Run rustfmt.

This commit is contained in:
Dario Nieuwenhuis
2022-06-12 22:15:44 +02:00
parent 6199bdea71
commit a8703b7598
340 changed files with 1326 additions and 3020 deletions

View File

@ -1,25 +1,20 @@
//! A radio driver integration for the radio found on STM32WL family devices.
use core::future::Future;
use core::mem::MaybeUninit;
use embassy::channel::signal::Signal;
use embassy_hal_common::unborrow;
use embassy_stm32::interrupt::InterruptExt;
use embassy_stm32::dma::NoDma;
use embassy_stm32::gpio::{AnyPin, Output};
use embassy_stm32::interrupt::{InterruptExt, SUBGHZ_RADIO};
use embassy_stm32::subghz::{
CalibrateImage, CfgIrq, CodingRate, HeaderType, Irq, LoRaBandwidth, LoRaModParams, LoRaPacketParams, LoRaSyncWord,
Ocp, PaConfig, PaSel, PacketType, RampTime, RegMode, RfFreq, SpreadingFactor as SF, StandbyClk, Status, SubGhz,
TcxoMode, TcxoTrim, Timeout, TxParams,
};
use embassy_stm32::Unborrow;
use embassy_stm32::{
dma::NoDma,
gpio::{AnyPin, Output},
interrupt::SUBGHZ_RADIO,
subghz::{
CalibrateImage, CfgIrq, CodingRate, HeaderType, Irq, LoRaBandwidth, LoRaModParams,
LoRaPacketParams, LoRaSyncWord, Ocp, PaConfig, PaSel, PacketType, RampTime, RegMode,
RfFreq, SpreadingFactor as SF, StandbyClk, Status, SubGhz, TcxoMode, TcxoTrim, Timeout,
TxParams,
},
};
use lorawan_device::async_device::{
radio::{Bandwidth, PhyRxTx, RfConfig, RxQuality, SpreadingFactor, TxConfig},
Timings,
};
use lorawan_device::async_device::radio::{Bandwidth, PhyRxTx, RfConfig, RxQuality, SpreadingFactor, TxConfig};
use lorawan_device::async_device::Timings;
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -98,9 +93,7 @@ impl<'a> StateInner<'a> {
self.radio.set_standby(StandbyClk::Rc)?;
let tcxo_mode = TcxoMode::new()
.set_txco_trim(TcxoTrim::Volts1pt7)
.set_timeout(Timeout::from_duration_sat(
core::time::Duration::from_millis(40),
));
.set_timeout(Timeout::from_duration_sat(core::time::Duration::from_millis(40)));
self.radio.set_tcxo_mode(&tcxo_mode)?;
self.radio.set_regulator_mode(RegMode::Ldo)?;
@ -109,21 +102,14 @@ impl<'a> StateInner<'a> {
self.radio.set_buffer_base_address(0, 0)?;
self.radio.set_pa_config(
&PaConfig::new()
.set_pa_duty_cycle(0x1)
.set_hp_max(0x0)
.set_pa(PaSel::Lp),
)?;
self.radio
.set_pa_config(&PaConfig::new().set_pa_duty_cycle(0x1).set_hp_max(0x0).set_pa(PaSel::Lp))?;
self.radio.set_pa_ocp(Ocp::Max140m)?;
// let tx_params = TxParams::LP_14.set_ramp_time(RampTime::Micros40);
self.radio.set_tx_params(
&TxParams::new()
.set_ramp_time(RampTime::Micros40)
.set_power(0x0A),
)?;
self.radio
.set_tx_params(&TxParams::new().set_ramp_time(RampTime::Micros40).set_power(0x0A))?;
self.radio.set_packet_type(PacketType::LoRa)?;
self.radio.set_lora_sync_word(LoRaSyncWord::Public)?;
@ -193,19 +179,14 @@ impl<'a> StateInner<'a> {
/// Perform a radio receive operation with the radio config and receive buffer. The receive buffer must
/// be able to hold a single LoRaWAN packet.
async fn do_rx(
&mut self,
config: RfConfig,
buf: &mut [u8],
) -> Result<(usize, RxQuality), RadioError> {
async fn do_rx(&mut self, config: RfConfig, buf: &mut [u8]) -> Result<(usize, RxQuality), RadioError> {
assert!(buf.len() >= 255);
trace!("RX START");
// trace!("Starting RX: {}", config);
self.switch.set_rx();
self.configure()?;
self.radio
.set_rf_frequency(&RfFreq::from_frequency(config.frequency))?;
self.radio.set_rf_frequency(&RfFreq::from_frequency(config.frequency))?;
let mod_params = LoRaModParams::new()
.set_sf(convert_spreading_factor(config.spreading_factor))
@ -315,16 +296,8 @@ pub struct RadioSwitch<'a> {
}
impl<'a> RadioSwitch<'a> {
pub fn new(
ctrl1: Output<'a, AnyPin>,
ctrl2: Output<'a, AnyPin>,
ctrl3: Output<'a, AnyPin>,
) -> Self {
Self {
ctrl1,
ctrl2,
ctrl3,
}
pub fn new(ctrl1: Output<'a, AnyPin>, ctrl2: Output<'a, AnyPin>, ctrl3: Output<'a, AnyPin>) -> Self {
Self { ctrl1, ctrl2, ctrl3 }
}
pub(crate) fn set_rx(&mut self) {

View File

@ -1,11 +1,10 @@
use core::future::Future;
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::*;
use lorawan_device::async_device::{
radio::{Bandwidth, PhyRxTx, RfConfig, RxQuality, SpreadingFactor, TxConfig},
Timings,
};
use lorawan_device::async_device::radio::{Bandwidth, PhyRxTx, RfConfig, RxQuality, SpreadingFactor, TxConfig};
use lorawan_device::async_device::Timings;
mod sx127x_lora;
use sx127x_lora::{Error as RadioError, LoRa, RadioMode, IRQ};

View File

@ -11,9 +11,8 @@ use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::spi::SpiBus;
mod register;
use self::register::PaConfig;
use self::register::Register;
pub use self::register::IRQ;
use self::register::{PaConfig, Register};
/// Provides high-level access to Semtech SX1276/77/78/79 based boards connected to a Raspberry Pi
pub struct LoRa<SPI, CS, RESET> {
@ -72,15 +71,11 @@ where
let version = self.read_register(Register::RegVersion.addr()).await?;
if version == VERSION_CHECK {
self.set_mode(RadioMode::Sleep).await?;
self.write_register(Register::RegFifoTxBaseAddr.addr(), 0)
.await?;
self.write_register(Register::RegFifoRxBaseAddr.addr(), 0)
.await?;
self.write_register(Register::RegFifoTxBaseAddr.addr(), 0).await?;
self.write_register(Register::RegFifoRxBaseAddr.addr(), 0).await?;
let lna = self.read_register(Register::RegLna.addr()).await?;
self.write_register(Register::RegLna.addr(), lna | 0x03)
.await?;
self.write_register(Register::RegModemConfig3.addr(), 0x04)
.await?;
self.write_register(Register::RegLna.addr(), lna | 0x03).await?;
self.write_register(Register::RegModemConfig3.addr(), 0x04).await?;
self.set_tcxo(true).await?;
self.set_mode(RadioMode::Stdby).await?;
self.cs.set_high().map_err(CS)?;
@ -106,10 +101,7 @@ where
.await
}
pub async fn transmit_start(
&mut self,
buffer: &[u8],
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn transmit_start(&mut self, buffer: &[u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
assert!(buffer.len() < 255);
if self.transmitting().await? {
//trace!("ALREADY TRANSMNITTING");
@ -123,10 +115,8 @@ where
}
self.write_register(Register::RegIrqFlags.addr(), 0).await?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0)
.await?;
self.write_register(Register::RegPayloadLength.addr(), 0)
.await?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
self.write_register(Register::RegPayloadLength.addr(), 0).await?;
for byte in buffer.iter() {
self.write_register(Register::RegFifo.addr(), *byte).await?;
}
@ -138,10 +128,7 @@ where
}
pub async fn packet_ready(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
Ok(self
.read_register(Register::RegIrqFlags.addr())
.await?
.get_bit(6))
Ok(self.read_register(Register::RegIrqFlags.addr()).await?.get_bit(6))
}
pub async fn irq_flags_mask(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
@ -159,37 +146,26 @@ where
/// Returns the contents of the fifo as a fixed 255 u8 array. This should only be called is there is a
/// new packet ready to be read.
pub async fn read_packet(
&mut self,
buffer: &mut [u8],
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn read_packet(&mut self, buffer: &mut [u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.clear_irq().await?;
let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
assert!(size as usize <= buffer.len());
let fifo_addr = self
.read_register(Register::RegFifoRxCurrentAddr.addr())
.await?;
self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr)
.await?;
let fifo_addr = self.read_register(Register::RegFifoRxCurrentAddr.addr()).await?;
self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr).await?;
for i in 0..size {
let byte = self.read_register(Register::RegFifo.addr()).await?;
buffer[i as usize] = byte;
}
self.write_register(Register::RegFifoAddrPtr.addr(), 0)
.await?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
Ok(())
}
/// Returns true if the radio is currently transmitting a packet.
pub async fn transmitting(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
if (self.read_register(Register::RegOpMode.addr()).await?) & RadioMode::Tx.addr()
== RadioMode::Tx.addr()
{
if (self.read_register(Register::RegOpMode.addr()).await?) & RadioMode::Tx.addr() == RadioMode::Tx.addr() {
Ok(true)
} else {
if (self.read_register(Register::RegIrqFlags.addr()).await? & IRQ::IrqTxDoneMask.addr())
== 1
{
if (self.read_register(Register::RegIrqFlags.addr()).await? & IRQ::IrqTxDoneMask.addr()) == 1 {
self.write_register(Register::RegIrqFlags.addr(), IRQ::IrqTxDoneMask.addr())
.await?;
}
@ -200,8 +176,7 @@ where
/// Clears the radio's IRQ registers.
pub async fn clear_irq(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let irq_flags = self.read_register(Register::RegIrqFlags.addr()).await?;
self.write_register(Register::RegIrqFlags.addr(), 0xFF)
.await?;
self.write_register(Register::RegIrqFlags.addr(), 0xFF).await?;
Ok(irq_flags)
}
@ -243,11 +218,8 @@ where
self.set_ocp(100).await?;
}
level -= 2;
self.write_register(
Register::RegPaConfig.addr(),
PaConfig::PaBoost.addr() | level as u8,
)
.await
self.write_register(Register::RegPaConfig.addr(), PaConfig::PaBoost.addr() | level as u8)
.await
}
}
@ -269,10 +241,7 @@ where
}
/// Sets the state of the radio. Default mode after initiation is `Standby`.
pub async fn set_mode(
&mut self,
mode: RadioMode,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_mode(&mut self, mode: RadioMode) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if self.explicit_header {
self.set_explicit_header_mode().await?;
} else {
@ -289,25 +258,18 @@ where
}
pub async fn reset_payload_length(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPayloadLength.addr(), 0xFF)
.await
self.write_register(Register::RegPayloadLength.addr(), 0xFF).await
}
/// Sets the frequency of the radio. Values are in megahertz.
/// I.E. 915 MHz must be used for North America. Check regulation for your area.
pub async fn set_frequency(
&mut self,
freq: u32,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_frequency(&mut self, freq: u32) -> Result<(), Error<E, CS::Error, RESET::Error>> {
const FREQ_STEP: f64 = 61.03515625;
// calculate register values
let frf = (freq as f64 / FREQ_STEP) as u32;
// write registers
self.write_register(
Register::RegFrfMsb.addr(),
((frf & 0x00FF_0000) >> 16) as u8,
)
.await?;
self.write_register(Register::RegFrfMsb.addr(), ((frf & 0x00FF_0000) >> 16) as u8)
.await?;
self.write_register(Register::RegFrfMid.addr(), ((frf & 0x0000_FF00) >> 8) as u8)
.await?;
self.write_register(Register::RegFrfLsb.addr(), (frf & 0x0000_00FF) as u8)
@ -335,10 +297,7 @@ where
/// Sets the spreading factor of the radio. Supported values are between 6 and 12.
/// If a spreading factor of 6 is set, implicit header mode must be used to transmit
/// and receive packets. Default value is `7`.
pub async fn set_spreading_factor(
&mut self,
mut sf: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_spreading_factor(&mut self, mut sf: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if sf < 6 {
sf = 6;
} else if sf > 12 {
@ -346,13 +305,11 @@ where
}
if sf == 6 {
self.write_register(Register::RegDetectionOptimize.addr(), 0xc5)
.await?;
self.write_register(Register::RegDetectionOptimize.addr(), 0xc5).await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0c)
.await?;
} else {
self.write_register(Register::RegDetectionOptimize.addr(), 0xc3)
.await?;
self.write_register(Register::RegDetectionOptimize.addr(), 0xc3).await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0a)
.await?;
}
@ -364,16 +321,12 @@ where
.await?;
self.set_ldo_flag().await?;
self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05)
.await?;
self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05).await?;
Ok(())
}
pub async fn set_tcxo(
&mut self,
external: bool,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_tcxo(&mut self, external: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if external {
self.write_register(Register::RegTcxo.addr(), 0x10).await
} else {
@ -384,10 +337,7 @@ where
/// Sets the signal bandwidth of the radio. Supported values are: `7800 Hz`, `10400 Hz`,
/// `15600 Hz`, `20800 Hz`, `31250 Hz`,`41700 Hz` ,`62500 Hz`,`125000 Hz` and `250000 Hz`
/// Default value is `125000 Hz`
pub async fn set_signal_bandwidth(
&mut self,
sbw: i64,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_signal_bandwidth(&mut self, sbw: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let bw: i64 = match sbw {
7_800 => 0,
10_400 => 1,
@ -413,10 +363,7 @@ where
/// Sets the coding rate of the radio with the numerator fixed at 4. Supported values
/// are between `5` and `8`, these correspond to coding rates of `4/5` and `4/8`.
/// Default value is `5`.
pub async fn set_coding_rate_4(
&mut self,
mut denominator: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_coding_rate_4(&mut self, mut denominator: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if denominator < 5 {
denominator = 5;
} else if denominator > 8 {
@ -424,23 +371,16 @@ where
}
let cr = denominator - 4;
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(
Register::RegModemConfig1.addr(),
(modem_config_1 & 0xf1) | (cr << 1),
)
.await
self.write_register(Register::RegModemConfig1.addr(), (modem_config_1 & 0xf1) | (cr << 1))
.await
}
/// Sets the preamble length of the radio. Values are between 6 and 65535.
/// Default value is `8`.
pub async fn set_preamble_length(
&mut self,
length: i64,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_preamble_length(&mut self, length: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPreambleMsb.addr(), (length >> 8) as u8)
.await?;
self.write_register(Register::RegPreambleLsb.addr(), length as u8)
.await
self.write_register(Register::RegPreambleLsb.addr(), length as u8).await
}
/// Enables are disables the radio's CRC check. Default value is `false`.
@ -456,20 +396,13 @@ where
}
/// Inverts the radio's IQ signals. Default value is `false`.
pub async fn set_invert_iq(
&mut self,
value: bool,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_invert_iq(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if value {
self.write_register(Register::RegInvertiq.addr(), 0x66)
.await?;
self.write_register(Register::RegInvertiq2.addr(), 0x19)
.await
self.write_register(Register::RegInvertiq.addr(), 0x66).await?;
self.write_register(Register::RegInvertiq2.addr(), 0x19).await
} else {
self.write_register(Register::RegInvertiq.addr(), 0x27)
.await?;
self.write_register(Register::RegInvertiq2.addr(), 0x1d)
.await
self.write_register(Register::RegInvertiq.addr(), 0x27).await?;
self.write_register(Register::RegInvertiq2.addr(), 0x1d).await
}
}
@ -504,15 +437,11 @@ where
/// Returns the signal to noise radio of the the last received packet.
pub async fn get_packet_snr(&mut self) -> Result<f64, Error<E, CS::Error, RESET::Error>> {
Ok(f64::from(
self.read_register(Register::RegPktSnrValue.addr()).await?,
))
Ok(f64::from(self.read_register(Register::RegPktSnrValue.addr()).await?))
}
/// Returns the frequency error of the last received packet in Hz.
pub async fn get_packet_frequency_error(
&mut self,
) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
pub async fn get_packet_frequency_error(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let mut freq_error: i32;
freq_error = i32::from(self.read_register(Register::RegFreqErrorMsb.addr()).await? & 0x7);
freq_error <<= 8i64;
@ -537,29 +466,20 @@ where
let mut config_3 = self.read_register(Register::RegModemConfig3.addr()).await?;
config_3.set_bit(3, ldo_on);
//config_3.set_bit(2, true);
self.write_register(Register::RegModemConfig3.addr(), config_3)
.await
self.write_register(Register::RegModemConfig3.addr(), config_3).await
}
async fn read_register(&mut self, reg: u8) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let mut buffer = [reg & 0x7f, 0];
self.cs.set_low().map_err(CS)?;
let _ = self
.spi
.transfer(&mut buffer, &[reg & 0x7f, 0])
.await
.map_err(SPI)?;
let _ = self.spi.transfer(&mut buffer, &[reg & 0x7f, 0]).await.map_err(SPI)?;
self.cs.set_high().map_err(CS)?;
Ok(buffer[1])
}
async fn write_register(
&mut self,
reg: u8,
byte: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
async fn write_register(&mut self, reg: u8, byte: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.cs.set_low().map_err(CS)?;
let buffer = [reg | 0x80, byte];
self.spi.write(&buffer).await.map_err(SPI)?;
@ -576,8 +496,7 @@ where
.set_bit(3, false) //Low freq registers
.set_bits(0..2, 0b011); // Mode
self.write_register(Register::RegOpMode as u8, op_mode)
.await
self.write_register(Register::RegOpMode as u8, op_mode).await
}
pub async fn set_fsk_pa_ramp(
@ -590,8 +509,7 @@ where
.set_bits(5..6, modulation_shaping as u8)
.set_bits(0..3, ramp as u8);
self.write_register(Register::RegPaRamp as u8, pa_ramp)
.await
self.write_register(Register::RegPaRamp as u8, pa_ramp).await
}
pub async fn set_lora_pa_ramp(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {