rp: add usb device support.

This commit is contained in:
Dario Nieuwenhuis 2022-08-24 23:46:07 +02:00
parent f11aa9720b
commit a730e2cd0f
6 changed files with 1259 additions and 1 deletions

View File

@ -12,6 +12,7 @@ flavors = [
] ]
[features] [features]
defmt = ["dep:defmt", "embassy-usb?/defmt"]
# Reexport the PAC for the currently enabled chip at `embassy_rp::pac`. # Reexport the PAC for the currently enabled chip at `embassy_rp::pac`.
# This is unstable because semver-minor (non-breaking) releases of embassy-rp may major-bump (breaking) the PAC version. # This is unstable because semver-minor (non-breaking) releases of embassy-rp may major-bump (breaking) the PAC version.
@ -20,7 +21,7 @@ flavors = [
unstable-pac = [] unstable-pac = []
# Enable nightly-only features # Enable nightly-only features
nightly = ["embassy-executor/nightly", "embedded-hal-1", "embedded-hal-async", "embassy-embedded-hal/nightly"] nightly = ["embassy-executor/nightly", "embedded-hal-1", "embedded-hal-async", "embassy-embedded-hal/nightly", "dep:embassy-usb"]
# Implement embedded-hal 1.0 alpha traits. # Implement embedded-hal 1.0 alpha traits.
# Implement embedded-hal-async traits if `nightly` is set as well. # Implement embedded-hal-async traits if `nightly` is set as well.
@ -33,6 +34,7 @@ embassy-time = { version = "0.1.0", path = "../embassy-time", features = [ "tick
embassy-cortex-m = { version = "0.1.0", path = "../embassy-cortex-m", features = ["prio-bits-2"]} embassy-cortex-m = { version = "0.1.0", path = "../embassy-cortex-m", features = ["prio-bits-2"]}
embassy-hal-common = {version = "0.1.0", path = "../embassy-hal-common" } embassy-hal-common = {version = "0.1.0", path = "../embassy-hal-common" }
embassy-embedded-hal = {version = "0.1.0", path = "../embassy-embedded-hal" } embassy-embedded-hal = {version = "0.1.0", path = "../embassy-embedded-hal" }
embassy-usb = {version = "0.1.0", path = "../embassy-usb", optional = true }
atomic-polyfill = "1.0.1" atomic-polyfill = "1.0.1"
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true } log = { version = "0.4.14", optional = true }

View File

@ -10,6 +10,8 @@ pub mod interrupt;
pub mod spi; pub mod spi;
pub mod timer; pub mod timer;
pub mod uart; pub mod uart;
#[cfg(feature = "nightly")]
pub mod usb;
mod clocks; mod clocks;
mod reset; mod reset;
@ -80,6 +82,8 @@ embassy_hal_common::peripherals! {
DMA_CH9, DMA_CH9,
DMA_CH10, DMA_CH10,
DMA_CH11, DMA_CH11,
USB,
} }
#[link_section = ".boot2"] #[link_section = ".boot2"]
@ -109,3 +113,36 @@ pub fn init(_config: config::Config) -> Peripherals {
peripherals peripherals
} }
/// Extension trait for PAC regs, adding atomic xor/bitset/bitclear writes.
trait RegExt<T: Copy> {
unsafe fn write_xor<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
unsafe fn write_set<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
unsafe fn write_clear<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
}
impl<T: Default + Copy, A: pac::common::Write> RegExt<T> for pac::common::Reg<T, A> {
unsafe fn write_xor<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
let ptr = (self.ptr() as *mut u8).add(0x1000) as *mut T;
ptr.write_volatile(val);
res
}
unsafe fn write_set<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
let ptr = (self.ptr() as *mut u8).add(0x2000) as *mut T;
ptr.write_volatile(val);
res
}
unsafe fn write_clear<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
let ptr = (self.ptr() as *mut u8).add(0x3000) as *mut T;
ptr.write_volatile(val);
res
}
}

846
embassy-rp/src/usb.rs Normal file
View File

@ -0,0 +1,846 @@
use core::marker::PhantomData;
use core::slice;
use core::sync::atomic::Ordering;
use core::task::Poll;
use atomic_polyfill::compiler_fence;
use embassy_hal_common::into_ref;
use embassy_sync::waitqueue::AtomicWaker;
use embassy_usb::driver::{self, EndpointAllocError, EndpointError, Event, Unsupported};
use embassy_usb::types::{EndpointAddress, EndpointInfo, EndpointType, UsbDirection};
use futures::future::poll_fn;
use futures::Future;
use crate::interrupt::{Interrupt, InterruptExt};
use crate::{pac, peripherals, Peripheral, RegExt};
pub(crate) mod sealed {
pub trait Instance {
fn regs() -> crate::pac::usb::Usb;
fn dpram() -> crate::pac::usb_dpram::UsbDpram;
}
}
pub trait Instance: sealed::Instance + 'static {
type Interrupt: Interrupt;
}
impl crate::usb::sealed::Instance for peripherals::USB {
fn regs() -> pac::usb::Usb {
pac::USBCTRL_REGS
}
fn dpram() -> crate::pac::usb_dpram::UsbDpram {
pac::USBCTRL_DPRAM
}
}
impl crate::usb::Instance for peripherals::USB {
type Interrupt = crate::interrupt::USBCTRL_IRQ;
}
const EP_COUNT: usize = 16;
const EP_MEMORY_SIZE: usize = 4096;
const EP_MEMORY: *mut u8 = pac::USBCTRL_DPRAM.0;
const NEW_AW: AtomicWaker = AtomicWaker::new();
static BUS_WAKER: AtomicWaker = NEW_AW;
static EP_IN_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT];
static EP_OUT_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT];
struct EndpointBuffer<T: Instance> {
addr: u16,
len: u16,
_phantom: PhantomData<T>,
}
impl<T: Instance> EndpointBuffer<T> {
const fn new(addr: u16, len: u16) -> Self {
Self {
addr,
len,
_phantom: PhantomData,
}
}
fn read(&mut self, buf: &mut [u8]) {
assert!(buf.len() <= self.len as usize);
compiler_fence(Ordering::SeqCst);
let mem = unsafe { slice::from_raw_parts(EP_MEMORY.add(self.addr as _), buf.len()) };
buf.copy_from_slice(mem);
compiler_fence(Ordering::SeqCst);
}
fn write(&mut self, buf: &[u8]) {
assert!(buf.len() <= self.len as usize);
compiler_fence(Ordering::SeqCst);
let mem = unsafe { slice::from_raw_parts_mut(EP_MEMORY.add(self.addr as _), buf.len()) };
mem.copy_from_slice(buf);
compiler_fence(Ordering::SeqCst);
}
}
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
struct EndpointData {
ep_type: EndpointType, // only valid if used
max_packet_size: u16,
used: bool,
}
impl EndpointData {
const fn new() -> Self {
Self {
ep_type: EndpointType::Bulk,
max_packet_size: 0,
used: false,
}
}
}
pub struct Driver<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
ep_in: [EndpointData; EP_COUNT],
ep_out: [EndpointData; EP_COUNT],
ep_mem_free: u16, // first free address in EP mem, in bytes.
}
impl<'d, T: Instance> Driver<'d, T> {
pub fn new(_usb: impl Peripheral<P = T> + 'd, irq: impl Peripheral<P = T::Interrupt> + 'd) -> Self {
into_ref!(irq);
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
let regs = T::regs();
unsafe {
// zero fill regs
let p = regs.0 as *mut u32;
for i in 0..0x9c / 4 {
p.add(i).write_volatile(0)
}
// zero fill epmem
let p = EP_MEMORY as *mut u32;
for i in 0..0x100 / 4 {
p.add(i).write_volatile(0)
}
regs.usb_muxing().write(|w| {
w.set_to_phy(true);
w.set_softcon(true);
});
regs.usb_pwr().write(|w| {
w.set_vbus_detect(true);
w.set_vbus_detect_override_en(true);
});
regs.main_ctrl().write(|w| {
w.set_controller_en(true);
});
}
// Initialize the bus so that it signals that power is available
BUS_WAKER.wake();
Self {
phantom: PhantomData,
ep_in: [EndpointData::new(); EP_COUNT],
ep_out: [EndpointData::new(); EP_COUNT],
ep_mem_free: 0x180, // data buffer region
}
}
fn on_interrupt(_: *mut ()) {
unsafe {
let regs = T::regs();
//let x = regs.istr().read().0;
//trace!("USB IRQ: {:08x}", x);
let ints = regs.ints().read();
if ints.bus_reset() {
regs.inte().write_clear(|w| w.set_bus_reset(true));
BUS_WAKER.wake();
}
if ints.dev_resume_from_host() {
regs.inte().write_clear(|w| w.set_dev_resume_from_host(true));
BUS_WAKER.wake();
}
if ints.dev_suspend() {
regs.inte().write_clear(|w| w.set_dev_suspend(true));
BUS_WAKER.wake();
}
if ints.setup_req() {
regs.inte().write_clear(|w| w.set_setup_req(true));
EP_OUT_WAKERS[0].wake();
}
if ints.buff_status() {
let s = regs.buff_status().read();
regs.buff_status().write_value(s);
for i in 0..EP_COUNT {
if s.ep_in(i) {
EP_IN_WAKERS[i].wake();
}
if s.ep_out(i) {
EP_OUT_WAKERS[i].wake();
}
}
}
}
}
fn alloc_endpoint<D: Dir>(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Endpoint<'d, T, D>, driver::EndpointAllocError> {
trace!(
"allocating type={:?} mps={:?} interval={}, dir={:?}",
ep_type,
max_packet_size,
interval,
D::dir()
);
let alloc = match D::dir() {
UsbDirection::Out => &mut self.ep_out,
UsbDirection::In => &mut self.ep_in,
};
let index = alloc.iter_mut().enumerate().find(|(i, ep)| {
if *i == 0 {
return false; // reserved for control pipe
}
!ep.used
});
let (index, ep) = index.ok_or(EndpointAllocError)?;
assert!(!ep.used);
if max_packet_size > 64 {
warn!("max_packet_size too high: {}", max_packet_size);
return Err(EndpointAllocError);
}
// ep mem addrs must be 64-byte aligned, so there's no point in trying
// to allocate smaller chunks to save memory.
let len = 64;
let addr = self.ep_mem_free;
if addr + len > EP_MEMORY_SIZE as _ {
warn!("Endpoint memory full");
return Err(EndpointAllocError);
}
self.ep_mem_free += len;
let buf = EndpointBuffer {
addr,
len,
_phantom: PhantomData,
};
trace!(" index={} addr={} len={}", index, buf.addr, buf.len);
ep.ep_type = ep_type;
ep.used = true;
ep.max_packet_size = max_packet_size;
let ep_type_reg = match ep_type {
EndpointType::Bulk => pac::usb_dpram::vals::EpControlEndpointType::BULK,
EndpointType::Control => pac::usb_dpram::vals::EpControlEndpointType::CONTROL,
EndpointType::Interrupt => pac::usb_dpram::vals::EpControlEndpointType::INTERRUPT,
EndpointType::Isochronous => pac::usb_dpram::vals::EpControlEndpointType::ISOCHRONOUS,
};
match D::dir() {
UsbDirection::Out => unsafe {
T::dpram().ep_out_control(index - 1).write(|w| {
w.set_enable(false);
w.set_buffer_address(addr);
w.set_interrupt_per_buff(true);
w.set_endpoint_type(ep_type_reg);
})
},
UsbDirection::In => unsafe {
T::dpram().ep_in_control(index - 1).write(|w| {
w.set_enable(false);
w.set_buffer_address(addr);
w.set_interrupt_per_buff(true);
w.set_endpoint_type(ep_type_reg);
})
},
}
Ok(Endpoint {
_phantom: PhantomData,
info: EndpointInfo {
addr: EndpointAddress::from_parts(index, D::dir()),
ep_type,
max_packet_size,
interval,
},
buf,
})
}
}
impl<'d, T: Instance> driver::Driver<'d> for Driver<'d, T> {
type EndpointOut = Endpoint<'d, T, Out>;
type EndpointIn = Endpoint<'d, T, In>;
type ControlPipe = ControlPipe<'d, T>;
type Bus = Bus<'d, T>;
fn alloc_endpoint_in(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointIn, driver::EndpointAllocError> {
self.alloc_endpoint(ep_type, max_packet_size, interval)
}
fn alloc_endpoint_out(
&mut self,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointOut, driver::EndpointAllocError> {
self.alloc_endpoint(ep_type, max_packet_size, interval)
}
fn start(self, control_max_packet_size: u16) -> (Self::Bus, Self::ControlPipe) {
let regs = T::regs();
unsafe {
regs.inte().write(|w| {
w.set_bus_reset(true);
w.set_buff_status(true);
w.set_dev_resume_from_host(true);
w.set_dev_suspend(true);
w.set_setup_req(true);
});
regs.int_ep_ctrl().write(|w| {
w.set_int_ep_active(0xFFFE); // all EPs
});
regs.sie_ctrl().write(|w| {
w.set_ep0_int_1buf(true);
w.set_pullup_en(true);
})
}
trace!("enabled");
(
Bus {
phantom: PhantomData,
inited: false,
ep_out: self.ep_out,
},
ControlPipe {
_phantom: PhantomData,
max_packet_size: control_max_packet_size,
},
)
}
}
pub struct Bus<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
ep_out: [EndpointData; EP_COUNT],
inited: bool,
}
impl<'d, T: Instance> driver::Bus for Bus<'d, T> {
type PollFuture<'a> = impl Future<Output = Event> + 'a where Self: 'a;
fn poll<'a>(&'a mut self) -> Self::PollFuture<'a> {
poll_fn(move |cx| unsafe {
BUS_WAKER.register(cx.waker());
if !self.inited {
self.inited = true;
return Poll::Ready(Event::PowerDetected);
}
let regs = T::regs();
let siestatus = regs.sie_status().read();
if siestatus.resume() {
regs.sie_status().write(|w| w.set_resume(true));
return Poll::Ready(Event::Resume);
}
if siestatus.bus_reset() {
regs.sie_status().write(|w| {
w.set_bus_reset(true);
w.set_setup_rec(true);
});
regs.buff_status().write(|w| w.0 = 0xFFFF_FFFF);
regs.addr_endp().write(|w| w.set_address(0));
for i in 1..EP_COUNT {
T::dpram().ep_in_control(i - 1).modify(|w| w.set_enable(false));
T::dpram().ep_out_control(i - 1).modify(|w| w.set_enable(false));
}
for w in &EP_IN_WAKERS {
w.wake()
}
for w in &EP_OUT_WAKERS {
w.wake()
}
return Poll::Ready(Event::Reset);
}
if siestatus.suspended() {
regs.sie_status().write(|w| w.set_suspended(true));
return Poll::Ready(Event::Suspend);
}
// no pending event. Reenable all irqs.
regs.inte().write_set(|w| {
w.set_bus_reset(true);
w.set_dev_resume_from_host(true);
w.set_dev_suspend(true);
});
Poll::Pending
})
}
#[inline]
fn set_address(&mut self, addr: u8) {
let regs = T::regs();
trace!("setting addr: {}", addr);
unsafe { regs.addr_endp().write(|w| w.set_address(addr)) }
}
fn endpoint_set_stalled(&mut self, _ep_addr: EndpointAddress, _stalled: bool) {
todo!();
}
fn endpoint_is_stalled(&mut self, _ep_addr: EndpointAddress) -> bool {
todo!();
}
fn endpoint_set_enabled(&mut self, ep_addr: EndpointAddress, enabled: bool) {
trace!("set_enabled {:?} {}", ep_addr, enabled);
if ep_addr.index() == 0 {
return;
}
let n = ep_addr.index();
match ep_addr.direction() {
UsbDirection::In => unsafe {
T::dpram().ep_in_control(n - 1).modify(|w| w.set_enable(enabled));
T::dpram().ep_in_buffer_control(ep_addr.index()).write(|w| {
w.set_pid(0, true); // first packet is DATA0, but PID is flipped before
});
EP_IN_WAKERS[n].wake();
},
UsbDirection::Out => unsafe {
T::dpram().ep_out_control(n - 1).modify(|w| w.set_enable(enabled));
T::dpram().ep_out_buffer_control(ep_addr.index()).write(|w| {
w.set_pid(0, false);
w.set_length(0, self.ep_out[n].max_packet_size);
});
cortex_m::asm::delay(12);
T::dpram().ep_out_buffer_control(ep_addr.index()).write(|w| {
w.set_pid(0, false);
w.set_length(0, self.ep_out[n].max_packet_size);
w.set_available(0, true);
});
EP_OUT_WAKERS[n].wake();
},
}
}
type EnableFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn enable(&mut self) -> Self::EnableFuture<'_> {
async move {}
}
type DisableFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn disable(&mut self) -> Self::DisableFuture<'_> {
async move {}
}
type RemoteWakeupFuture<'a> = impl Future<Output = Result<(), Unsupported>> + 'a where Self: 'a;
fn remote_wakeup(&mut self) -> Self::RemoteWakeupFuture<'_> {
async move { Err(Unsupported) }
}
}
trait Dir {
fn dir() -> UsbDirection;
fn waker(i: usize) -> &'static AtomicWaker;
}
pub enum In {}
impl Dir for In {
fn dir() -> UsbDirection {
UsbDirection::In
}
#[inline]
fn waker(i: usize) -> &'static AtomicWaker {
&EP_IN_WAKERS[i]
}
}
pub enum Out {}
impl Dir for Out {
fn dir() -> UsbDirection {
UsbDirection::Out
}
#[inline]
fn waker(i: usize) -> &'static AtomicWaker {
&EP_OUT_WAKERS[i]
}
}
pub struct Endpoint<'d, T: Instance, D> {
_phantom: PhantomData<(&'d mut T, D)>,
info: EndpointInfo,
buf: EndpointBuffer<T>,
}
impl<'d, T: Instance> driver::Endpoint for Endpoint<'d, T, In> {
fn info(&self) -> &EndpointInfo {
&self.info
}
type WaitEnabledFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn wait_enabled(&mut self) -> Self::WaitEnabledFuture<'_> {
async move {
trace!("wait_enabled IN WAITING");
let index = self.info.addr.index();
poll_fn(|cx| {
EP_OUT_WAKERS[index].register(cx.waker());
let val = unsafe { T::dpram().ep_in_control(self.info.addr.index() - 1).read() };
if val.enable() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
trace!("wait_enabled IN OK");
}
}
}
impl<'d, T: Instance> driver::Endpoint for Endpoint<'d, T, Out> {
fn info(&self) -> &EndpointInfo {
&self.info
}
type WaitEnabledFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn wait_enabled(&mut self) -> Self::WaitEnabledFuture<'_> {
async move {
trace!("wait_enabled OUT WAITING");
let index = self.info.addr.index();
poll_fn(|cx| {
EP_OUT_WAKERS[index].register(cx.waker());
let val = unsafe { T::dpram().ep_out_control(self.info.addr.index() - 1).read() };
if val.enable() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
trace!("wait_enabled OUT OK");
}
}
}
impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> {
type ReadFuture<'a> = impl Future<Output = Result<usize, EndpointError>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
trace!("READ WAITING, buf.len() = {}", buf.len());
let index = self.info.addr.index();
let val = poll_fn(|cx| unsafe {
EP_OUT_WAKERS[index].register(cx.waker());
let val = T::dpram().ep_out_buffer_control(index).read();
if val.available(0) {
Poll::Pending
} else {
Poll::Ready(val)
}
})
.await;
let rx_len = val.length(0) as usize;
if rx_len > buf.len() {
return Err(EndpointError::BufferOverflow);
}
self.buf.read(&mut buf[..rx_len]);
trace!("READ OK, rx_len = {}", rx_len);
unsafe {
let pid = !val.pid(0);
T::dpram().ep_out_buffer_control(index).write(|w| {
w.set_pid(0, pid);
w.set_length(0, self.info.max_packet_size);
});
cortex_m::asm::delay(12);
T::dpram().ep_out_buffer_control(index).write(|w| {
w.set_pid(0, pid);
w.set_length(0, self.info.max_packet_size);
w.set_available(0, true);
});
}
Ok(rx_len)
}
}
}
impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
type WriteFuture<'a> = impl Future<Output = Result<(), EndpointError>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
if buf.len() > self.info.max_packet_size as usize {
return Err(EndpointError::BufferOverflow);
}
trace!("WRITE WAITING");
let index = self.info.addr.index();
let val = poll_fn(|cx| unsafe {
EP_IN_WAKERS[index].register(cx.waker());
let val = T::dpram().ep_in_buffer_control(index).read();
if val.available(0) {
Poll::Pending
} else {
Poll::Ready(val)
}
})
.await;
self.buf.write(buf);
unsafe {
let pid = !val.pid(0);
T::dpram().ep_in_buffer_control(index).write(|w| {
w.set_pid(0, pid);
w.set_length(0, buf.len() as _);
w.set_full(0, true);
});
cortex_m::asm::delay(12);
T::dpram().ep_in_buffer_control(index).write(|w| {
w.set_pid(0, pid);
w.set_length(0, buf.len() as _);
w.set_full(0, true);
w.set_available(0, true);
});
}
trace!("WRITE OK");
Ok(())
}
}
}
pub struct ControlPipe<'d, T: Instance> {
_phantom: PhantomData<&'d mut T>,
max_packet_size: u16,
}
impl<'d, T: Instance> driver::ControlPipe for ControlPipe<'d, T> {
type SetupFuture<'a> = impl Future<Output = [u8;8]> + 'a where Self: 'a;
type DataOutFuture<'a> = impl Future<Output = Result<usize, EndpointError>> + 'a where Self: 'a;
type DataInFuture<'a> = impl Future<Output = Result<(), EndpointError>> + 'a where Self: 'a;
type AcceptFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
type RejectFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn max_packet_size(&self) -> usize {
64
}
fn setup<'a>(&'a mut self) -> Self::SetupFuture<'a> {
async move {
loop {
trace!("SETUP read waiting");
let regs = T::regs();
unsafe { regs.inte().write_set(|w| w.set_setup_req(true)) };
poll_fn(|cx| unsafe {
EP_OUT_WAKERS[0].register(cx.waker());
let regs = T::regs();
if regs.sie_status().read().setup_rec() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
let mut buf = [0; 8];
EndpointBuffer::<T>::new(0, 8).read(&mut buf);
let regs = T::regs();
unsafe {
regs.sie_status().write(|w| w.set_setup_rec(true));
// set PID to 0, so (after toggling) first DATA is PID 1
T::dpram().ep_in_buffer_control(0).write(|w| w.set_pid(0, false));
T::dpram().ep_out_buffer_control(0).write(|w| w.set_pid(0, false));
}
trace!("SETUP read ok");
return buf;
}
}
}
fn data_out<'a>(&'a mut self, buf: &'a mut [u8], _first: bool, _last: bool) -> Self::DataOutFuture<'a> {
async move {
unsafe {
let bufcontrol = T::dpram().ep_out_buffer_control(0);
let pid = !bufcontrol.read().pid(0);
bufcontrol.write(|w| {
w.set_length(0, self.max_packet_size);
w.set_pid(0, pid);
});
cortex_m::asm::delay(12);
bufcontrol.write(|w| {
w.set_length(0, self.max_packet_size);
w.set_pid(0, pid);
w.set_available(0, true);
});
}
trace!("control: data_out len={} first={} last={}", buf.len(), _first, _last);
let val = poll_fn(|cx| unsafe {
EP_OUT_WAKERS[0].register(cx.waker());
let val = T::dpram().ep_out_buffer_control(0).read();
if val.available(0) {
Poll::Pending
} else {
Poll::Ready(val)
}
})
.await;
let rx_len = val.length(0) as _;
trace!("control data_out DONE, rx_len = {}", rx_len);
if rx_len > buf.len() {
return Err(EndpointError::BufferOverflow);
}
EndpointBuffer::<T>::new(0x100, 64).read(&mut buf[..rx_len]);
Ok(rx_len)
}
}
fn data_in<'a>(&'a mut self, buf: &'a [u8], _first: bool, _last: bool) -> Self::DataInFuture<'a> {
async move {
trace!("control: data_in len={} first={} last={}", buf.len(), _first, _last);
if buf.len() > 64 {
return Err(EndpointError::BufferOverflow);
}
EndpointBuffer::<T>::new(0x100, 64).write(buf);
unsafe {
let bufcontrol = T::dpram().ep_in_buffer_control(0);
let pid = !bufcontrol.read().pid(0);
bufcontrol.write(|w| {
w.set_length(0, buf.len() as _);
w.set_pid(0, pid);
w.set_full(0, true);
});
cortex_m::asm::delay(12);
bufcontrol.write(|w| {
w.set_length(0, buf.len() as _);
w.set_pid(0, pid);
w.set_full(0, true);
w.set_available(0, true);
});
}
poll_fn(|cx| unsafe {
EP_IN_WAKERS[0].register(cx.waker());
let bufcontrol = T::dpram().ep_in_buffer_control(0);
if bufcontrol.read().available(0) {
Poll::Pending
} else {
Poll::Ready(())
}
})
.await;
trace!("control: data_in DONE");
if _last {
// prepare status phase right away.
unsafe {
let bufcontrol = T::dpram().ep_out_buffer_control(0);
bufcontrol.write(|w| {
w.set_length(0, 0);
w.set_pid(0, true);
});
cortex_m::asm::delay(12);
bufcontrol.write(|w| {
w.set_length(0, 0);
w.set_pid(0, true);
w.set_available(0, true);
});
}
}
Ok(())
}
}
fn accept<'a>(&'a mut self) -> Self::AcceptFuture<'a> {
async move {
trace!("control: accept");
unsafe {
let bufcontrol = T::dpram().ep_in_buffer_control(0);
bufcontrol.write(|w| {
w.set_length(0, 0);
w.set_pid(0, true);
w.set_full(0, true);
});
cortex_m::asm::delay(12);
bufcontrol.write(|w| {
w.set_length(0, 0);
w.set_pid(0, true);
w.set_full(0, true);
w.set_available(0, true);
});
}
}
}
fn reject<'a>(&'a mut self) -> Self::RejectFuture<'a> {
async move {
trace!("control: reject");
let regs = T::regs();
unsafe {
regs.ep_stall_arm().write_set(|w| {
w.set_ep0_in(true);
w.set_ep0_out(true);
});
T::dpram().ep_out_buffer_control(0).write(|w| w.set_stall(true));
T::dpram().ep_in_buffer_control(0).write(|w| w.set_stall(true));
}
}
}
}

View File

@ -9,6 +9,10 @@ embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["de
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] } embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-rp = { version = "0.1.0", path = "../../embassy-rp", features = ["defmt", "unstable-traits", "nightly", "unstable-pac"] } embassy-rp = { version = "0.1.0", path = "../../embassy-rp", features = ["defmt", "unstable-traits", "nightly", "unstable-pac"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }
embassy-usb-serial = { version = "0.1.0", path = "../../embassy-usb-serial", features = ["defmt"] }
embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet", "pool-16"] }
embassy-usb-ncm = { version = "0.1.0", path = "../../embassy-usb-ncm", features = ["defmt"] }
defmt = "0.3" defmt = "0.3"
defmt-rtt = "0.3" defmt-rtt = "0.3"
@ -25,3 +29,5 @@ byte-slice-cast = { version = "1.2.0", default-features = false }
embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.8" } embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.8" }
embedded-hal-async = { version = "0.1.0-alpha.1" } embedded-hal-async = { version = "0.1.0-alpha.1" }
embedded-io = { version = "0.3.0", features = ["async", "defmt"] }
static_cell = "1.0.0"

View File

@ -0,0 +1,264 @@
#![no_std]
#![no_main]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
use core::sync::atomic::{AtomicBool, Ordering};
use core::task::Waker;
use defmt::*;
use embassy_executor::Spawner;
use embassy_net::tcp::TcpSocket;
use embassy_net::{PacketBox, PacketBoxExt, PacketBuf, Stack, StackResources};
use embassy_rp::usb::Driver;
use embassy_rp::{interrupt, peripherals};
use embassy_sync::blocking_mutex::raw::ThreadModeRawMutex;
use embassy_sync::channel::Channel;
use embassy_usb::{Builder, Config, UsbDevice};
use embassy_usb_ncm::{CdcNcmClass, Receiver, Sender, State};
use embedded_io::asynch::{Read, Write};
use static_cell::StaticCell;
use {defmt_rtt as _, panic_probe as _};
type MyDriver = Driver<'static, peripherals::USB>;
macro_rules! singleton {
($val:expr) => {{
type T = impl Sized;
static STATIC_CELL: StaticCell<T> = StaticCell::new();
STATIC_CELL.init_with(move || $val)
}};
}
#[embassy_executor::task]
async fn usb_task(mut device: UsbDevice<'static, MyDriver>) -> ! {
device.run().await
}
#[embassy_executor::task]
async fn usb_ncm_rx_task(mut class: Receiver<'static, MyDriver>) {
loop {
warn!("WAITING for connection");
LINK_UP.store(false, Ordering::Relaxed);
class.wait_connection().await.unwrap();
warn!("Connected");
LINK_UP.store(true, Ordering::Relaxed);
loop {
let mut p = unwrap!(PacketBox::new(embassy_net::Packet::new()));
let n = match class.read_packet(&mut p[..]).await {
Ok(n) => n,
Err(e) => {
warn!("error reading packet: {:?}", e);
break;
}
};
let buf = p.slice(0..n);
if RX_CHANNEL.try_send(buf).is_err() {
warn!("Failed pushing rx'd packet to channel.");
}
}
}
}
#[embassy_executor::task]
async fn usb_ncm_tx_task(mut class: Sender<'static, MyDriver>) {
loop {
let pkt = TX_CHANNEL.recv().await;
if let Err(e) = class.write_packet(&pkt[..]).await {
warn!("Failed to TX packet: {:?}", e);
}
}
}
#[embassy_executor::task]
async fn net_task(stack: &'static Stack<Device>) -> ! {
stack.run().await
}
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default());
// Create the driver, from the HAL.
let irq = interrupt::take!(USBCTRL_IRQ);
let driver = Driver::new(p.USB, irq);
// Create embassy-usb Config
let mut config = Config::new(0xc0de, 0xcafe);
config.manufacturer = Some("Embassy");
config.product = Some("USB-Ethernet example");
config.serial_number = Some("12345678");
config.max_power = 100;
config.max_packet_size_0 = 64;
// Required for Windows support.
config.composite_with_iads = true;
config.device_class = 0xEF;
config.device_sub_class = 0x02;
config.device_protocol = 0x01;
struct Resources {
device_descriptor: [u8; 256],
config_descriptor: [u8; 256],
bos_descriptor: [u8; 256],
control_buf: [u8; 128],
serial_state: State<'static>,
}
let res: &mut Resources = singleton!(Resources {
device_descriptor: [0; 256],
config_descriptor: [0; 256],
bos_descriptor: [0; 256],
control_buf: [0; 128],
serial_state: State::new(),
});
// Create embassy-usb DeviceBuilder using the driver and config.
let mut builder = Builder::new(
driver,
config,
&mut res.device_descriptor,
&mut res.config_descriptor,
&mut res.bos_descriptor,
&mut res.control_buf,
None,
);
// WARNINGS for Android ethernet tethering:
// - On Pixel 4a, it refused to work on Android 11, worked on Android 12.
// - if the host's MAC address has the "locally-administered" bit set (bit 1 of first byte),
// it doesn't work! The "Ethernet tethering" option in settings doesn't get enabled.
// This is due to regex spaghetti: https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-mainline-12.0.0_r84/core/res/res/values/config.xml#417
// and this nonsense in the linux kernel: https://github.com/torvalds/linux/blob/c00c5e1d157bec0ef0b0b59aa5482eb8dc7e8e49/drivers/net/usb/usbnet.c#L1751-L1757
// Our MAC addr.
let our_mac_addr = [0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC];
// Host's MAC addr. This is the MAC the host "thinks" its USB-to-ethernet adapter has.
let host_mac_addr = [0x88, 0x88, 0x88, 0x88, 0x88, 0x88];
// Create classes on the builder.
let class = CdcNcmClass::new(&mut builder, &mut res.serial_state, host_mac_addr, 64);
// Build the builder.
let usb = builder.build();
unwrap!(spawner.spawn(usb_task(usb)));
let (tx, rx) = class.split();
unwrap!(spawner.spawn(usb_ncm_rx_task(rx)));
unwrap!(spawner.spawn(usb_ncm_tx_task(tx)));
let config = embassy_net::ConfigStrategy::Dhcp;
//let config = embassy_net::ConfigStrategy::Static(embassy_net::Config {
// address: Ipv4Cidr::new(Ipv4Address::new(10, 42, 0, 61), 24),
// dns_servers: Vec::new(),
// gateway: Some(Ipv4Address::new(10, 42, 0, 1)),
//});
// Generate random seed
let seed = 1234; // guaranteed random, chosen by a fair dice roll
// Init network stack
let device = Device { mac_addr: our_mac_addr };
let stack = &*singleton!(Stack::new(
device,
config,
singleton!(StackResources::<1, 2, 8>::new()),
seed
));
unwrap!(spawner.spawn(net_task(stack)));
// And now we can use it!
let mut rx_buffer = [0; 4096];
let mut tx_buffer = [0; 4096];
let mut buf = [0; 4096];
loop {
let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer);
socket.set_timeout(Some(embassy_net::SmolDuration::from_secs(10)));
info!("Listening on TCP:1234...");
if let Err(e) = socket.accept(1234).await {
warn!("accept error: {:?}", e);
continue;
}
info!("Received connection from {:?}", socket.remote_endpoint());
loop {
let n = match socket.read(&mut buf).await {
Ok(0) => {
warn!("read EOF");
break;
}
Ok(n) => n,
Err(e) => {
warn!("read error: {:?}", e);
break;
}
};
info!("rxd {:02x}", &buf[..n]);
match socket.write_all(&buf[..n]).await {
Ok(()) => {}
Err(e) => {
warn!("write error: {:?}", e);
break;
}
};
}
}
}
static TX_CHANNEL: Channel<ThreadModeRawMutex, PacketBuf, 8> = Channel::new();
static RX_CHANNEL: Channel<ThreadModeRawMutex, PacketBuf, 8> = Channel::new();
static LINK_UP: AtomicBool = AtomicBool::new(false);
struct Device {
mac_addr: [u8; 6],
}
impl embassy_net::Device for Device {
fn register_waker(&mut self, waker: &Waker) {
// loopy loopy wakey wakey
waker.wake_by_ref()
}
fn link_state(&mut self) -> embassy_net::LinkState {
match LINK_UP.load(Ordering::Relaxed) {
true => embassy_net::LinkState::Up,
false => embassy_net::LinkState::Down,
}
}
fn capabilities(&self) -> embassy_net::DeviceCapabilities {
let mut caps = embassy_net::DeviceCapabilities::default();
caps.max_transmission_unit = 1514; // 1500 IP + 14 ethernet header
caps.medium = embassy_net::Medium::Ethernet;
caps
}
fn is_transmit_ready(&mut self) -> bool {
true
}
fn transmit(&mut self, pkt: PacketBuf) {
if TX_CHANNEL.try_send(pkt).is_err() {
warn!("TX failed")
}
}
fn receive<'a>(&mut self) -> Option<PacketBuf> {
RX_CHANNEL.try_recv().ok()
}
fn ethernet_address(&self) -> [u8; 6] {
self.mac_addr
}
}

View File

@ -0,0 +1,103 @@
#![no_std]
#![no_main]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
use defmt::{info, panic};
use embassy_executor::Spawner;
use embassy_rp::interrupt;
use embassy_rp::usb::{Driver, Instance};
use embassy_usb::driver::EndpointError;
use embassy_usb::{Builder, Config};
use embassy_usb_serial::{CdcAcmClass, State};
use futures::future::join;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello there!");
let p = embassy_rp::init(Default::default());
// Create the driver, from the HAL.
let irq = interrupt::take!(USBCTRL_IRQ);
let driver = Driver::new(p.USB, irq);
// Create embassy-usb Config
let mut config = Config::new(0xc0de, 0xcafe);
config.manufacturer = Some("Embassy");
config.product = Some("USB-serial example");
config.serial_number = Some("12345678");
config.max_power = 100;
config.max_packet_size_0 = 64;
// Required for windows compatiblity.
// https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.9.1/kconfig/CONFIG_CDC_ACM_IAD.html#help
config.device_class = 0xEF;
config.device_sub_class = 0x02;
config.device_protocol = 0x01;
config.composite_with_iads = true;
// Create embassy-usb DeviceBuilder using the driver and config.
// It needs some buffers for building the descriptors.
let mut device_descriptor = [0; 256];
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 256];
let mut control_buf = [0; 64];
let mut state = State::new();
let mut builder = Builder::new(
driver,
config,
&mut device_descriptor,
&mut config_descriptor,
&mut bos_descriptor,
&mut control_buf,
None,
);
// Create classes on the builder.
let mut class = CdcAcmClass::new(&mut builder, &mut state, 64);
// Build the builder.
let mut usb = builder.build();
// Run the USB device.
let usb_fut = usb.run();
// Do stuff with the class!
let echo_fut = async {
loop {
class.wait_connection().await;
info!("Connected");
let _ = echo(&mut class).await;
info!("Disconnected");
}
};
// Run everything concurrently.
// If we had made everything `'static` above instead, we could do this using separate tasks instead.
join(usb_fut, echo_fut).await;
}
struct Disconnected {}
impl From<EndpointError> for Disconnected {
fn from(val: EndpointError) -> Self {
match val {
EndpointError::BufferOverflow => panic!("Buffer overflow"),
EndpointError::Disabled => Disconnected {},
}
}
}
async fn echo<'d, T: Instance + 'd>(class: &mut CdcAcmClass<'d, Driver<'d, T>>) -> Result<(), Disconnected> {
let mut buf = [0; 64];
loop {
let n = class.read_packet(&mut buf).await?;
let data = &buf[..n];
info!("data: {:x}", data);
class.write_packet(data).await?;
}
}