Add RTC timer for stm32f4

This commit is contained in:
Thales Fragoso 2021-02-15 21:38:36 -03:00
parent e454969000
commit 9d895a6383
7 changed files with 494 additions and 4 deletions

View File

@ -1,5 +1,5 @@
[target.'cfg(all(target_arch = "arm", target_os = "none"))'] [target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "probe-run --chip STM32F411CEUx --defmt" runner = "probe-run --chip STM32F401CCUx --defmt"
rustflags = [ rustflags = [
# LLD (shipped with the Rust toolchain) is used as the default linker # LLD (shipped with the Rust toolchain) is used as the default linker

View File

@ -18,7 +18,7 @@ defmt-error = []
[dependencies] [dependencies]
embassy = { version = "0.1.0", path = "../embassy", features = ["defmt", "defmt-trace"] } embassy = { version = "0.1.0", path = "../embassy", features = ["defmt", "defmt-trace"] }
embassy-stm32f4 = { version = "*", path = "../embassy-stm32f4", features = ["stm32f405"] } embassy-stm32f4 = { version = "*", path = "../embassy-stm32f4", features = ["stm32f401"] }
defmt = "0.1.3" defmt = "0.1.3"
defmt-rtt = "0.1.0" defmt-rtt = "0.1.0"
@ -27,6 +27,6 @@ cortex-m = "0.7.1"
cortex-m-rt = "0.6.13" cortex-m-rt = "0.6.13"
embedded-hal = { version = "0.2.4" } embedded-hal = { version = "0.2.4" }
panic-probe = "0.1.0" panic-probe = "0.1.0"
stm32f4xx-hal = { version = "0.8.3", features = ["rt", "stm32f405"], git = "https://github.com/stm32-rs/stm32f4xx-hal.git"} stm32f4xx-hal = { version = "0.8.3", features = ["rt", "stm32f401"], git = "https://github.com/stm32-rs/stm32f4xx-hal.git"}
futures = { version = "0.3.8", default-features = false, features = ["async-await"] } futures = { version = "0.3.8", default-features = false, features = ["async-await"] }
rtt-target = { version = "0.3", features = ["cortex-m"] } rtt-target = { version = "0.3", features = ["cortex-m"] }

View File

@ -1,5 +1,5 @@
MEMORY MEMORY
{ {
FLASH : ORIGIN = 0x08000000, LENGTH = 64K FLASH : ORIGIN = 0x08000000, LENGTH = 64K
RAM : ORIGIN = 0x20000000, LENGTH = 32K RAM : ORIGIN = 0x20000000, LENGTH = 32K
} }

View File

@ -0,0 +1,65 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use defmt::panic;
use embassy::executor::{task, Executor};
use embassy::time::{Duration, Timer};
use embassy::util::Forever;
use embassy_stm32f4::{interrupt, pac, rtc};
use stm32f4xx_hal::prelude::*;
#[task]
async fn run1() {
loop {
info!("BIG INFREQUENT TICK");
Timer::after(Duration::from_ticks(32768 * 2)).await;
}
}
#[task]
async fn run2() {
loop {
info!("tick");
Timer::after(Duration::from_ticks(13000)).await;
}
}
static RTC: Forever<rtc::RTC<pac::TIM2>> = Forever::new();
static ALARM: Forever<rtc::Alarm<pac::TIM2>> = Forever::new();
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let p = unwrap!(pac::Peripherals::take());
p.RCC.ahb1enr.modify(|_, w| w.dma1en().enabled());
let rcc = p.RCC.constrain();
let clocks = rcc.cfgr.freeze();
p.DBGMCU.cr.modify(|_, w| {
w.dbg_sleep().set_bit();
w.dbg_standby().set_bit();
w.dbg_stop().set_bit()
});
let rtc = RTC.put(rtc::RTC::new(p.TIM2, interrupt::take!(TIM2), clocks));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm1());
let executor = EXECUTOR.put(Executor::new());
executor.set_alarm(alarm);
executor.run(|spawner| {
unwrap!(spawner.spawn(run1()));
unwrap!(spawner.spawn(run2()));
});
}

View File

@ -94,6 +94,66 @@ where
} }
} }
#[cfg(feature = "stm32f401")]
mod irqs {
use super::*;
declare!(PVD);
declare!(TAMP_STAMP);
declare!(RTC_WKUP);
declare!(FLASH);
declare!(RCC);
declare!(EXTI0);
declare!(EXTI1);
declare!(EXTI2);
declare!(EXTI3);
declare!(EXTI4);
declare!(DMA1_STREAM0);
declare!(DMA1_STREAM1);
declare!(DMA1_STREAM2);
declare!(DMA1_STREAM3);
declare!(DMA1_STREAM4);
declare!(DMA1_STREAM5);
declare!(DMA1_STREAM6);
declare!(ADC);
declare!(EXTI9_5);
declare!(TIM1_BRK_TIM9);
declare!(TIM1_UP_TIM10);
declare!(TIM1_TRG_COM_TIM11);
declare!(TIM1_CC);
declare!(TIM2);
declare!(TIM3);
declare!(TIM4);
declare!(I2C1_EV);
declare!(I2C1_ER);
declare!(I2C2_EV);
declare!(I2C2_ER);
declare!(SPI1);
declare!(SPI2);
declare!(USART1);
declare!(USART2);
declare!(EXTI15_10);
declare!(RTC_ALARM);
declare!(OTG_FS_WKUP);
declare!(DMA1_STREAM7);
declare!(SDIO);
declare!(TIM5);
declare!(SPI3);
declare!(DMA2_STREAM0);
declare!(DMA2_STREAM1);
declare!(DMA2_STREAM2);
declare!(DMA2_STREAM3);
declare!(DMA2_STREAM4);
declare!(OTG_FS);
declare!(DMA2_STREAM5);
declare!(DMA2_STREAM6);
declare!(DMA2_STREAM7);
declare!(USART6);
declare!(I2C3_EV);
declare!(I2C3_ER);
declare!(FPU);
declare!(SPI4);
}
#[cfg(feature = "stm32f405")] #[cfg(feature = "stm32f405")]
mod irqs { mod irqs {
use super::*; use super::*;

View File

@ -312,6 +312,7 @@ pub(crate) mod fmt;
pub mod exti; pub mod exti;
pub mod interrupt; pub mod interrupt;
pub mod rtc;
pub mod serial; pub mod serial;
pub use cortex_m_rt::interrupt; pub use cortex_m_rt::interrupt;

364
embassy-stm32f4/src/rtc.rs Normal file
View File

@ -0,0 +1,364 @@
use core::cell::Cell;
use core::convert::TryInto;
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
use embassy::time::{Clock, TICKS_PER_SECOND};
use stm32f4xx_hal::bb;
use stm32f4xx_hal::rcc::Clocks;
use crate::interrupt;
use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt};
// RTC timekeeping works with something we call "periods", which are time intervals
// of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
//
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
fn calc_now(period: u32, counter: u16) -> u64 {
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
}
struct AlarmState {
timestamp: Cell<u64>,
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
}
impl AlarmState {
fn new() -> Self {
Self {
timestamp: Cell::new(u64::MAX),
callback: Cell::new(None),
}
}
}
// TODO: This is sometimes wasteful, try to find a better way
const ALARM_COUNT: usize = 3;
pub struct RTC<T: Instance> {
rtc: T,
irq: T::Interrupt,
/// Number of 2^23 periods elapsed since boot.
period: AtomicU32,
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
clocks: Clocks,
}
impl<T: Instance> RTC<T> {
pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self {
Self {
rtc,
irq,
period: AtomicU32::new(0),
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
clocks,
}
}
pub fn start(&'static self) {
self.rtc.enable_clock();
self.rtc.stop_and_reset();
let multiplier = if T::ppre(&self.clocks) == 1 { 1 } else { 2 };
let freq = T::pclk(&self.clocks) * multiplier;
let psc = freq / TICKS_PER_SECOND as u32 - 1;
let psc: u16 = psc.try_into().unwrap();
self.rtc.set_psc_arr(psc, u16::MAX);
// Mid-way point
self.rtc.set_compare(0, 0x8000);
self.rtc.set_compare_interrupt(0, true);
self.irq.set_handler(
|ptr| unsafe {
let this = &*(ptr as *const () as *const Self);
this.on_interrupt();
},
self as *const _ as *mut _,
);
self.irq.unpend();
self.irq.enable();
self.rtc.start();
}
fn on_interrupt(&self) {
if self.rtc.overflow_interrupt_status() {
self.rtc.overflow_clear_flag();
self.next_period();
}
// Half overflow
if self.rtc.compare_interrupt_status(0) {
self.rtc.compare_clear_flag(0);
self.next_period();
}
for n in 1..=ALARM_COUNT {
if self.rtc.compare_interrupt_status(n) {
self.rtc.compare_clear_flag(n);
interrupt::free(|cs| self.trigger_alarm(n, cs));
}
}
}
fn next_period(&self) {
interrupt::free(|cs| {
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
let t = (period as u64) << 15;
for n in 1..=ALARM_COUNT {
let alarm = &self.alarms.borrow(cs)[n - 1];
let at = alarm.timestamp.get();
let diff = at - t;
if diff < 0xc000 {
self.rtc.set_compare(n, at as u16);
self.rtc.set_compare_interrupt(n, true);
}
}
})
}
fn trigger_alarm(&self, n: usize, cs: &CriticalSection) {
self.rtc.set_compare_interrupt(n, false);
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(u64::MAX);
// Call after clearing alarm, so the callback can set another alarm.
if let Some((f, ctx)) = alarm.callback.get() {
f(ctx);
}
}
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.callback.set(Some((callback, ctx)));
})
}
fn set_alarm(&self, n: usize, timestamp: u64) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(timestamp);
let t = self.now();
if timestamp <= t {
self.trigger_alarm(n, cs);
return;
}
let diff = timestamp - t;
if diff < 0xc000 {
let safe_timestamp = timestamp.max(t + 3);
self.rtc.set_compare(n, safe_timestamp as u16);
self.rtc.set_compare_interrupt(n, true);
} else {
self.rtc.set_compare_interrupt(n, false);
}
})
}
pub fn alarm1(&'static self) -> Alarm<T> {
Alarm { n: 1, rtc: self }
}
pub fn alarm2(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 2 {
Some(Alarm { n: 2, rtc: self })
} else {
None
}
}
pub fn alarm3(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 3 {
Some(Alarm { n: 3, rtc: self })
} else {
None
}
}
}
impl<T: Instance> embassy::time::Clock for RTC<T> {
fn now(&self) -> u64 {
let period = self.period.load(Ordering::Relaxed);
compiler_fence(Ordering::Acquire);
let counter = self.rtc.counter();
calc_now(period, counter)
}
}
pub struct Alarm<T: Instance> {
n: usize,
rtc: &'static RTC<T>,
}
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
self.rtc.set_alarm_callback(self.n, callback, ctx);
}
fn set(&self, timestamp: u64) {
self.rtc.set_alarm(self.n, timestamp);
}
fn clear(&self) {
self.rtc.set_alarm(self.n, u64::MAX);
}
}
mod sealed {
pub trait Sealed {}
}
pub trait Instance: sealed::Sealed + Sized + 'static {
type Interrupt: OwnedInterrupt;
const REAL_ALARM_COUNT: usize;
fn enable_clock(&self);
fn set_compare(&self, n: usize, value: u16);
fn set_compare_interrupt(&self, n: usize, enable: bool);
fn compare_interrupt_status(&self, n: usize) -> bool;
fn compare_clear_flag(&self, n: usize);
fn overflow_interrupt_status(&self) -> bool;
fn overflow_clear_flag(&self);
fn set_psc_arr(&self, psc: u16, arr: u16);
fn stop_and_reset(&self);
fn start(&self);
fn counter(&self) -> u16;
fn ppre(clocks: &Clocks) -> u8;
fn pclk(clocks: &Clocks) -> u32;
}
mod tim2 {
use super::*;
use stm32f4xx_hal::pac::{RCC, TIM2};
impl sealed::Sealed for TIM2 {}
impl Instance for TIM2 {
type Interrupt = interrupt::TIM2Interrupt;
const REAL_ALARM_COUNT: usize = 3;
fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations
unsafe {
let rcc = &*RCC::ptr();
bb::set(&rcc.apb1enr, 0);
bb::set(&rcc.apb1rstr, 0);
bb::clear(&rcc.apb1rstr, 0);
}
}
fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values
match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
_ => {}
}
}
fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
if enable {
bb::set(&self.dier, bit);
} else {
bb::clear(&self.dier, bit);
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
2 => status.cc3if().bit_is_set(),
3 => status.cc4if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.ppre1()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.pclk1().0
}
}
}