1142: More rp2040 BufferedUart fixes r=Dirbaio a=timokroeger

* Refactor init code
* Make it possible to drop RX without breaking TX (or vice versa)
* Correctly handle RX buffer full scenario

Co-authored-by: Timo Kröger <timokroeger93@gmail.com>
This commit is contained in:
bors[bot] 2023-01-14 00:07:02 +00:00 committed by GitHub
commit b6c8505697
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 156 additions and 189 deletions

View File

@ -81,6 +81,10 @@ impl RingBuffer {
Writer(self)
}
pub fn len(&self) -> usize {
self.len.load(Ordering::Relaxed)
}
pub fn is_full(&self) -> bool {
let len = self.len.load(Ordering::Relaxed);
let start = self.start.load(Ordering::Relaxed);

View File

@ -7,6 +7,7 @@ use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
use crate::RegExt;
pub struct State {
tx_waker: AtomicWaker,
@ -27,7 +28,8 @@ impl State {
}
pub struct BufferedUart<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartRx<'d, T: Instance> {
@ -38,6 +40,42 @@ pub struct BufferedUartTx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
fn init<'d, T: Instance + 'd>(
irq: PeripheralRef<'d, T::Interrupt>,
tx: Option<PeripheralRef<'d, AnyPin>>,
rx: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) {
super::Uart::<'d, T, Async>::init(tx, rx, rts, cts, config);
let state = T::state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
// From the datasheet:
// "The transmit interrupt is based on a transition through a level, rather
// than on the level itself. When the interrupt and the UART is enabled
// before any data is written to the transmit FIFO the interrupt is not set.
// The interrupt is only set, after written data leaves the single location
// of the transmit FIFO and it becomes empty."
//
// This means we can leave the interrupt enabled the whole time as long as
// we clear it after it happens. The downside is that the we manually have
// to pend the ISR when we want data transmission to start.
let regs = T::regs();
unsafe { regs.uartimsc().write_set(|w| w.set_txim(true)) };
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
@ -48,17 +86,21 @@ impl<'d, T: Instance> BufferedUart<'d, T> {
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx);
Self::new_inner(
into_ref!(irq, tx, rx);
init::<T>(
irq,
tx.map_into(),
rx.map_into(),
Some(tx.map_into()),
Some(rx.map_into()),
None,
None,
tx_buffer,
rx_buffer,
config,
)
);
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn new_with_rtscts(
@ -72,66 +114,25 @@ impl<'d, T: Instance> BufferedUart<'d, T> {
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
Self::new_inner(
into_ref!(irq, tx, rx, cts, rts);
init::<T>(
irq,
tx.map_into(),
rx.map_into(),
Some(tx.map_into()),
Some(rx.map_into()),
Some(rts.map_into()),
Some(cts.map_into()),
tx_buffer,
rx_buffer,
config,
)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut tx: PeripheralRef<'d, AnyPin>,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
let state = T::state();
let regs = T::regs();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
unsafe {
regs.uartimsc().modify(|w| {
w.set_rxim(true);
w.set_rtim(true);
w.set_txim(true);
});
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self { phantom: PhantomData }
}
pub fn split(&mut self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
(
BufferedUartRx { phantom: PhantomData },
BufferedUartTx { phantom: PhantomData },
)
pub fn split(self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
(self.rx, self.tx)
}
}
@ -143,8 +144,9 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(rx);
Self::new_inner(irq, rx.map_into(), None, rx_buffer, config)
into_ref!(irq, rx);
init::<T>(irq, None, Some(rx.map_into()), None, None, &mut [], rx_buffer, config);
Self { phantom: PhantomData }
}
pub fn new_with_rts(
@ -155,43 +157,17 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(rx, rts);
Self::new_inner(irq, rx.map_into(), Some(rts.map_into()), rx_buffer, config)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
into_ref!(irq, rx, rts);
init::<T>(
irq,
None,
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
Some(rx.map_into()),
Some(rts.map_into()),
None,
&mut [],
rx_buffer,
config,
);
let state = T::state();
let regs = T::regs();
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
unsafe {
regs.uartimsc().modify(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self { phantom: PhantomData }
}
@ -209,6 +185,16 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
return Poll::Pending;
}
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
Poll::Ready(Ok(n))
})
}
@ -231,7 +217,17 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
fn consume(amt: usize) {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
rx_reader.pop_done(amt)
rx_reader.pop_done(amt);
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
}
}
@ -243,8 +239,9 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx);
Self::new_inner(irq, tx.map_into(), None, tx_buffer, config)
into_ref!(irq, tx);
init::<T>(irq, Some(tx.map_into()), None, None, None, tx_buffer, &mut [], config);
Self { phantom: PhantomData }
}
pub fn new_with_cts(
@ -255,42 +252,17 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, cts);
Self::new_inner(irq, tx.map_into(), Some(cts.map_into()), tx_buffer, config)
}
fn new_inner(
irq: impl Peripheral<P = T::Interrupt> + 'd,
mut tx: PeripheralRef<'d, AnyPin>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq);
super::Uart::<'d, T, Async>::init(
Some(tx.reborrow()),
into_ref!(irq, tx, cts);
init::<T>(
irq,
Some(tx.map_into()),
None,
None,
cts.as_mut().map(|x| x.reborrow()),
Some(cts.map_into()),
tx_buffer,
&mut [],
config,
);
let state = T::state();
let regs = T::regs();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
unsafe {
regs.uartimsc().modify(|w| {
w.set_txim(true);
});
}
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self { phantom: PhantomData }
}
@ -306,10 +278,13 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
if n == 0 {
state.tx_waker.register(cx.waker());
return Poll::Pending;
} else {
unsafe { T::Interrupt::steal() }.pend();
}
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
unsafe { T::Interrupt::steal() }.pend();
Poll::Ready(Ok(n))
})
}
@ -327,80 +302,69 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
}
}
impl<'d, T: Instance> Drop for BufferedUart<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
state.tx_buf.deinit();
state.rx_buf.deinit();
}
}
}
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
state.tx_buf.deinit();
unsafe {
state.rx_buf.deinit();
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
unsafe {
T::Interrupt::steal().disable();
let state = T::state();
unsafe {
state.tx_buf.deinit();
state.rx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
trace!("on_interrupt");
let r = T::regs();
let s = T::state();
unsafe {
// RX
// Clear TX and error interrupt flags
// RX interrupt flags are cleared by reading from the FIFO.
let ris = r.uartris().read();
// Clear interrupt flags
r.uarticr().write(|w| {
w.set_rxic(true);
w.set_rtic(true);
w.set_txic(ris.txris());
w.set_feic(ris.feris());
w.set_peic(ris.peris());
w.set_beic(ris.beris());
w.set_oeic(ris.oeris());
});
if ris.peris() {
warn!("Parity error");
r.uarticr().write(|w| {
w.set_peic(true);
});
}
trace!("on_interrupt ris={:#X}", ris.0);
// Errors
if ris.feris() {
warn!("Framing error");
r.uarticr().write(|w| {
w.set_feic(true);
});
}
if ris.peris() {
warn!("Parity error");
}
if ris.beris() {
warn!("Break error");
r.uarticr().write(|w| {
w.set_beic(true);
});
}
if ris.oeris() {
warn!("Overrun error");
r.uarticr().write(|w| {
w.set_oeic(true);
});
}
// RX
let mut rx_writer = s.rx_buf.writer();
let rx_buf = rx_writer.push_slice();
let mut n_read = 0;
@ -415,20 +379,17 @@ pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
rx_writer.push_done(n_read);
s.rx_waker.wake();
}
// Disable any further RX interrupts when the buffer becomes full.
if s.rx_buf.is_full() {
r.uartimsc().write_clear(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
// TX
let mut tx_reader = s.tx_buf.reader();
let tx_buf = tx_reader.pop_slice();
if tx_buf.len() == 0 {
// Disable interrupt until we have something to transmit again
r.uartimsc().modify(|w| {
w.set_txim(false);
});
} else {
r.uartimsc().modify(|w| {
w.set_txim(true);
});
let mut n_written = 0;
for tx_byte in tx_buf.iter_mut() {
if r.uartfr().read().txff() {
@ -441,7 +402,9 @@ pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
tx_reader.pop_done(n_written);
s.tx_waker.wake();
}
}
// The TX interrupt only triggers once when the FIFO threshold is
// crossed. No need to disable it when the buffer becomes empty
// as it does re-trigger anymore once we have cleared it.
}
}

View File

@ -29,7 +29,7 @@ async fn main(spawner: Spawner) {
let irq = interrupt::take!(UART0_IRQ);
let tx_buf = &mut singleton!([0u8; 16])[..];
let rx_buf = &mut singleton!([0u8; 16])[..];
let mut uart = BufferedUart::new(uart, irq, tx_pin, rx_pin, tx_buf, rx_buf, Config::default());
let uart = BufferedUart::new(uart, irq, tx_pin, rx_pin, tx_buf, rx_buf, Config::default());
let (rx, mut tx) = uart.split();
unwrap!(spawner.spawn(reader(rx)));