcnt >= 8);
assert!(lcnt >= 8);
// Per I2C-bus specification a device in standard or fast mode must
// internally provide a hold time of at least 300ns for the SDA
// signal to bridge the undefined region of the falling edge of SCL.
// A smaller hold time of 120ns is used for fast mode plus.
let sda_tx_hold_count = if config.frequency < 1_000_000 {
// sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s /
// 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't
// fit in uint. Add 1 to avoid division truncation.
((clk_base * 3) / 10_000_000) + 1
} else {
// fast mode plus requires a clk_base > 32MHz
assert!(clk_base >= 32_000_000);
// sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s /
// 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't
// fit in uint. Add 1 to avoid division truncation.
((clk_base * 3) / 25_000_000) + 1
};
assert!(sda_tx_hold_count <= lcnt - 2);
p.ic_fs_scl_hcnt().write(|w| w.set_ic_fs_scl_hcnt(hcnt as u16));
p.ic_fs_scl_lcnt().write(|w| w.set_ic_fs_scl_lcnt(lcnt as u16));
p.ic_fs_spklen()
.write(|w| w.set_ic_fs_spklen(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 }));
p.ic_sda_hold()
.modify(|w| w.set_ic_sda_tx_hold(sda_tx_hold_count as u16));
// Enable I2C block
p.ic_enable().write(|w| w.set_enable(true));
}
Self {
_tx_dma,
_rx_dma,
_dma_buf: [0; 256],
phantom: PhantomData,
}
}
fn setup(addr: u16) -> Result<(), Error> {
if addr >= 0x80 {
return Err(Error::AddressOutOfRange(addr));
}
if i2c_reserved_addr(addr) {
return Err(Error::AddressReserved(addr));
}
let p = T::regs();
unsafe {
p.ic_enable().write(|w| w.set_enable(false));
p.ic_tar().write(|w| w.set_ic_tar(addr));
p.ic_enable().write(|w| w.set_enable(true));
}
Ok(())
}
fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> {
let p = T::regs();
unsafe {
let abort_reason = p.ic_tx_abrt_source().read();
if abort_reason.0 != 0 {
// Note clearing the abort flag also clears the reason, and this
// instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
p.ic_clr_tx_abrt().read();
let reason = if abort_reason.abrt_7b_addr_noack()
| abort_reason.abrt_10addr1_noack()
| abort_reason.abrt_10addr2_noack()
{
AbortReason::NoAcknowledge
} else if abort_reason.arb_lost() {
AbortReason::ArbitrationLoss
} else {
AbortReason::Other(abort_reason.0)
};
Err(Error::Abort(reason))
} else {
Ok(())
}
}
}
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = buffer.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// NOTE(unsafe) We have &mut self
unsafe {
// wait until there is space in the FIFO to write the next byte
while p.ic_txflr().read().txflr() == FIFO_SIZE {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while p.ic_rxflr().read().rxflr() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
}
Ok(())
}
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, true)
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, bytes)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
type Error = Error;
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, bytes, buffer)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Abort(AbortReason::ArbitrationLoss) => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Abort(AbortReason::NoAcknowledge) => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
}
Self::Abort(AbortReason::Other(_)) => embedded_hal_1::i2c::ErrorKind::Other,
Self::InvalidReadBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
Self::InvalidWriteBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
Self::AddressOutOfRange(_) => embedded_hal_1::i2c::ErrorKind::Other,
Self::AddressReserved(_) => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::blocking::I2c for I2c<'d, T, M> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer)
}
fn write_iter<B>(&mut self, address: u8, bytes: B) -> Result<(), Self::Error>
where
B: IntoIterator<Item = u8>,
{
let mut peekable = bytes.into_iter().peekable();
Self::setup(address.into())?;
while let Some(tx) = peekable.next() {
self.write_blocking_internal(&[tx], peekable.peek().is_none())?;
}
Ok(())
}
fn write_iter_read<B>(&mut self, address: u8, bytes: B, buffer: &mut [u8]) -> Result<(), Self::Error>
where
B: IntoIterator<Item = u8>,
{
let peekable = bytes.into_iter().peekable();
Self::setup(address.into())?;
for tx in peekable {
self.write_blocking_internal(&[tx], false)?
}
self.read_blocking_internal(buffer, true, true)
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::blocking::Operation<'a>],
) -> Result<(), Self::Error> {
Self::setup(address.into())?;
for i in 0..operations.len() {
let last = i == operations.len() - 1;
match &mut operations[i] {
embedded_hal_1::i2c::blocking::Operation::Read(buf) => {
self.read_blocking_internal(buf, false, last)?
}
embedded_hal_1::i2c::blocking::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
fn transaction_iter<'a, O>(&mut self, address: u8, operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::blocking::Operation<'a>>,
{
Self::setup(address.into())?;
let mut peekable = operations.into_iter().peekable();
while let Some(operation) = peekable.next() {
let last = peekable.peek().is_none();
match operation {
embedded_hal_1::i2c::blocking::Operation::Read(buf) => {
self.read_blocking_internal(buf, false, last)?
}
embedded_hal_1::i2c::blocking::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
}
}
fn i2c_reserved_addr(addr: u16) -> bool {
(addr & 0x78) == 0 || (addr & 0x78) == 0x78
}
mod sealed {
use embassy_cortex_m::interrupt::Interrupt;
pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
type Interrupt: Interrupt;
fn regs() -> crate::pac::i2c::I2c;
}
pub trait Mode {}
pub trait SdaPin<T: Instance> {}
pub trait SclPin<T: Instance> {}
}
pub trait Mode: sealed::Mode {}
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
pub trait Instance: sealed::Instance {}
macro_rules! impl_instance {
($type:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$type {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
type Interrupt = crate::interrupt::$irq;
fn regs() -> pac::i2c::I2c {
pac::$type
}
}
impl Instance for peripherals::$type {}
};
}
impl_instance!(I2C0, I2C0_IRQ, 32, 33);
impl_instance!(I2C1, I2C1_IRQ, 34, 35);
pub trait SdaPin<T: Instance>: sealed::SdaPin<T> + crate::gpio::Pin {}
pub trait SclPin<T: Instance>: sealed::SclPin<T> + crate::gpio::Pin {}
macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => {
impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
impl $function<peripherals::$instance> for peripherals::$pin {}
};
}
impl_pin!(PIN_0, I2C0, SdaPin);
impl_pin!(PIN_1, I2C0, SclPin);
impl_pin!(PIN_2, I2C1, SdaPin);
impl_pin!(PIN_3, I2C1, SclPin);
impl_pin!(PIN_4, I2C0, SdaPin);
impl_pin!(PIN_5, I2C0, SclPin);
impl_pin!(PIN_6, I2C1, SdaPin);
impl_pin!(PIN_7, I2C1, SclPin);
impl_pin!(PIN_8, I2C0, SdaPin);
impl_pin!(PIN_9, I2C0, SclPin);
impl_pin!(PIN_10, I2C1, SdaPin);
impl_pin!(PIN_11, I2C1, SclPin);
impl_pin!(PIN_12, I2C0, SdaPin);
impl_pin!(PIN_13, I2C0, SclPin);
impl_pin!(PIN_14, I2C1, SdaPin);
impl_pin!(PIN_15, I2C1, SclPin);
impl_pin!(PIN_16, I2C0, SdaPin);
impl_pin!(PIN_17, I2C0, SclPin);
impl_pin!(PIN_18, I2C1, SdaPin);
impl_pin!(PIN_19, I2C1, SclPin);
impl_pin!(PIN_20, I2C0, SdaPin);
impl_pin!(PIN_21, I2C0, SclPin);
impl_pin!(PIN_22, I2C1, SdaPin);
impl_pin!(PIN_23, I2C1, SclPin);
impl_pin!(PIN_24, I2C0, SdaPin);
impl_pin!(PIN_25, I2C0, SclPin);
impl_pin!(PIN_26, I2C1, SdaPin);
impl_pin!(PIN_27, I2C1, SclPin);
impl_pin!(PIN_28, I2C0, SdaPin);
impl_pin!(PIN_29, I2C0, SclPin);

View File

@ -8,6 +8,7 @@ mod intrinsics;
pub mod dma;
pub mod gpio;
pub mod i2c;
pub mod interrupt;
pub mod rom_data;
pub mod rtc;
@ -75,6 +76,9 @@ embassy_hal_common::peripherals! {
SPI0,
SPI1,
I2C0,
I2C1,
DMA_CH0,
DMA_CH1,
DMA_CH2,

View File

@ -428,9 +428,11 @@ mod eh02 {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
@ -438,6 +440,7 @@ mod eh02 {
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
@ -445,9 +448,11 @@ mod eh02 {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}