diff --git a/embassy-rp/src/i2c.rs b/embassy-rp/src/i2c.rs index 4a27ee8d..f7e6a6f6 100644 --- a/embassy-rp/src/i2c.rs +++ b/embassy-rp/src/i2c.rs @@ -39,12 +39,15 @@ impl Default for Config { } } +const TX_FIFO_SIZE: u8 = 16; +const RX_FIFO_SIZE: u8 = 16; + pub struct I2c<'d, T: Instance, M: Mode> { phantom: PhantomData<(&'d mut T, M)>, } -impl<'d, T: Instance> I2c<'d, T, Master> { - pub fn new_master( +impl<'d, T: Instance> I2c<'d, T, Blocking> { + pub fn new_blocking( _peri: impl Peripheral

+ 'd, scl: impl Peripheral

> + 'd, sda: impl Peripheral

> + 'd, @@ -60,9 +63,10 @@ impl<'d, T: Instance> I2c<'d, T, Master> { unsafe { p.ic_enable().write(|w| w.set_enable(false)); - // select controller mode & speed + // Select controller mode & speed p.ic_con().write(|w| { - // Always use "fast" mode (<= 400 kHz, works fine for standard mode too) + // Always use "fast" mode (<= 400 kHz, works fine for standard + // mode too) w.set_speed(i2c::vals::Speed::FAST); w.set_master_mode(true); w.set_ic_slave_disable(true); @@ -70,7 +74,8 @@ impl<'d, T: Instance> I2c<'d, T, Master> { w.set_tx_empty_ctrl(true); }); - // Clear FIFO threshold + // Set FIFO watermarks to 1 to make things simpler. This is encoded + // by a register value of 0. p.ic_tx_tl().write(|w| w.set_tx_tl(0)); p.ic_rx_tl().write(|w| w.set_rx_tl(0)); @@ -89,8 +94,9 @@ impl<'d, T: Instance> I2c<'d, T, Master> { // Configure baudrate - // There are some subtleties to I2C timing which we are completely ignoring here - // See: https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69 + // There are some subtleties to I2C timing which we are completely + // ignoring here See: + // https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69 let clk_base = crate::clocks::clk_sys_freq(); let period = (clk_base + config.frequency / 2) / config.frequency; @@ -104,21 +110,21 @@ impl<'d, T: Instance> I2c<'d, T, Master> { assert!(lcnt >= 8); // Per I2C-bus specification a device in standard or fast mode must - // internally provide a hold time of at least 300ns for the SDA signal to - // bridge the undefined region of the falling edge of SCL. A smaller hold - // time of 120ns is used for fast mode plus. + // internally provide a hold time of at least 300ns for the SDA + // signal to bridge the undefined region of the falling edge of SCL. + // A smaller hold time of 120ns is used for fast mode plus. let sda_tx_hold_count = if config.frequency < 1_000_000 { - // sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s / 1e9ns) - // Reduce 300/1e9 to 3/1e7 to avoid numbers that don't fit in uint. - // Add 1 to avoid division truncation. + // sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s / + // 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't + // fit in uint. Add 1 to avoid division truncation. ((clk_base * 3) / 10_000_000) + 1 } else { // fast mode plus requires a clk_base > 32MHz assert!(clk_base >= 32_000_000); - // sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s / 1e9ns) - // Reduce 120/1e9 to 3/25e6 to avoid numbers that don't fit in uint. - // Add 1 to avoid division truncation. + // sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s / + // 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't + // fit in uint. Add 1 to avoid division truncation. ((clk_base * 3) / 25_000_000) + 1 }; assert!(sda_tx_hold_count <= lcnt - 2); @@ -138,6 +144,266 @@ impl<'d, T: Instance> I2c<'d, T, Master> { } } +impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { + /// Number of bytes currently in the RX FIFO + #[inline] + pub fn rx_fifo_used(&self) -> u8 { + unsafe { T::regs().ic_rxflr().read().rxflr() } + } + + /// Remaining capacity in the RX FIFO + #[inline] + pub fn rx_fifo_free(&self) -> u8 { + RX_FIFO_SIZE - self.rx_fifo_used() + } + + /// RX FIFO is empty + #[inline] + pub fn rx_fifo_empty(&self) -> bool { + self.rx_fifo_used() == 0 + } + + /// Number of bytes currently in the TX FIFO + #[inline] + pub fn tx_fifo_used(&self) -> u8 { + unsafe { T::regs().ic_txflr().read().txflr() } + } + + /// Remaining capacity in the TX FIFO + #[inline] + pub fn tx_fifo_free(&self) -> u8 { + TX_FIFO_SIZE - self.tx_fifo_used() + } + + /// TX FIFO is at capacity + #[inline] + pub fn tx_fifo_full(&self) -> bool { + self.tx_fifo_free() == 0 + } + + fn setup(addr: u16) -> Result<(), Error> { + if addr >= 0x80 { + return Err(Error::AddressOutOfRange(addr)); + } + + if i2c_reserved_addr(addr) { + return Err(Error::AddressReserved(addr)); + } + + let p = T::regs(); + unsafe { + p.ic_enable().write(|w| w.set_enable(false)); + p.ic_tar().write(|w| w.set_ic_tar(addr)); + p.ic_enable().write(|w| w.set_enable(true)); + } + Ok(()) + } + + fn read_and_clear_abort_reason(&mut self) -> Option { + let p = T::regs(); + unsafe { + let abort_reason = p.ic_tx_abrt_source().read().0; + if abort_reason != 0 { + // Note clearing the abort flag also clears the reason, and this + // instance of flag is clear-on-read! Note also the + // IC_CLR_TX_ABRT register always reads as 0. + p.ic_clr_tx_abrt().read(); + Some(abort_reason) + } else { + None + } + } + } + + fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { + if buffer.is_empty() { + return Err(Error::InvalidReadBufferLength); + } + + let p = T::regs(); + let lastindex = buffer.len() - 1; + for (i, byte) in buffer.iter_mut().enumerate() { + let first = i == 0; + let last = i == lastindex; + + // NOTE(unsafe) We have &mut self + unsafe { + // wait until there is space in the FIFO to write the next byte + while self.tx_fifo_full() {} + + p.ic_data_cmd().write(|w| { + if restart && first { + w.set_restart(true); + } else { + w.set_restart(false); + } + + if send_stop && last { + w.set_stop(true); + } else { + w.set_stop(false); + } + + w.cmd() + }); + + while p.ic_rxflr().read().rxflr() == 0 { + if let Some(abort_reason) = self.read_and_clear_abort_reason() { + return Err(Error::Abort(abort_reason)); + } + } + + *byte = p.ic_data_cmd().read().dat(); + } + } + + Ok(()) + } + + fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> { + if bytes.is_empty() { + return Err(Error::InvalidWriteBufferLength); + } + + let p = T::regs(); + + for (i, byte) in bytes.iter().enumerate() { + let last = i == bytes.len() - 1; + + // NOTE(unsafe) We have &mut self + unsafe { + p.ic_data_cmd().write(|w| { + if send_stop && last { + w.set_stop(true); + } else { + w.set_stop(false); + } + w.set_dat(*byte); + }); + + // Wait until the transmission of the address/data from the + // internal shift register has completed. For this to function + // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The + // TX_EMPTY_CTRL flag was set in i2c_init. + while !p.ic_raw_intr_stat().read().tx_empty() {} + + let abort_reason = self.read_and_clear_abort_reason(); + + if abort_reason.is_some() || (send_stop && last) { + // If the transaction was aborted or if it completed + // successfully wait until the STOP condition has occured. + + while !p.ic_raw_intr_stat().read().stop_det() {} + + p.ic_clr_stop_det().read().clr_stop_det(); + } + + // Note the hardware issues a STOP automatically on an abort + // condition. Note also the hardware clears RX FIFO as well as + // TX on abort, ecause we set hwparam + // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0. + if let Some(abort_reason) = abort_reason { + return Err(Error::Abort(abort_reason)); + } + } + } + Ok(()) + } + + // ========================= Blocking public API + // ========================= + + pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.read_blocking_internal(buffer, false, true) + // Automatic Stop + } + + pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.write_blocking_internal(bytes, true) + } + + pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.write_blocking_internal(bytes, false)?; + self.read_blocking_internal(buffer, true, true) + // Automatic Stop + } +} + +// impl<'d, T: Instance> I2c<'d, T, Async> { // ========================= // +// Async public API // ========================= + +// pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), +// Error> { if bytes.is_empty() { self.write_blocking_internal(address, +// bytes, true) } else { self.write_dma_internal(address, bytes, +// true, true).await } } + +// pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> +// Result<(), Error> { if bytes.is_empty() { return +// Err(Error::ZeroLengthTransfer); } let mut iter = bytes.iter(); + +// let mut first = true; let mut current = iter.next(); while let +// Some(c) = current { let next = iter.next(); let is_last = +// next.is_none(); + +// self.write_dma_internal(address, c, first, is_last).await?; +// first = false; +// current = next; +// } Ok(()) +// } + +// pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> +// Result<(), Error> { if buffer.is_empty() { +// self.read_blocking_internal(address, buffer, false) } else { +// self.read_dma_internal(address, buffer, false).await } } + +// pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: +// &mut [u8]) -> Result<(), Error> { if bytes.is_empty() { +// self.write_blocking_internal(address, bytes, false)?; } else { +// self.write_dma_internal(address, bytes, true, true).await?; } + +// if buffer.is_empty() { self.read_blocking_internal(address, buffer, +// true)?; } else { self.read_dma_internal(address, buffer, +// true).await?; } + +// Ok(()) +// } +// } + +mod eh02 { + use super::*; + + impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> { + type Error = Error; + + fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { + self.blocking_read(address, buffer) + } + } + + impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> { + type Error = Error; + + fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> { + self.blocking_write(address, bytes) + } + } + + impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> { + type Error = Error; + + fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { + self.blocking_write_read(address, bytes, buffer) + } + } +} + +fn i2c_reserved_addr(addr: u16) -> bool { + (addr & 0x78) == 0 || (addr & 0x78) == 0x78 +} + mod sealed { pub trait Instance {} pub trait Mode {} @@ -155,11 +421,11 @@ macro_rules! impl_mode { }; } -pub struct Master; -pub struct Slave; +pub struct Blocking; +pub struct Async; -impl_mode!(Master); -impl_mode!(Slave); +impl_mode!(Blocking); +impl_mode!(Async); pub trait Instance: sealed::Instance { fn regs() -> pac::i2c::I2c;